/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Clifford Wolf <clifford@clifford.at> * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "kernel/yosys.h" #include "kernel/sigtools.h" USING_YOSYS_NAMESPACE PRIVATE_NAMESPACE_BEGIN struct EquivStructWorker { Module *module; SigMap sigmap; SigMap equiv_bits; bool mode_fwd; bool mode_icells; int merge_count; const pool<IdString> &fwonly_cells; struct merge_key_t { IdString type; vector<pair<IdString, Const>> parameters; vector<pair<IdString, int>> port_sizes; vector<tuple<IdString, int, SigBit>> connections; bool operator==(const merge_key_t &other) const { return type == other.type && connections == other.connections && parameters == other.parameters && port_sizes == other.port_sizes; } unsigned int hash() const { unsigned int h = mkhash_init; h = mkhash(h, mkhash(type)); h = mkhash(h, mkhash(parameters)); h = mkhash(h, mkhash(connections)); return h; } }; dict<merge_key_t, pool<IdString>> merge_cache; pool<merge_key_t> fwd_merge_cache, bwd_merge_cache; void merge_cell_pair(Cell *cell_a, Cell *cell_b) { SigMap merged_map; merge_count++; SigSpec inputs_a, inputs_b; vector<string> input_names; for (auto &port_a : cell_a->connections()) { SigSpec bits_a = sigmap(port_a.second); SigSpec bits_b = sigmap(cell_b->getPort(port_a.first)); log_assert(GetSize(bits_a) == GetSize(bits_b)); if (!cell_a->output(port_a.first)) for (int i = 0; i < GetSize(bits_a); i++) if (bits_a[i] != bits_b[i]) { inputs_a.append(bits_a[i]); inputs_b.append(bits_b[i]); input_names.push_back(GetSize(bits_a) == 1 ? port_a.first.str() : stringf("%s[%d]", log_id(port_a.first), i)); } } for (int i = 0; i < GetSize(inputs_a); i++) { SigBit bit_a = inputs_a[i], bit_b = inputs_b[i]; SigBit bit_y = module->addWire(NEW_ID); log(" New $equiv for input %s: A: %s, B: %s, Y: %s\n", input_names[i].c_str(), log_signal(bit_a), log_signal(bit_b), log_signal(bit_y)); module->addEquiv(NEW_ID, bit_a, bit_b, bit_y); merged_map.add(bit_a, bit_y); merged_map.add(bit_b, bit_y); } std::vector<IdString> outport_names, inport_names; for (auto &port_a : cell_a->connections()) if (cell_a->output(port_a.first)) outport_names.push_back(port_a.first); else inport_names.push_back(port_a.first); for (auto &pn : inport_names) cell_a->setPort(pn, merged_map(sigmap(cell_a->getPort(pn)))); for (auto &pn : outport_names) { SigSpec sig_a = cell_a->getPort(pn); SigSpec sig_b = cell_b->getPort(pn); module->connect(sig_b, sig_a); } auto merged_attr = cell_b->get_strpool_attribute("\\equiv_merged"); merged_attr.insert(log_id(cell_b)); cell_a->add_strpool_attribute("\\equiv_merged", merged_attr); module->remove(cell_b); } EquivStructWorker(Module *module, bool mode_fwd, bool mode_icells, const pool<IdString> &fwonly_cells, int iter_num) : module(module), sigmap(module), equiv_bits(module), mode_fwd(mode_fwd), mode_icells(mode_icells), merge_count(0), fwonly_cells(fwonly_cells) { log(" Starting iteration %d.\n", iter_num); pool<SigBit> equiv_inputs; pool<IdString> cells; for (auto cell : module->selected_cells()) if (cell->type == "$equiv") { SigBit sig_a = sigmap(cell->getPort("\\A").as_bit()); SigBit sig_b = sigmap(cell->getPort("\\B").as_bit()); equiv_bits.add(sig_b, sig_a); equiv_inputs.insert(sig_a); equiv_inputs.insert(sig_b); cells.insert(cell->name); } else { if (mode_icells || module->design->module(cell->type)) cells.insert(cell->name); } for (auto cell : module->selected_cells()) if (cell->type == "$equiv") { SigBit sig_a = sigmap(cell->getPort("\\A").as_bit()); SigBit sig_b = sigmap(cell->getPort("\\B").as_bit()); SigBit sig_y = sigmap(cell->getPort("\\Y").as_bit()); if (sig_a == sig_b && equiv_inputs.count(sig_y)) { log(" Purging redundant $equiv cell %s.\n", log_id(cell)); module->connect(sig_y, sig_a); module->remove(cell); merge_count++; } } if (merge_count > 0) return; for (auto cell_name : cells) { merge_key_t key; vector<tuple<IdString, int, SigBit>> fwd_connections; Cell *cell = module->cell(cell_name); key.type = cell->type; for (auto &it : cell->parameters) key.parameters.push_back(it); std::sort(key.parameters.begin(), key.parameters.end()); for (auto &it : cell->connections()) key.port_sizes.push_back(make_pair(it.first, GetSize(it.second))); std::sort(key.port_sizes.begin(), key.port_sizes.end()); for (auto &conn : cell->connections()) { if (cell->input(conn.first)) { SigSpec sig = sigmap(conn.second); for (int i = 0; i < GetSize(sig); i++) fwd_connections.push_back(make_tuple(conn.first, i, sig[i])); } if (cell->output(conn.first)) { SigSpec sig = equiv_bits(conn.second); for (int i = 0; i < GetSize(sig); i++) { key.connections.clear(); key.connections.push_back(make_tuple(conn.first, i, sig[i])); if (merge_cache.count(key)) bwd_merge_cache.insert(key); merge_cache[key].insert(cell_name); } } } std::sort(fwd_connections.begin(), fwd_connections.end()); key.connections.swap(fwd_connections); if (merge_cache.count(key)) fwd_merge_cache.insert(key); merge_cache[key].insert(cell_name); } for (int phase = 0; phase < 2; phase++) { auto &queue = phase ? bwd_merge_cache : fwd_merge_cache; for (auto &key : queue) { const char *strategy = nullptr; vector<Cell*> gold_cells, gate_cells, other_cells; vector<pair<Cell*, Cell*>> cell_pairs; IdString cells_type; for (auto cell_name : merge_cache[key]) { Cell *c = module->cell(cell_name); if (c != nullptr) { string n = cell_name.str(); cells_type = c->type; if (GetSize(n) > 5 && n.substr(GetSize(n)-5) == "_gold") gold_cells.push_back(c); else if (GetSize(n) > 5 && n.substr(GetSize(n)-5) == "_gate") gate_cells.push_back(c); else other_cells.push_back(c); } } if (phase && fwonly_cells.count(cells_type)) continue; if (GetSize(gold_cells) > 1 || GetSize(gate_cells) > 1 || GetSize(other_cells) > 1) { strategy = "deduplicate"; for (int i = 0; i+1 < GetSize(gold_cells); i += 2) cell_pairs.push_back(make_pair(gold_cells[i], gold_cells[i+1])); for (int i = 0; i+1 < GetSize(gate_cells); i += 2) cell_pairs.push_back(make_pair(gate_cells[i], gate_cells[i+1])); for (int i = 0; i+1 < GetSize(other_cells); i += 2) cell_pairs.push_back(make_pair(other_cells[i], other_cells[i+1])); goto run_strategy; } if (GetSize(gold_cells) == 1 && GetSize(gate_cells) == 1) { strategy = "gold-gate-pairs"; cell_pairs.push_back(make_pair(gold_cells[0], gate_cells[0])); goto run_strategy; } if (GetSize(gold_cells) == 1 && GetSize(other_cells) == 1) { strategy = "gold-guess"; cell_pairs.push_back(make_pair(gold_cells[0], other_cells[0])); goto run_strategy; } if (GetSize(other_cells) == 1 && GetSize(gate_cells) == 1) { strategy = "gate-guess"; cell_pairs.push_back(make_pair(other_cells[0], gate_cells[0])); goto run_strategy; } log_assert(GetSize(gold_cells) + GetSize(gate_cells) + GetSize(other_cells) < 2); continue; run_strategy: int total_group_size = GetSize(gold_cells) + GetSize(gate_cells) + GetSize(other_cells); log(" %s merging %d %s cells (from group of %d) using strategy %s:\n", phase ? "Bwd" : "Fwd", 2*GetSize(cell_pairs), log_id(cells_type), total_group_size, strategy); for (auto it : cell_pairs) { log(" Merging cells %s and %s.\n", log_id(it.first), log_id(it.second)); merge_cell_pair(it.first, it.second); } } if (merge_count > 0) return; } log(" Nothing to merge.\n"); } }; struct EquivStructPass : public Pass { EquivStructPass() : Pass("equiv_struct", "structural equivalence checking") { } virtual void help() { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" equiv_struct [options] [selection]\n"); log("\n"); log("This command adds additional $equiv cells based on the assumption that the\n"); log("gold and gate circuit are structurally equivalent. Note that this can introduce\n"); log("bad $equiv cells in cases where the netlists are not structurally equivalent,\n"); log("for example when analyzing circuits with cells with commutative inputs. This\n"); log("command will also de-duplicate gates.\n"); log("\n"); log(" -fwd\n"); log(" by default this command performans forward sweeps until nothing can\n"); log(" be merged by forwards sweeps, then backward sweeps until forward\n"); log(" sweeps are effective again. with this option set only forward sweeps\n"); log(" are performed.\n"); log("\n"); log(" -fwonly <cell_type>\n"); log(" add the specified cell type to the list of cell types that are only\n"); log(" merged in forward sweeps and never in backward sweeps. $equiv is in\n"); log(" this list automatically.\n"); log("\n"); log(" -icells\n"); log(" by default, the internal RTL and gate cell types are ignored. add\n"); log(" this option to also process those cell types with this command.\n"); log("\n"); log(" -maxiter <N>\n"); log(" maximum number of iterations to run before aborting\n"); log("\n"); } virtual void execute(std::vector<std::string> args, Design *design) { pool<IdString> fwonly_cells({ "$equiv" }); bool mode_icells = false; bool mode_fwd = false; int max_iter = -1; log_header(design, "Executing EQUIV_STRUCT pass.\n"); size_t argidx; for (argidx = 1; argidx < args.size(); argidx++) { if (args[argidx] == "-fwd") { mode_fwd = true; continue; } if (args[argidx] == "-icells") { mode_icells = true; continue; } if (args[argidx] == "-fwonly" && argidx+1 < args.size()) { fwonly_cells.insert(RTLIL::escape_id(args[++argidx])); continue; } if (args[argidx] == "-maxiter" && argidx+1 < args.size()) { max_iter = atoi(args[++argidx].c_str()); continue; } break; } extra_args(args, argidx, design); for (auto module : design->selected_modules()) { int module_merge_count = 0; log("Running equiv_struct on module %s:\n", log_id(module)); for (int iter = 0;; iter++) { if (iter == max_iter) { log(" Reached iteration limit of %d.\n", iter); break; } EquivStructWorker worker(module, mode_fwd, mode_icells, fwonly_cells, iter+1); if (worker.merge_count == 0) break; module_merge_count += worker.merge_count; } if (module_merge_count) log(" Performed a total of %d merges in module %s.\n", module_merge_count, log_id(module)); } } } EquivStructPass; PRIVATE_NAMESPACE_END