`default_nettype none module \$alu (A, B, CI, BI, X, Y, CO); parameter A_SIGNED = 0; parameter B_SIGNED = 0; parameter A_WIDTH = 1; parameter B_WIDTH = 1; parameter Y_WIDTH = 1; parameter _TECHMAP_CONSTMSK_CI_ = 0; parameter _TECHMAP_CONSTVAL_CI_ = 0; input [A_WIDTH-1:0] A; input [B_WIDTH-1:0] B; input CI, BI; output [Y_WIDTH-1:0] X, Y, CO; wire [Y_WIDTH-1:0] A_buf, B_buf; \$pos #(.A_SIGNED(A_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(Y_WIDTH)) A_conv (.A(A), .Y(A_buf)); \$pos #(.A_SIGNED(B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) B_conv (.A(B), .Y(B_buf)); wire [Y_WIDTH-1:0] AA = A_buf; wire [Y_WIDTH-1:0] BB = BI ? ~B_buf : B_buf; wire [Y_WIDTH-1:0] BX = B_buf; wire [Y_WIDTH:0] ALM_CARRY; // Start of carry chain generate if (_TECHMAP_CONSTMSK_CI_ == 1) begin assign ALM_CARRY[0] = _TECHMAP_CONSTVAL_CI_; end else begin MISTRAL_ALUT_ARITH #( .LUT0(16'b1010_1010_1010_1010), // Q = A .LUT1(16'b0000_0000_0000_0000), // Q = 0 (LUT1's input to the adder is inverted) ) alm_start ( .A(CI), .B(1'b1), .C(1'b1), .D0(1'b1), .D1(1'b1), .CI(1'b0), .CO(ALM_CARRY[0]) ); end endgenerate // Carry chain genvar i; generate for (i = 0; i < Y_WIDTH; i = i + 1) begin:slice // TODO: mwk suggests that a pass could merge pre-adder logic into this. MISTRAL_ALUT_ARITH #( .LUT0(16'b1010_1010_1010_1010), // Q = A .LUT1(16'b1100_0011_1100_0011), // Q = C ? B : ~B (LUT1's input to the adder is inverted) ) alm_i ( .A(AA[i]), .B(BX[i]), .C(BI), .D0(1'b1), .D1(1'b1), .CI(ALM_CARRY[i]), .SO(Y[i]), .CO(ALM_CARRY[i+1]) ); // ALM carry chain is not directly accessible, so calculate the carry through soft logic if really needed. assign CO[i] = (AA[i] && BB[i]) || ((Y[i] ^ AA[i] ^ BB[i]) && (AA[i] || BB[i])); end endgenerate assign X = AA ^ BB; endmodule