/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Clifford Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "kernel/yosys.h" #include "kernel/satgen.h" #include "kernel/sigtools.h" #include "kernel/modtools.h" USING_YOSYS_NAMESPACE PRIVATE_NAMESPACE_BEGIN bool memrd_cmp(RTLIL::Cell *a, RTLIL::Cell *b) { return a->name < b->name; } bool memwr_cmp(RTLIL::Cell *a, RTLIL::Cell *b) { return a->parameters.at(ID::PRIORITY).as_int() < b->parameters.at(ID::PRIORITY).as_int(); } struct OptMemFeedbackWorker { RTLIL::Design *design; RTLIL::Module *module; SigMap sigmap, sigmap_xmux; std::map> sig_to_mux; std::map>, SigBit>, SigBit> conditions_logic_cache; // ----------------------------------------------------------------- // Converting feedbacks to async read ports to proper enable signals // ----------------------------------------------------------------- bool find_data_feedback(const std::set &async_rd_bits, RTLIL::SigBit sig, std::map &state, std::set> &conditions) { if (async_rd_bits.count(sig)) { conditions.insert(state); return true; } if (sig_to_mux.count(sig) == 0) return false; RTLIL::Cell *cell = sig_to_mux.at(sig).first; int bit_idx = sig_to_mux.at(sig).second; std::vector sig_a = sigmap(cell->getPort(ID::A)); std::vector sig_b = sigmap(cell->getPort(ID::B)); std::vector sig_s = sigmap(cell->getPort(ID::S)); std::vector sig_y = sigmap(cell->getPort(ID::Y)); log_assert(sig_y.at(bit_idx) == sig); for (int i = 0; i < int(sig_s.size()); i++) if (state.count(sig_s[i]) && state.at(sig_s[i]) == true) { if (find_data_feedback(async_rd_bits, sig_b.at(bit_idx + i*sig_y.size()), state, conditions)) { RTLIL::SigSpec new_b = cell->getPort(ID::B); new_b.replace(bit_idx + i*sig_y.size(), RTLIL::State::Sx); cell->setPort(ID::B, new_b); } return false; } for (int i = 0; i < int(sig_s.size()); i++) { if (state.count(sig_s[i]) && state.at(sig_s[i]) == false) continue; std::map new_state = state; new_state[sig_s[i]] = true; if (find_data_feedback(async_rd_bits, sig_b.at(bit_idx + i*sig_y.size()), new_state, conditions)) { RTLIL::SigSpec new_b = cell->getPort(ID::B); new_b.replace(bit_idx + i*sig_y.size(), RTLIL::State::Sx); cell->setPort(ID::B, new_b); } } std::map new_state = state; for (int i = 0; i < int(sig_s.size()); i++) new_state[sig_s[i]] = false; if (find_data_feedback(async_rd_bits, sig_a.at(bit_idx), new_state, conditions)) { RTLIL::SigSpec new_a = cell->getPort(ID::A); new_a.replace(bit_idx, RTLIL::State::Sx); cell->setPort(ID::A, new_a); } return false; } RTLIL::SigBit conditions_to_logic(std::set> &conditions, SigBit olden, int &created_conditions) { auto key = make_pair(conditions, olden); if (conditions_logic_cache.count(key)) return conditions_logic_cache.at(key); RTLIL::SigSpec terms; for (auto &cond : conditions) { RTLIL::SigSpec sig1, sig2; for (auto &it : cond) { sig1.append(it.first); sig2.append(it.second ? RTLIL::State::S1 : RTLIL::State::S0); } terms.append(module->Ne(NEW_ID, sig1, sig2)); created_conditions++; } if (olden.wire != nullptr || olden != State::S1) terms.append(olden); if (GetSize(terms) == 0) terms = State::S1; if (GetSize(terms) > 1) terms = module->ReduceAnd(NEW_ID, terms); return conditions_logic_cache[key] = terms; } void translate_rd_feedback_to_en(std::string memid, std::vector &rd_ports, std::vector &wr_ports) { std::map>> async_rd_bits; std::map> muxtree_upstream_map; std::set non_feedback_nets; for (auto wire : module->wires()) if (wire->port_output) { std::vector bits = sigmap(wire); non_feedback_nets.insert(bits.begin(), bits.end()); } for (auto cell : module->cells()) { bool ignore_data_port = false; if (cell->type.in(ID($mux), ID($pmux))) { std::vector sig_a = sigmap(cell->getPort(ID::A)); std::vector sig_b = sigmap(cell->getPort(ID::B)); std::vector sig_s = sigmap(cell->getPort(ID::S)); std::vector sig_y = sigmap(cell->getPort(ID::Y)); non_feedback_nets.insert(sig_s.begin(), sig_s.end()); for (int i = 0; i < int(sig_y.size()); i++) { muxtree_upstream_map[sig_y[i]].insert(sig_a[i]); for (int j = 0; j < int(sig_s.size()); j++) muxtree_upstream_map[sig_y[i]].insert(sig_b[i + j*sig_y.size()]); } continue; } if (cell->type.in(ID($memwr), ID($memrd)) && cell->parameters.at(ID::MEMID).decode_string() == memid) ignore_data_port = true; for (auto conn : cell->connections()) { if (ignore_data_port && conn.first == ID::DATA) continue; std::vector bits = sigmap(conn.second); non_feedback_nets.insert(bits.begin(), bits.end()); } } std::set expand_non_feedback_nets = non_feedback_nets; while (!expand_non_feedback_nets.empty()) { std::set new_expand_non_feedback_nets; for (auto &bit : expand_non_feedback_nets) if (muxtree_upstream_map.count(bit)) for (auto &new_bit : muxtree_upstream_map.at(bit)) if (!non_feedback_nets.count(new_bit)) { non_feedback_nets.insert(new_bit); new_expand_non_feedback_nets.insert(new_bit); } expand_non_feedback_nets.swap(new_expand_non_feedback_nets); } for (auto cell : rd_ports) { if (cell->parameters.at(ID::CLK_ENABLE).as_bool()) continue; RTLIL::SigSpec sig_addr = sigmap(cell->getPort(ID::ADDR)); std::vector sig_data = sigmap(cell->getPort(ID::DATA)); for (int i = 0; i < int(sig_data.size()); i++) if (non_feedback_nets.count(sig_data[i])) goto not_pure_feedback_port; async_rd_bits[sig_addr].resize(max(async_rd_bits.size(), sig_data.size())); for (int i = 0; i < int(sig_data.size()); i++) async_rd_bits[sig_addr][i].insert(sig_data[i]); not_pure_feedback_port:; } if (async_rd_bits.empty()) return; log("Populating enable bits on write ports of memory %s.%s with aync read feedback:\n", log_id(module), log_id(memid)); for (auto cell : wr_ports) { RTLIL::SigSpec sig_addr = sigmap_xmux(cell->getPort(ID::ADDR)); if (!async_rd_bits.count(sig_addr)) continue; log(" Analyzing write port %s.\n", log_id(cell)); std::vector cell_data = cell->getPort(ID::DATA); std::vector cell_en = cell->getPort(ID::EN); int created_conditions = 0; for (int i = 0; i < int(cell_data.size()); i++) if (cell_en[i] != RTLIL::SigBit(RTLIL::State::S0)) { std::map state; std::set> conditions; find_data_feedback(async_rd_bits.at(sig_addr).at(i), cell_data[i], state, conditions); cell_en[i] = conditions_to_logic(conditions, cell_en[i], created_conditions); } if (created_conditions) { log(" Added enable logic for %d different cases.\n", created_conditions); cell->setPort(ID::EN, cell_en); } } } // ------------- // Setup and run // ------------- OptMemFeedbackWorker(RTLIL::Design *design) : design(design) {} void operator()(RTLIL::Module* module) { std::map, std::vector>> memindex; this->module = module; sigmap.set(module); sig_to_mux.clear(); conditions_logic_cache.clear(); sigmap_xmux = sigmap; for (auto cell : module->cells()) { if (cell->type == ID($memrd)) memindex[cell->parameters.at(ID::MEMID).decode_string()].first.push_back(cell); if (cell->type == ID($memwr)) memindex[cell->parameters.at(ID::MEMID).decode_string()].second.push_back(cell); if (cell->type == ID($mux)) { RTLIL::SigSpec sig_a = sigmap_xmux(cell->getPort(ID::A)); RTLIL::SigSpec sig_b = sigmap_xmux(cell->getPort(ID::B)); if (sig_a.is_fully_undef()) sigmap_xmux.add(cell->getPort(ID::Y), sig_b); else if (sig_b.is_fully_undef()) sigmap_xmux.add(cell->getPort(ID::Y), sig_a); } if (cell->type.in(ID($mux), ID($pmux))) { std::vector sig_y = sigmap(cell->getPort(ID::Y)); for (int i = 0; i < int(sig_y.size()); i++) sig_to_mux[sig_y[i]] = std::pair(cell, i); } } for (auto &it : memindex) { std::sort(it.second.first.begin(), it.second.first.end(), memrd_cmp); std::sort(it.second.second.begin(), it.second.second.end(), memwr_cmp); translate_rd_feedback_to_en(it.first, it.second.first, it.second.second); } } }; struct OptMemFeedbackPass : public Pass { OptMemFeedbackPass() : Pass("opt_mem_feedback", "convert memory read-to-write port feedback paths to write enables") { } void help() override { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" opt_mem_feedback [selection]\n"); log("\n"); log("This pass detects cases where an asynchronous read port is connected via\n"); log("a mux tree to a write port with the same address. When such a path is\n"); log("found, it is replaced with a new condition on an enable signal, possibly\n"); log("allowing for removal of the read port.\n"); log("\n"); } void execute(std::vector args, RTLIL::Design *design) override { log_header(design, "Executing OPT_MEM_FEEDBACK pass (finding memory read-to-write feedback paths).\n"); extra_args(args, 1, design); OptMemFeedbackWorker worker(design); for (auto module : design->selected_modules()) worker(module); } } OptMemFeedbackPass; PRIVATE_NAMESPACE_END