/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Claire Xenia Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * * --- * * A simple and straightforward Verilog backend. * */ #include "kernel/register.h" #include "kernel/celltypes.h" #include "kernel/log.h" #include "kernel/sigtools.h" #include "kernel/ff.h" #include "kernel/mem.h" #include "kernel/fmt.h" #include #include #include #include USING_YOSYS_NAMESPACE PRIVATE_NAMESPACE_BEGIN bool verbose, norename, noattr, attr2comment, noexpr, nodec, nohex, nostr, extmem, defparam, decimal, siminit, systemverilog, simple_lhs, noparallelcase; int auto_name_counter, auto_name_offset, auto_name_digits, extmem_counter; dict auto_name_map; std::set reg_wires; std::string auto_prefix, extmem_prefix; RTLIL::Module *active_module; dict active_initdata; SigMap active_sigmap; IdString initial_id; void reset_auto_counter_id(RTLIL::IdString id, bool may_rename) { const char *str = id.c_str(); if (*str == '$' && may_rename && !norename) auto_name_map[id] = auto_name_counter++; if (str[0] != '\\' || str[1] != '_' || str[2] == 0) return; for (int i = 2; str[i] != 0; i++) { if (str[i] == '_' && str[i+1] == 0) continue; if (str[i] < '0' || str[i] > '9') return; } int num = atoi(str+2); if (num >= auto_name_offset) auto_name_offset = num + 1; } void reset_auto_counter(RTLIL::Module *module) { auto_name_map.clear(); auto_name_counter = 0; auto_name_offset = 0; reset_auto_counter_id(module->name, false); for (auto w : module->wires()) reset_auto_counter_id(w->name, true); for (auto cell : module->cells()) { reset_auto_counter_id(cell->name, true); reset_auto_counter_id(cell->type, false); } for (auto it = module->processes.begin(); it != module->processes.end(); ++it) reset_auto_counter_id(it->second->name, false); auto_name_digits = 1; for (size_t i = 10; i < auto_name_offset + auto_name_map.size(); i = i*10) auto_name_digits++; if (verbose) for (auto it = auto_name_map.begin(); it != auto_name_map.end(); ++it) log(" renaming `%s' to `%s_%0*d_'.\n", it->first.c_str(), auto_prefix.c_str(), auto_name_digits, auto_name_offset + it->second); } std::string next_auto_id() { return stringf("%s_%0*d_", auto_prefix.c_str(), auto_name_digits, auto_name_offset + auto_name_counter++); } std::string id(RTLIL::IdString internal_id, bool may_rename = true) { const char *str = internal_id.c_str(); bool do_escape = false; if (may_rename && auto_name_map.count(internal_id) != 0) return stringf("%s_%0*d_", auto_prefix.c_str(), auto_name_digits, auto_name_offset + auto_name_map[internal_id]); if (*str == '\\') str++; if ('0' <= *str && *str <= '9') do_escape = true; for (int i = 0; str[i]; i++) { if ('0' <= str[i] && str[i] <= '9') continue; if ('a' <= str[i] && str[i] <= 'z') continue; if ('A' <= str[i] && str[i] <= 'Z') continue; if (str[i] == '_') continue; do_escape = true; break; } static const pool keywords = { // IEEE 1800-2017 Annex B "accept_on", "alias", "always", "always_comb", "always_ff", "always_latch", "and", "assert", "assign", "assume", "automatic", "before", "begin", "bind", "bins", "binsof", "bit", "break", "buf", "bufif0", "bufif1", "byte", "case", "casex", "casez", "cell", "chandle", "checker", "class", "clocking", "cmos", "config", "const", "constraint", "context", "continue", "cover", "covergroup", "coverpoint", "cross", "deassign", "default", "defparam", "design", "disable", "dist", "do", "edge", "else", "end", "endcase", "endchecker", "endclass", "endclocking", "endconfig", "endfunction", "endgenerate", "endgroup", "endinterface", "endmodule", "endpackage", "endprimitive", "endprogram", "endproperty", "endsequence", "endspecify", "endtable", "endtask", "enum", "event", "eventually", "expect", "export", "extends", "extern", "final", "first_match", "for", "force", "foreach", "forever", "fork", "forkjoin", "function", "generate", "genvar", "global", "highz0", "highz1", "if", "iff", "ifnone", "ignore_bins", "illegal_bins", "implements", "implies", "import", "incdir", "include", "initial", "inout", "input", "inside", "instance", "int", "integer", "interconnect", "interface", "intersect", "join", "join_any", "join_none", "large", "let", "liblist", "library", "local", "localparam", "logic", "longint", "macromodule", "matches", "medium", "modport", "module", "nand", "negedge", "nettype", "new", "nexttime", "nmos", "nor", "noshowcancelled", "not", "notif0", "notif1", "null", "or", "output", "package", "packed", "parameter", "pmos", "posedge", "primitive", "priority", "program", "property", "protected", "pull0", "pull1", "pulldown", "pullup", "pulsestyle_ondetect", "pulsestyle_onevent", "pure", "rand", "randc", "randcase", "randsequence", "rcmos", "real", "realtime", "ref", "reg", "reject_on", "release", "repeat", "restrict", "return", "rnmos", "rpmos", "rtran", "rtranif0", "rtranif1", "s_always", "s_eventually", "s_nexttime", "s_until", "s_until_with", "scalared", "sequence", "shortint", "shortreal", "showcancelled", "signed", "small", "soft", "solve", "specify", "specparam", "static", "string", "strong", "strong0", "strong1", "struct", "super", "supply0", "supply1", "sync_accept_on", "sync_reject_on", "table", "tagged", "task", "this", "throughout", "time", "timeprecision", "timeunit", "tran", "tranif0", "tranif1", "tri", "tri0", "tri1", "triand", "trior", "trireg", "type", "typedef", "union", "unique", "unique0", "unsigned", "until", "until_with", "untyped", "use", "uwire", "var", "vectored", "virtual", "void", "wait", "wait_order", "wand", "weak", "weak0", "weak1", "while", "wildcard", "wire", "with", "within", "wor", "xnor", "xor", }; if (keywords.count(str)) do_escape = true; if (do_escape) return "\\" + std::string(str) + " "; return std::string(str); } bool is_reg_wire(RTLIL::SigSpec sig, std::string ®_name) { if (!sig.is_chunk() || sig.as_chunk().wire == NULL) return false; RTLIL::SigChunk chunk = sig.as_chunk(); if (reg_wires.count(chunk.wire->name) == 0) return false; reg_name = id(chunk.wire->name); if (sig.size() != chunk.wire->width) { if (sig.size() == 1) reg_name += stringf("[%d]", chunk.wire->start_offset + chunk.offset); else if (chunk.wire->upto) reg_name += stringf("[%d:%d]", (chunk.wire->width - (chunk.offset + chunk.width - 1) - 1) + chunk.wire->start_offset, (chunk.wire->width - chunk.offset - 1) + chunk.wire->start_offset); else reg_name += stringf("[%d:%d]", chunk.wire->start_offset + chunk.offset + chunk.width - 1, chunk.wire->start_offset + chunk.offset); } return true; } void dump_const(std::ostream &f, const RTLIL::Const &data, int width = -1, int offset = 0, bool no_decimal = false, bool escape_comment = false) { bool set_signed = (data.flags & RTLIL::CONST_FLAG_SIGNED) != 0; if (width < 0) width = data.size() - offset; if (width == 0) { // See IEEE 1364-2005 Clause 5.1.14. f << "{0{1'b0}}"; return; } if (nostr) goto dump_hex; if ((data.flags & RTLIL::CONST_FLAG_STRING) == 0 || width != (int)data.size()) { if (width == 32 && !no_decimal && !nodec) { int32_t val = 0; for (int i = offset+width-1; i >= offset; i--) { log_assert(i < (int)data.size()); if (data[i] != State::S0 && data[i] != State::S1) goto dump_hex; if (data[i] == State::S1) val |= 1 << (i - offset); } if (decimal) f << stringf("%d", val); else if (set_signed && val < 0) f << stringf("-32'sd%u", -val); else f << stringf("32'%sd%u", set_signed ? "s" : "", val); } else { dump_hex: if (nohex) goto dump_bin; vector bin_digits, hex_digits; for (int i = offset; i < offset+width; i++) { log_assert(i < (int)data.size()); switch (data[i]) { case State::S0: bin_digits.push_back('0'); break; case State::S1: bin_digits.push_back('1'); break; case RTLIL::Sx: bin_digits.push_back('x'); break; case RTLIL::Sz: bin_digits.push_back('z'); break; case RTLIL::Sa: bin_digits.push_back('?'); break; case RTLIL::Sm: log_error("Found marker state in final netlist."); } } if (GetSize(bin_digits) == 0) goto dump_bin; while (GetSize(bin_digits) % 4 != 0) if (bin_digits.back() == '1') bin_digits.push_back('0'); else bin_digits.push_back(bin_digits.back()); for (int i = 0; i < GetSize(bin_digits); i += 4) { char bit_3 = bin_digits[i+3]; char bit_2 = bin_digits[i+2]; char bit_1 = bin_digits[i+1]; char bit_0 = bin_digits[i+0]; if (bit_3 == 'x' || bit_2 == 'x' || bit_1 == 'x' || bit_0 == 'x') { if (bit_3 != 'x' || bit_2 != 'x' || bit_1 != 'x' || bit_0 != 'x') goto dump_bin; hex_digits.push_back('x'); continue; } if (bit_3 == 'z' || bit_2 == 'z' || bit_1 == 'z' || bit_0 == 'z') { if (bit_3 != 'z' || bit_2 != 'z' || bit_1 != 'z' || bit_0 != 'z') goto dump_bin; hex_digits.push_back('z'); continue; } if (bit_3 == '?' || bit_2 == '?' || bit_1 == '?' || bit_0 == '?') { if (bit_3 != '?' || bit_2 != '?' || bit_1 != '?' || bit_0 != '?') goto dump_bin; hex_digits.push_back('?'); continue; } int val = 8*(bit_3 - '0') + 4*(bit_2 - '0') + 2*(bit_1 - '0') + (bit_0 - '0'); hex_digits.push_back(val < 10 ? '0' + val : 'a' + val - 10); } f << stringf("%d'%sh", width, set_signed ? "s" : ""); for (int i = GetSize(hex_digits)-1; i >= 0; i--) f << hex_digits[i]; } if (0) { dump_bin: f << stringf("%d'%sb", width, set_signed ? "s" : ""); if (width == 0) f << stringf("0"); for (int i = offset+width-1; i >= offset; i--) { log_assert(i < (int)data.size()); switch (data[i]) { case State::S0: f << stringf("0"); break; case State::S1: f << stringf("1"); break; case RTLIL::Sx: f << stringf("x"); break; case RTLIL::Sz: f << stringf("z"); break; case RTLIL::Sa: f << stringf("?"); break; case RTLIL::Sm: log_error("Found marker state in final netlist."); } } } } else { if ((data.flags & RTLIL::CONST_FLAG_REAL) == 0) f << stringf("\""); std::string str = data.decode_string(); for (size_t i = 0; i < str.size(); i++) { if (str[i] == '\n') f << stringf("\\n"); else if (str[i] == '\t') f << stringf("\\t"); else if (str[i] < 32) f << stringf("\\%03o", str[i]); else if (str[i] == '"') f << stringf("\\\""); else if (str[i] == '\\') f << stringf("\\\\"); else if (str[i] == '/' && escape_comment && i > 0 && str[i-1] == '*') f << stringf("\\/"); else f << str[i]; } if ((data.flags & RTLIL::CONST_FLAG_REAL) == 0) f << stringf("\""); } } void dump_reg_init(std::ostream &f, SigSpec sig) { Const initval; bool gotinit = false; for (auto bit : active_sigmap(sig)) { if (active_initdata.count(bit)) { initval.bits().push_back(active_initdata.at(bit)); gotinit = true; } else { initval.bits().push_back(State::Sx); } } if (gotinit) { f << " = "; dump_const(f, initval); } } void dump_sigchunk(std::ostream &f, const RTLIL::SigChunk &chunk, bool no_decimal = false) { if (chunk.wire == NULL) { dump_const(f, chunk.data, chunk.width, chunk.offset, no_decimal); } else { if (chunk.width == chunk.wire->width && chunk.offset == 0) { f << stringf("%s", id(chunk.wire->name).c_str()); } else if (chunk.width == 1) { if (chunk.wire->upto) f << stringf("%s[%d]", id(chunk.wire->name).c_str(), (chunk.wire->width - chunk.offset - 1) + chunk.wire->start_offset); else f << stringf("%s[%d]", id(chunk.wire->name).c_str(), chunk.offset + chunk.wire->start_offset); } else { if (chunk.wire->upto) f << stringf("%s[%d:%d]", id(chunk.wire->name).c_str(), (chunk.wire->width - (chunk.offset + chunk.width - 1) - 1) + chunk.wire->start_offset, (chunk.wire->width - chunk.offset - 1) + chunk.wire->start_offset); else f << stringf("%s[%d:%d]", id(chunk.wire->name).c_str(), (chunk.offset + chunk.width - 1) + chunk.wire->start_offset, chunk.offset + chunk.wire->start_offset); } } } void dump_sigspec(std::ostream &f, const RTLIL::SigSpec &sig) { if (GetSize(sig) == 0) { // See IEEE 1364-2005 Clause 5.1.14. f << "{0{1'b0}}"; return; } if (sig.is_chunk()) { dump_sigchunk(f, sig.as_chunk()); } else { f << stringf("{ "); for (auto it = sig.chunks().rbegin(); it != sig.chunks().rend(); ++it) { if (it != sig.chunks().rbegin()) f << stringf(", "); dump_sigchunk(f, *it, true); } f << stringf(" }"); } } void dump_attributes(std::ostream &f, std::string indent, dict &attributes, std::string term = "\n", bool modattr = false, bool regattr = false, bool as_comment = false) { if (noattr) return; if (attr2comment) as_comment = true; for (auto it = attributes.begin(); it != attributes.end(); ++it) { if (it->first == ID::init && regattr) continue; f << stringf("%s" "%s %s", indent.c_str(), as_comment ? "/*" : "(*", id(it->first).c_str()); f << stringf(" = "); if (modattr && (it->second == State::S0 || it->second == Const(0))) f << stringf(" 0 "); else if (modattr && (it->second == State::S1 || it->second == Const(1))) f << stringf(" 1 "); else dump_const(f, it->second, -1, 0, false, as_comment); f << stringf(" %s%s", as_comment ? "*/" : "*)", term.c_str()); } } void dump_wire(std::ostream &f, std::string indent, RTLIL::Wire *wire) { dump_attributes(f, indent, wire->attributes, "\n", /*modattr=*/false, /*regattr=*/reg_wires.count(wire->name)); #if 0 if (wire->port_input && !wire->port_output) f << stringf("%s" "input %s", indent.c_str(), reg_wires.count(wire->name) ? "reg " : ""); else if (!wire->port_input && wire->port_output) f << stringf("%s" "output %s", indent.c_str(), reg_wires.count(wire->name) ? "reg " : ""); else if (wire->port_input && wire->port_output) f << stringf("%s" "inout %s", indent.c_str(), reg_wires.count(wire->name) ? "reg " : ""); else f << stringf("%s" "%s ", indent.c_str(), reg_wires.count(wire->name) ? "reg" : "wire"); if (wire->width != 1) f << stringf("[%d:%d] ", wire->width - 1 + wire->start_offset, wire->start_offset); f << stringf("%s;\n", id(wire->name).c_str()); #else // do not use Verilog-2k "output reg" syntax in Verilog export std::string range = ""; if (wire->width != 1) { if (wire->upto) range = stringf(" [%d:%d]", wire->start_offset, wire->width - 1 + wire->start_offset); else range = stringf(" [%d:%d]", wire->width - 1 + wire->start_offset, wire->start_offset); } if (wire->port_input && !wire->port_output) f << stringf("%s" "input%s %s;\n", indent.c_str(), range.c_str(), id(wire->name).c_str()); if (!wire->port_input && wire->port_output) f << stringf("%s" "output%s %s;\n", indent.c_str(), range.c_str(), id(wire->name).c_str()); if (wire->port_input && wire->port_output) f << stringf("%s" "inout%s %s;\n", indent.c_str(), range.c_str(), id(wire->name).c_str()); if (reg_wires.count(wire->name)) { f << stringf("%s" "reg%s %s", indent.c_str(), range.c_str(), id(wire->name).c_str()); if (wire->attributes.count(ID::init)) { f << stringf(" = "); dump_const(f, wire->attributes.at(ID::init)); } f << stringf(";\n"); } else f << stringf("%s" "wire%s %s;\n", indent.c_str(), range.c_str(), id(wire->name).c_str()); #endif } void dump_memory(std::ostream &f, std::string indent, Mem &mem) { std::string mem_id = id(mem.memid); dump_attributes(f, indent, mem.attributes); f << stringf("%s" "reg [%d:0] %s [%d:%d];\n", indent.c_str(), mem.width-1, mem_id.c_str(), mem.size+mem.start_offset-1, mem.start_offset); // for memory block make something like: // reg [7:0] memid [3:0]; // initial begin // memid[0] = ... // end if (!mem.inits.empty()) { if (extmem) { std::string extmem_filename = stringf("%s-%d.mem", extmem_prefix.c_str(), extmem_counter++); std::string extmem_filename_esc; for (auto c : extmem_filename) { if (c == '\n') extmem_filename_esc += "\\n"; else if (c == '\t') extmem_filename_esc += "\\t"; else if (c < 32) extmem_filename_esc += stringf("\\%03o", c); else if (c == '"') extmem_filename_esc += "\\\""; else if (c == '\\') extmem_filename_esc += "\\\\"; else extmem_filename_esc += c; } f << stringf("%s" "initial $readmemb(\"%s\", %s);\n", indent.c_str(), extmem_filename_esc.c_str(), mem_id.c_str()); std::ofstream extmem_f(extmem_filename, std::ofstream::trunc); if (extmem_f.fail()) log_error("Can't open file `%s' for writing: %s\n", extmem_filename.c_str(), strerror(errno)); else { Const data = mem.get_init_data(); for (int i=0; i expressions within that clock domain dict> clk_to_lof_body; dict clk_to_arst_cond; dict> clk_to_arst_body; clk_to_lof_body[""] = std::vector(); std::string clk_domain_str; // create a list of reg declarations std::vector lof_reg_declarations; // read ports for (auto &port : mem.rd_ports) { if (port.clk_enable) { { std::ostringstream os; dump_sigspec(os, port.clk); clk_domain_str = stringf("%sedge %s", port.clk_polarity ? "pos" : "neg", os.str().c_str()); if (port.arst != State::S0) { std::ostringstream os2; dump_sigspec(os2, port.arst); clk_domain_str += stringf(", posedge %s", os2.str().c_str()); clk_to_arst_cond[clk_domain_str] = os2.str(); } } // Decide how to represent the transparency; same idea as Mem::extract_rdff. bool trans_use_addr = true; for (auto bit : port.transparency_mask) if (!bit) trans_use_addr = false; if (GetSize(mem.wr_ports) == 0) trans_use_addr = false; if (port.en != State::S1 || port.srst != State::S0 || port.arst != State::S0 || !port.init_value.is_fully_undef()) trans_use_addr = false; if (!trans_use_addr) { // for clocked read ports make something like: // reg [..] temp_id; // always @(posedge clk) // if (rd_en) temp_id <= array_reg[r_addr]; // assign r_data = temp_id; std::string temp_id = next_auto_id(); lof_reg_declarations.push_back( stringf("reg [%d:0] %s;\n", port.data.size() - 1, temp_id.c_str()) ); bool has_indent = false; if (port.arst != State::S0) { std::ostringstream os; os << stringf("%s <= ", temp_id.c_str()); dump_sigspec(os, port.arst_value); os << ";\n"; clk_to_arst_body[clk_domain_str].push_back(os.str()); } if (port.srst != State::S0 && !port.ce_over_srst) { std::ostringstream os; os << stringf("if ("); dump_sigspec(os, port.srst); os << stringf(")\n"); clk_to_lof_body[clk_domain_str].push_back(os.str()); std::ostringstream os2; os2 << stringf("%s" "%s <= ", indent.c_str(), temp_id.c_str()); dump_sigspec(os2, port.srst_value); os2 << ";\n"; clk_to_lof_body[clk_domain_str].push_back(os2.str()); std::ostringstream os3; if (port.en == State::S1) { os3 << "else begin\n"; } else { os3 << "else if ("; dump_sigspec(os3, port.en); os3 << ") begin\n"; } clk_to_lof_body[clk_domain_str].push_back(os3.str()); has_indent = true; } else if (port.en != State::S1) { std::ostringstream os; os << stringf("if ("); dump_sigspec(os, port.en); os << stringf(") begin\n"); clk_to_lof_body[clk_domain_str].push_back(os.str()); has_indent = true; } for (int sub = 0; sub < (1 << port.wide_log2); sub++) { SigSpec addr = port.sub_addr(sub); std::ostringstream os; if (has_indent) os << indent; os << temp_id; if (port.wide_log2) os << stringf("[%d:%d]", (sub + 1) * mem.width - 1, sub * mem.width); os << stringf(" <= %s[", mem_id.c_str()); dump_sigspec(os, addr); os << stringf("];\n"); clk_to_lof_body[clk_domain_str].push_back(os.str()); } for (int i = 0; i < GetSize(mem.wr_ports); i++) { auto &wport = mem.wr_ports[i]; if (!port.transparency_mask[i] && !port.collision_x_mask[i]) continue; int min_wide_log2 = std::min(port.wide_log2, wport.wide_log2); int max_wide_log2 = std::max(port.wide_log2, wport.wide_log2); bool wide_write = wport.wide_log2 > port.wide_log2; for (int sub = 0; sub < (1 << max_wide_log2); sub += (1 << min_wide_log2)) { SigSpec raddr = port.addr; SigSpec waddr = wport.addr; if (wide_write) waddr = wport.sub_addr(sub); else raddr = port.sub_addr(sub); int pos = 0; int ewidth = mem.width << min_wide_log2; int wsub = wide_write ? sub : 0; int rsub = wide_write ? 0 : sub; while (pos < ewidth) { int epos = pos; while (epos < ewidth && wport.en[epos + wsub * mem.width] == wport.en[pos + wsub * mem.width]) epos++; std::ostringstream os; if (has_indent) os << indent; os << "if ("; dump_sigspec(os, wport.en[pos + wsub * mem.width]); if (raddr != waddr) { os << " && "; dump_sigspec(os, raddr); os << " == "; dump_sigspec(os, waddr); } os << ")\n"; clk_to_lof_body[clk_domain_str].push_back(os.str()); std::ostringstream os2; if (has_indent) os2 << indent; os2 << indent; os2 << temp_id; if (epos-pos != GetSize(port.data)) os2 << stringf("[%d:%d]", rsub * mem.width + epos-1, rsub * mem.width + pos); os2 << " <= "; if (port.transparency_mask[i]) dump_sigspec(os2, wport.data.extract(wsub * mem.width + pos, epos-pos)); else dump_sigspec(os2, Const(State::Sx, epos - pos)); os2 << ";\n"; clk_to_lof_body[clk_domain_str].push_back(os2.str()); pos = epos; } } } if (port.srst != State::S0 && port.ce_over_srst) { std::ostringstream os; if (has_indent) os << indent; os << stringf("if ("); dump_sigspec(os, port.srst); os << stringf(")\n"); clk_to_lof_body[clk_domain_str].push_back(os.str()); std::ostringstream os2; if (has_indent) os2 << indent; os2 << stringf("%s" "%s <= ", indent.c_str(), temp_id.c_str()); dump_sigspec(os2, port.srst_value); os2 << ";\n"; clk_to_lof_body[clk_domain_str].push_back(os2.str()); } if (has_indent) clk_to_lof_body[clk_domain_str].push_back("end\n"); if (!port.init_value.is_fully_undef()) { std::ostringstream os; dump_sigspec(os, port.init_value); std::string line = stringf("initial %s = %s;\n", temp_id.c_str(), os.str().c_str()); clk_to_lof_body[""].push_back(line); } { std::ostringstream os; dump_sigspec(os, port.data); std::string line = stringf("assign %s = %s;\n", os.str().c_str(), temp_id.c_str()); clk_to_lof_body[""].push_back(line); } } else { // for rd-transparent read-ports make something like: // reg [..] temp_id; // always @(posedge clk) // temp_id <= r_addr; // assign r_data = array_reg[temp_id]; std::string temp_id = next_auto_id(); lof_reg_declarations.push_back( stringf("reg [%d:0] %s;\n", port.addr.size() - 1 - port.wide_log2, temp_id.c_str()) ); { std::ostringstream os; dump_sigspec(os, port.addr.extract_end(port.wide_log2)); std::string line = stringf("%s <= %s;\n", temp_id.c_str(), os.str().c_str()); clk_to_lof_body[clk_domain_str].push_back(line); } for (int sub = 0; sub < (1 << port.wide_log2); sub++) { std::ostringstream os; os << "assign "; dump_sigspec(os, port.data.extract(sub * mem.width, mem.width)); os << stringf(" = %s[", mem_id.c_str());; if (port.wide_log2) { Const addr_lo; for (int i = 0; i < port.wide_log2; i++) addr_lo.bits().push_back(State(sub >> i & 1)); os << "{"; os << temp_id; os << ", "; dump_const(os, addr_lo); os << "}"; } else { os << temp_id; } os << "];\n"; clk_to_lof_body[""].push_back(os.str()); } } } else { // for non-clocked read-ports make something like: // assign r_data = array_reg[r_addr]; for (int sub = 0; sub < (1 << port.wide_log2); sub++) { SigSpec addr = port.sub_addr(sub); std::ostringstream os, os2; dump_sigspec(os, port.data.extract(sub * mem.width, mem.width)); dump_sigspec(os2, addr); std::string line = stringf("assign %s = %s[%s];\n", os.str().c_str(), mem_id.c_str(), os2.str().c_str()); clk_to_lof_body[""].push_back(line); } } } // Write ports. Those are messy because we try to preserve priority, as much as we can: // // 1. We split all ports into several disjoint processes. // 2. If a port has priority over another port, the two ports need to share // a process, so that priority can be reconstructed on the other end. // 3. We want each process to be as small as possible, to avoid extra // priorities inferred on the other end. pool wr_ports_done; for (int ridx = 0; ridx < GetSize(mem.wr_ports); ridx++) { if (wr_ports_done.count(ridx)) continue; auto &root = mem.wr_ports[ridx]; // Start from a root. pool wr_ports_now; wr_ports_now.insert(ridx); // Transitively fill list of ports in this process by following priority edges. while (true) { bool changed = false; for (int i = 0; i < GetSize(mem.wr_ports); i++) for (int j = 0; j < i; j++) if (mem.wr_ports[i].priority_mask[j]) { if (wr_ports_now.count(i) && !wr_ports_now.count(j)) { wr_ports_now.insert(j); changed = true; } if (!wr_ports_now.count(i) && wr_ports_now.count(j)) { wr_ports_now.insert(i); changed = true; } } if (!changed) break; } if (root.clk_enable) { f << stringf("%s" "always%s @(%sedge ", indent.c_str(), systemverilog ? "_ff" : "", root.clk_polarity ? "pos" : "neg"); dump_sigspec(f, root.clk); f << ") begin\n"; } else { f << stringf("%s" "always%s begin\n", indent.c_str(), systemverilog ? "_latch" : " @*"); } for (int pidx = 0; pidx < GetSize(mem.wr_ports); pidx++) { if (!wr_ports_now.count(pidx)) continue; wr_ports_done.insert(pidx); auto &port = mem.wr_ports[pidx]; log_assert(port.clk_enable == root.clk_enable); if (port.clk_enable) { log_assert(port.clk == root.clk); log_assert(port.clk_polarity == root.clk_polarity); } // make something like: // always @(posedge clk) // if (wr_en_bit) memid[w_addr][??] <= w_data[??]; // ... for (int sub = 0; sub < (1 << port.wide_log2); sub++) { SigSpec addr = port.sub_addr(sub); for (int i = 0; i < mem.width; i++) { int start_i = i, width = 1; SigBit wen_bit = port.en[sub * mem.width + i]; while (i+1 < mem.width && active_sigmap(port.en[sub * mem.width + i+1]) == active_sigmap(wen_bit)) i++, width++; if (wen_bit == State::S0) continue; f << stringf("%s%s", indent.c_str(), indent.c_str()); if (wen_bit != State::S1) { f << stringf("if ("); dump_sigspec(f, wen_bit); f << stringf(")\n"); f << stringf("%s%s%s", indent.c_str(), indent.c_str(), indent.c_str()); } f << stringf("%s[", mem_id.c_str()); dump_sigspec(f, addr); if (width == GetSize(port.en)) f << stringf("] <= "); else f << stringf("][%d:%d] <= ", i, start_i); dump_sigspec(f, port.data.extract(sub * mem.width + start_i, width)); f << stringf(";\n"); } } } f << stringf("%s" "end\n", indent.c_str()); } // Output Verilog that looks something like this: // reg [..] _3_; // always @(posedge CLK2) begin // _3_ <= memory[D1ADDR]; // if (A1EN) // memory[A1ADDR] <= A1DATA; // if (A2EN) // memory[A2ADDR] <= A2DATA; // ... // end // always @(negedge CLK1) begin // if (C1EN) // memory[C1ADDR] <= C1DATA; // end // ... // assign D1DATA = _3_; // assign D2DATA <= memory[D2ADDR]; // the reg ... definitions for(auto ® : lof_reg_declarations) { f << stringf("%s" "%s", indent.c_str(), reg.c_str()); } // the block of expressions by clock domain for(auto &pair : clk_to_lof_body) { std::string clk_domain = pair.first; std::vector lof_lines = pair.second; if( clk_domain != "") { f << stringf("%s" "always%s @(%s) begin\n", indent.c_str(), systemverilog ? "_ff" : "", clk_domain.c_str()); bool has_arst = clk_to_arst_cond.count(clk_domain) != 0; if (has_arst) { f << stringf("%s%s" "if (%s) begin\n", indent.c_str(), indent.c_str(), clk_to_arst_cond[clk_domain].c_str()); for(auto &line : clk_to_arst_body[clk_domain]) f << stringf("%s%s%s" "%s", indent.c_str(), indent.c_str(), indent.c_str(), line.c_str()); f << stringf("%s%s" "end else begin\n", indent.c_str(), indent.c_str()); for(auto &line : lof_lines) f << stringf("%s%s%s" "%s", indent.c_str(), indent.c_str(), indent.c_str(), line.c_str()); f << stringf("%s%s" "end\n", indent.c_str(), indent.c_str()); } else { for(auto &line : lof_lines) f << stringf("%s%s" "%s", indent.c_str(), indent.c_str(), line.c_str()); } f << stringf("%s" "end\n", indent.c_str()); } else { // the non-clocked assignments for(auto &line : lof_lines) f << stringf("%s" "%s", indent.c_str(), line.c_str()); } } } void dump_cell_expr_port(std::ostream &f, RTLIL::Cell *cell, std::string port, bool gen_signed = true) { if (gen_signed && cell->parameters.count("\\" + port + "_SIGNED") > 0 && cell->parameters["\\" + port + "_SIGNED"].as_bool()) { f << stringf("$signed("); dump_sigspec(f, cell->getPort("\\" + port)); f << stringf(")"); } else dump_sigspec(f, cell->getPort("\\" + port)); } std::string cellname(RTLIL::Cell *cell) { if (!norename && cell->name[0] == '$' && RTLIL::builtin_ff_cell_types().count(cell->type) && cell->hasPort(ID::Q) && !cell->type.in(ID($ff), ID($_FF_))) { RTLIL::SigSpec sig = cell->getPort(ID::Q); if (GetSize(sig) != 1 || sig.is_fully_const()) goto no_special_reg_name; RTLIL::Wire *wire = sig[0].wire; if (wire->name[0] != '\\') goto no_special_reg_name; std::string cell_name = wire->name.str(); size_t pos = cell_name.find('['); if (pos != std::string::npos) cell_name = cell_name.substr(0, pos) + "_reg" + cell_name.substr(pos); else cell_name = cell_name + "_reg"; if (wire->width != 1) cell_name += stringf("[%d]", wire->start_offset + sig[0].offset); if (active_module && active_module->count_id(cell_name) > 0) goto no_special_reg_name; return id(cell_name); } else { no_special_reg_name: return id(cell->name).c_str(); } } void dump_cell_expr_uniop(std::ostream &f, std::string indent, RTLIL::Cell *cell, std::string op) { f << stringf("%s" "assign ", indent.c_str()); dump_sigspec(f, cell->getPort(ID::Y)); f << stringf(" = %s ", op.c_str()); dump_attributes(f, "", cell->attributes, " "); dump_cell_expr_port(f, cell, "A", true); f << stringf(";\n"); } void dump_cell_expr_binop(std::ostream &f, std::string indent, RTLIL::Cell *cell, std::string op) { f << stringf("%s" "assign ", indent.c_str()); dump_sigspec(f, cell->getPort(ID::Y)); f << stringf(" = "); dump_cell_expr_port(f, cell, "A", true); f << stringf(" %s ", op.c_str()); dump_attributes(f, "", cell->attributes, " "); dump_cell_expr_port(f, cell, "B", true); f << stringf(";\n"); } void dump_cell_expr_print(std::ostream &f, std::string indent, const RTLIL::Cell *cell) { Fmt fmt; fmt.parse_rtlil(cell); std::vector args = fmt.emit_verilog(); f << stringf("%s" "$write(", indent.c_str()); bool first = true; for (auto &arg : args) { if (first) { first = false; } else { f << ", "; } switch (arg.type) { case VerilogFmtArg::STRING: dump_const(f, RTLIL::Const(arg.str)); break; case VerilogFmtArg::INTEGER: f << (arg.signed_ ? "$signed(" : "$unsigned("); dump_sigspec(f, arg.sig); f << ")"; break; case VerilogFmtArg::TIME: if (arg.realtime) f << "$realtime"; else f << "$time"; break; default: log_abort(); } } f << stringf(");\n"); } void dump_cell_expr_check(std::ostream &f, std::string indent, const RTLIL::Cell *cell) { std::string flavor = cell->getParam(ID(FLAVOR)).decode_string(); if (flavor == "assert") f << stringf("%s" "assert (", indent.c_str()); else if (flavor == "assume") f << stringf("%s" "assume (", indent.c_str()); else if (flavor == "live") f << stringf("%s" "assert (eventually ", indent.c_str()); else if (flavor == "fair") f << stringf("%s" "assume (eventually ", indent.c_str()); else if (flavor == "cover") f << stringf("%s" "cover (", indent.c_str()); dump_sigspec(f, cell->getPort(ID::A)); f << stringf(");\n"); } bool dump_cell_expr(std::ostream &f, std::string indent, RTLIL::Cell *cell) { if (cell->type == ID($_NOT_)) { f << stringf("%s" "assign ", indent.c_str()); dump_sigspec(f, cell->getPort(ID::Y)); f << stringf(" = "); f << stringf("~"); dump_attributes(f, "", cell->attributes, " "); dump_cell_expr_port(f, cell, "A", false); f << stringf(";\n"); return true; } if (cell->type == ID($_BUF_)) { f << stringf("%s" "assign ", indent.c_str()); dump_sigspec(f, cell->getPort(ID::Y)); f << stringf(" = "); dump_cell_expr_port(f, cell, "A", false); f << stringf(";\n"); return true; } if (cell->type.in(ID($_AND_), ID($_NAND_), ID($_OR_), ID($_NOR_), ID($_XOR_), ID($_XNOR_), ID($_ANDNOT_), ID($_ORNOT_))) { f << stringf("%s" "assign ", indent.c_str()); dump_sigspec(f, cell->getPort(ID::Y)); f << stringf(" = "); if (cell->type.in(ID($_NAND_), ID($_NOR_), ID($_XNOR_))) f << stringf("~("); dump_cell_expr_port(f, cell, "A", false); f << stringf(" "); if (cell->type.in(ID($_AND_), ID($_NAND_), ID($_ANDNOT_))) f << stringf("&"); if (cell->type.in(ID($_OR_), ID($_NOR_), ID($_ORNOT_))) f << stringf("|"); if (cell->type.in(ID($_XOR_), ID($_XNOR_))) f << stringf("^"); dump_attributes(f, "", cell->attributes, " "); f << stringf(" "); if (cell->type.in(ID($_ANDNOT_), ID($_ORNOT_))) f << stringf("~("); dump_cell_expr_port(f, cell, "B", false); if (cell->type.in(ID($_NAND_), ID($_NOR_), ID($_XNOR_), ID($_ANDNOT_), ID($_ORNOT_))) f << stringf(")"); f << stringf(";\n"); return true; } if (cell->type == ID($_MUX_)) { f << stringf("%s" "assign ", indent.c_str()); dump_sigspec(f, cell->getPort(ID::Y)); f << stringf(" = "); dump_cell_expr_port(f, cell, "S", false); f << stringf(" ? "); dump_attributes(f, "", cell->attributes, " "); dump_cell_expr_port(f, cell, "B", false); f << stringf(" : "); dump_cell_expr_port(f, cell, "A", false); f << stringf(";\n"); return true; } if (cell->type == ID($_NMUX_)) { f << stringf("%s" "assign ", indent.c_str()); dump_sigspec(f, cell->getPort(ID::Y)); f << stringf(" = !("); dump_cell_expr_port(f, cell, "S", false); f << stringf(" ? "); dump_attributes(f, "", cell->attributes, " "); dump_cell_expr_port(f, cell, "B", false); f << stringf(" : "); dump_cell_expr_port(f, cell, "A", false); f << stringf(");\n"); return true; } if (cell->type.in(ID($_AOI3_), ID($_OAI3_))) { f << stringf("%s" "assign ", indent.c_str()); dump_sigspec(f, cell->getPort(ID::Y)); f << stringf(" = ~(("); dump_cell_expr_port(f, cell, "A", false); f << stringf(cell->type == ID($_AOI3_) ? " & " : " | "); dump_cell_expr_port(f, cell, "B", false); f << stringf(cell->type == ID($_AOI3_) ? ") |" : ") &"); dump_attributes(f, "", cell->attributes, " "); f << stringf(" "); dump_cell_expr_port(f, cell, "C", false); f << stringf(");\n"); return true; } if (cell->type.in(ID($_AOI4_), ID($_OAI4_))) { f << stringf("%s" "assign ", indent.c_str()); dump_sigspec(f, cell->getPort(ID::Y)); f << stringf(" = ~(("); dump_cell_expr_port(f, cell, "A", false); f << stringf(cell->type == ID($_AOI4_) ? " & " : " | "); dump_cell_expr_port(f, cell, "B", false); f << stringf(cell->type == ID($_AOI4_) ? ") |" : ") &"); dump_attributes(f, "", cell->attributes, " "); f << stringf(" ("); dump_cell_expr_port(f, cell, "C", false); f << stringf(cell->type == ID($_AOI4_) ? " & " : " | "); dump_cell_expr_port(f, cell, "D", false); f << stringf("));\n"); return true; } #define HANDLE_UNIOP(_type, _operator) \ if (cell->type ==_type) { dump_cell_expr_uniop(f, indent, cell, _operator); return true; } #define HANDLE_BINOP(_type, _operator) \ if (cell->type ==_type) { dump_cell_expr_binop(f, indent, cell, _operator); return true; } HANDLE_UNIOP(ID($not), "~") HANDLE_UNIOP(ID($pos), "+") HANDLE_UNIOP(ID($neg), "-") HANDLE_BINOP(ID($and), "&") HANDLE_BINOP(ID($or), "|") HANDLE_BINOP(ID($xor), "^") HANDLE_BINOP(ID($xnor), "~^") HANDLE_UNIOP(ID($reduce_and), "&") HANDLE_UNIOP(ID($reduce_or), "|") HANDLE_UNIOP(ID($reduce_xor), "^") HANDLE_UNIOP(ID($reduce_xnor), "~^") HANDLE_UNIOP(ID($reduce_bool), "|") HANDLE_BINOP(ID($shl), "<<") HANDLE_BINOP(ID($shr), ">>") HANDLE_BINOP(ID($sshl), "<<<") HANDLE_BINOP(ID($sshr), ">>>") HANDLE_BINOP(ID($lt), "<") HANDLE_BINOP(ID($le), "<=") HANDLE_BINOP(ID($eq), "==") HANDLE_BINOP(ID($ne), "!=") HANDLE_BINOP(ID($eqx), "===") HANDLE_BINOP(ID($nex), "!==") HANDLE_BINOP(ID($ge), ">=") HANDLE_BINOP(ID($gt), ">") HANDLE_BINOP(ID($add), "+") HANDLE_BINOP(ID($sub), "-") HANDLE_BINOP(ID($mul), "*") HANDLE_BINOP(ID($div), "/") HANDLE_BINOP(ID($mod), "%") HANDLE_BINOP(ID($pow), "**") HANDLE_UNIOP(ID($logic_not), "!") HANDLE_BINOP(ID($logic_and), "&&") HANDLE_BINOP(ID($logic_or), "||") #undef HANDLE_UNIOP #undef HANDLE_BINOP if (cell->type == ID($divfloor)) { // wire [MAXLEN+1:0] _0_, _1_, _2_; // assign _0_ = $signed(A); // assign _1_ = $signed(B); // assign _2_ = (A[-1] == B[-1]) || A == 0 ? _0_ : $signed(_0_ - (B[-1] ? _1_ + 1 : _1_ - 1)); // assign Y = $signed(_2_) / $signed(_1_); if (cell->getParam(ID::A_SIGNED).as_bool() && cell->getParam(ID::B_SIGNED).as_bool()) { SigSpec sig_a = cell->getPort(ID::A); SigSpec sig_b = cell->getPort(ID::B); std::string buf_a = next_auto_id(); std::string buf_b = next_auto_id(); std::string buf_num = next_auto_id(); int size_a = GetSize(sig_a); int size_b = GetSize(sig_b); int size_y = GetSize(cell->getPort(ID::Y)); int size_max = std::max(size_a, std::max(size_b, size_y)); // intentionally one wider than maximum width f << stringf("%s" "wire [%d:0] %s, %s, %s;\n", indent.c_str(), size_max, buf_a.c_str(), buf_b.c_str(), buf_num.c_str()); f << stringf("%s" "assign %s = ", indent.c_str(), buf_a.c_str()); dump_cell_expr_port(f, cell, "A", true); f << stringf(";\n"); f << stringf("%s" "assign %s = ", indent.c_str(), buf_b.c_str()); dump_cell_expr_port(f, cell, "B", true); f << stringf(";\n"); f << stringf("%s" "assign %s = ", indent.c_str(), buf_num.c_str()); f << stringf("("); dump_sigspec(f, sig_a.extract(sig_a.size()-1)); f << stringf(" == "); dump_sigspec(f, sig_b.extract(sig_b.size()-1)); f << stringf(") || "); dump_sigspec(f, sig_a); f << stringf(" == 0 ? %s : ", buf_a.c_str()); f << stringf("$signed(%s - (", buf_a.c_str()); dump_sigspec(f, sig_b.extract(sig_b.size()-1)); f << stringf(" ? %s + 1 : %s - 1));\n", buf_b.c_str(), buf_b.c_str()); f << stringf("%s" "assign ", indent.c_str()); dump_sigspec(f, cell->getPort(ID::Y)); f << stringf(" = $signed(%s) / ", buf_num.c_str()); dump_attributes(f, "", cell->attributes, " "); f << stringf("$signed(%s);\n", buf_b.c_str()); return true; } else { // same as truncating division dump_cell_expr_binop(f, indent, cell, "/"); return true; } } if (cell->type == ID($modfloor)) { // wire truncated = $signed(A) % $signed(B); // assign Y = (A[-1] == B[-1]) || truncated == 0 ? $signed(truncated) : $signed(B) + $signed(truncated); if (cell->getParam(ID::A_SIGNED).as_bool() && cell->getParam(ID::B_SIGNED).as_bool()) { SigSpec sig_a = cell->getPort(ID::A); SigSpec sig_b = cell->getPort(ID::B); std::string temp_id = next_auto_id(); f << stringf("%s" "wire [%d:0] %s = ", indent.c_str(), GetSize(cell->getPort(ID::A))-1, temp_id.c_str()); dump_cell_expr_port(f, cell, "A", true); f << stringf(" %% "); dump_attributes(f, "", cell->attributes, " "); dump_cell_expr_port(f, cell, "B", true); f << stringf(";\n"); f << stringf("%s" "assign ", indent.c_str()); dump_sigspec(f, cell->getPort(ID::Y)); f << stringf(" = ("); dump_sigspec(f, sig_a.extract(sig_a.size()-1)); f << stringf(" == "); dump_sigspec(f, sig_b.extract(sig_b.size()-1)); f << stringf(") || %s == 0 ? $signed(%s) : ", temp_id.c_str(), temp_id.c_str()); dump_cell_expr_port(f, cell, "B", true); f << stringf(" + $signed(%s);\n", temp_id.c_str()); return true; } else { // same as truncating modulo dump_cell_expr_binop(f, indent, cell, "%"); return true; } } if (cell->type == ID($shift)) { f << stringf("%s" "assign ", indent.c_str()); dump_sigspec(f, cell->getPort(ID::Y)); f << stringf(" = "); if (cell->getParam(ID::B_SIGNED).as_bool()) { dump_cell_expr_port(f, cell, "B", true); f << stringf(" < 0 ? "); dump_cell_expr_port(f, cell, "A", true); f << stringf(" << - "); dump_sigspec(f, cell->getPort(ID::B)); f << stringf(" : "); dump_cell_expr_port(f, cell, "A", true); f << stringf(" >> "); dump_sigspec(f, cell->getPort(ID::B)); } else { dump_cell_expr_port(f, cell, "A", true); f << stringf(" >> "); dump_sigspec(f, cell->getPort(ID::B)); } f << stringf(";\n"); return true; } if (cell->type == ID($shiftx)) { std::string temp_id = next_auto_id(); f << stringf("%s" "wire [%d:0] %s = ", indent.c_str(), GetSize(cell->getPort(ID::A))-1, temp_id.c_str()); dump_sigspec(f, cell->getPort(ID::A)); f << stringf(";\n"); f << stringf("%s" "assign ", indent.c_str()); dump_sigspec(f, cell->getPort(ID::Y)); f << stringf(" = %s[", temp_id.c_str()); if (cell->getParam(ID::B_SIGNED).as_bool()) f << stringf("$signed("); dump_sigspec(f, cell->getPort(ID::B)); if (cell->getParam(ID::B_SIGNED).as_bool()) f << stringf(")"); f << stringf(" +: %d", cell->getParam(ID::Y_WIDTH).as_int()); f << stringf("];\n"); return true; } if (cell->type == ID($mux)) { f << stringf("%s" "assign ", indent.c_str()); dump_sigspec(f, cell->getPort(ID::Y)); f << stringf(" = "); dump_sigspec(f, cell->getPort(ID::S)); f << stringf(" ? "); dump_attributes(f, "", cell->attributes, " "); dump_sigspec(f, cell->getPort(ID::B)); f << stringf(" : "); dump_sigspec(f, cell->getPort(ID::A)); f << stringf(";\n"); return true; } if (cell->type == ID($pmux)) { int width = cell->parameters[ID::WIDTH].as_int(); int s_width = cell->getPort(ID::S).size(); std::string func_name = cellname(cell); f << stringf("%s" "function [%d:0] %s;\n", indent.c_str(), width-1, func_name.c_str()); f << stringf("%s" " input [%d:0] a;\n", indent.c_str(), width-1); f << stringf("%s" " input [%d:0] b;\n", indent.c_str(), s_width*width-1); f << stringf("%s" " input [%d:0] s;\n", indent.c_str(), s_width-1); dump_attributes(f, indent + " ", cell->attributes); if (noparallelcase) f << stringf("%s" " case (s)\n", indent.c_str()); else { if (!noattr) f << stringf("%s" " (* parallel_case *)\n", indent.c_str()); f << stringf("%s" " casez (s)", indent.c_str()); f << stringf(noattr ? " // synopsys parallel_case\n" : "\n"); } for (int i = 0; i < s_width; i++) { f << stringf("%s" " %d'b", indent.c_str(), s_width); for (int j = s_width-1; j >= 0; j--) f << stringf("%c", j == i ? '1' : noparallelcase ? '0' : '?'); f << stringf(":\n"); f << stringf("%s" " %s = b[%d:%d];\n", indent.c_str(), func_name.c_str(), (i+1)*width-1, i*width); } if (noparallelcase) { f << stringf("%s" " %d'b", indent.c_str(), s_width); for (int j = s_width-1; j >= 0; j--) f << '0'; f << stringf(":\n"); } else f << stringf("%s" " default:\n", indent.c_str()); f << stringf("%s" " %s = a;\n", indent.c_str(), func_name.c_str()); if (noparallelcase) { f << stringf("%s" " default:\n", indent.c_str()); f << stringf("%s" " %s = %d'bx;\n", indent.c_str(), func_name.c_str(), width); } f << stringf("%s" " endcase\n", indent.c_str()); f << stringf("%s" "endfunction\n", indent.c_str()); f << stringf("%s" "assign ", indent.c_str()); dump_sigspec(f, cell->getPort(ID::Y)); f << stringf(" = %s(", func_name.c_str()); dump_sigspec(f, cell->getPort(ID::A)); f << stringf(", "); dump_sigspec(f, cell->getPort(ID::B)); f << stringf(", "); dump_sigspec(f, cell->getPort(ID::S)); f << stringf(");\n"); return true; } if (cell->type == ID($tribuf)) { f << stringf("%s" "assign ", indent.c_str()); dump_sigspec(f, cell->getPort(ID::Y)); f << stringf(" = "); dump_sigspec(f, cell->getPort(ID::EN)); f << stringf(" ? "); dump_sigspec(f, cell->getPort(ID::A)); f << stringf(" : %d'bz;\n", cell->parameters.at(ID::WIDTH).as_int()); return true; } if (cell->type == ID($slice)) { f << stringf("%s" "assign ", indent.c_str()); dump_sigspec(f, cell->getPort(ID::Y)); f << stringf(" = "); dump_sigspec(f, cell->getPort(ID::A)); f << stringf(" >> %d;\n", cell->parameters.at(ID::OFFSET).as_int()); return true; } if (cell->type == ID($concat)) { f << stringf("%s" "assign ", indent.c_str()); dump_sigspec(f, cell->getPort(ID::Y)); f << stringf(" = { "); dump_sigspec(f, cell->getPort(ID::B)); f << stringf(" , "); dump_sigspec(f, cell->getPort(ID::A)); f << stringf(" };\n"); return true; } if (cell->type == ID($lut)) { f << stringf("%s" "assign ", indent.c_str()); dump_sigspec(f, cell->getPort(ID::Y)); f << stringf(" = "); dump_const(f, cell->parameters.at(ID::LUT)); f << stringf(" >> "); dump_attributes(f, "", cell->attributes, " "); dump_sigspec(f, cell->getPort(ID::A)); f << stringf(";\n"); return true; } if (RTLIL::builtin_ff_cell_types().count(cell->type)) { FfData ff(nullptr, cell); // $ff / $_FF_ cell: not supported. if (ff.has_gclk) return false; std::string reg_name = cellname(cell); bool out_is_reg_wire = is_reg_wire(ff.sig_q, reg_name); if (!out_is_reg_wire) { if (ff.width == 1) f << stringf("%s" "reg %s", indent.c_str(), reg_name.c_str()); else f << stringf("%s" "reg [%d:0] %s", indent.c_str(), ff.width-1, reg_name.c_str()); dump_reg_init(f, ff.sig_q); f << ";\n"; } // If the FF has CLR/SET inputs, emit every bit slice separately. int chunks = ff.has_sr ? ff.width : 1; bool chunky = ff.has_sr && ff.width != 1; for (int i = 0; i < chunks; i++) { SigSpec sig_d, sig_ad; Const val_arst, val_srst; std::string reg_bit_name, sig_set_name, sig_clr_name, sig_arst_name, sig_aload_name; if (chunky) { reg_bit_name = stringf("%s[%d]", reg_name.c_str(), i); if (ff.has_gclk || ff.has_clk) sig_d = ff.sig_d[i]; if (ff.has_aload) sig_ad = ff.sig_ad[i]; } else { reg_bit_name = reg_name; sig_d = ff.sig_d; sig_ad = ff.sig_ad; } if (ff.has_arst) val_arst = chunky ? ff.val_arst[i] : ff.val_arst; if (ff.has_srst) val_srst = chunky ? ff.val_srst[i] : ff.val_srst; // If there are constants in the sensitivity list, replace them with an intermediate wire if (ff.has_clk) { if (ff.has_sr) { if (ff.sig_set[i].wire == NULL) { sig_set_name = next_auto_id(); f << stringf("%s" "wire %s = ", indent.c_str(), sig_set_name.c_str()); dump_const(f, ff.sig_set[i].data); f << stringf(";\n"); } if (ff.sig_clr[i].wire == NULL) { sig_clr_name = next_auto_id(); f << stringf("%s" "wire %s = ", indent.c_str(), sig_clr_name.c_str()); dump_const(f, ff.sig_clr[i].data); f << stringf(";\n"); } } else if (ff.has_arst) { if (ff.sig_arst[0].wire == NULL) { sig_arst_name = next_auto_id(); f << stringf("%s" "wire %s = ", indent.c_str(), sig_arst_name.c_str()); dump_const(f, ff.sig_arst[0].data); f << stringf(";\n"); } } else if (ff.has_aload) { if (ff.sig_aload[0].wire == NULL) { sig_aload_name = next_auto_id(); f << stringf("%s" "wire %s = ", indent.c_str(), sig_aload_name.c_str()); dump_const(f, ff.sig_aload[0].data); f << stringf(";\n"); } } } dump_attributes(f, indent, cell->attributes); if (ff.has_clk) { // FFs. f << stringf("%s" "always%s @(%sedge ", indent.c_str(), systemverilog ? "_ff" : "", ff.pol_clk ? "pos" : "neg"); dump_sigspec(f, ff.sig_clk); if (ff.has_sr) { f << stringf(", %sedge ", ff.pol_set ? "pos" : "neg"); if (ff.sig_set[i].wire == NULL) f << stringf("%s", sig_set_name.c_str()); else dump_sigspec(f, ff.sig_set[i]); f << stringf(", %sedge ", ff.pol_clr ? "pos" : "neg"); if (ff.sig_clr[i].wire == NULL) f << stringf("%s", sig_clr_name.c_str()); else dump_sigspec(f, ff.sig_clr[i]); } else if (ff.has_arst) { f << stringf(", %sedge ", ff.pol_arst ? "pos" : "neg"); if (ff.sig_arst[0].wire == NULL) f << stringf("%s", sig_arst_name.c_str()); else dump_sigspec(f, ff.sig_arst); } else if (ff.has_aload) { f << stringf(", %sedge ", ff.pol_aload ? "pos" : "neg"); if (ff.sig_aload[0].wire == NULL) f << stringf("%s", sig_aload_name.c_str()); else dump_sigspec(f, ff.sig_aload); } f << stringf(")\n"); f << stringf("%s" " ", indent.c_str()); if (ff.has_sr) { f << stringf("if (%s", ff.pol_clr ? "" : "!"); if (ff.sig_clr[i].wire == NULL) f << stringf("%s", sig_clr_name.c_str()); else dump_sigspec(f, ff.sig_clr[i]); f << stringf(") %s <= 1'b0;\n", reg_bit_name.c_str()); f << stringf("%s" " else if (%s", indent.c_str(), ff.pol_set ? "" : "!"); if (ff.sig_set[i].wire == NULL) f << stringf("%s", sig_set_name.c_str()); else dump_sigspec(f, ff.sig_set[i]); f << stringf(") %s <= 1'b1;\n", reg_bit_name.c_str()); f << stringf("%s" " else ", indent.c_str()); } else if (ff.has_arst) { f << stringf("if (%s", ff.pol_arst ? "" : "!"); if (ff.sig_arst[0].wire == NULL) f << stringf("%s", sig_arst_name.c_str()); else dump_sigspec(f, ff.sig_arst); f << stringf(") %s <= ", reg_bit_name.c_str()); dump_sigspec(f, val_arst); f << stringf(";\n"); f << stringf("%s" " else ", indent.c_str()); } else if (ff.has_aload) { f << stringf("if (%s", ff.pol_aload ? "" : "!"); if (ff.sig_aload[0].wire == NULL) f << stringf("%s", sig_aload_name.c_str()); else dump_sigspec(f, ff.sig_aload); f << stringf(") %s <= ", reg_bit_name.c_str()); dump_sigspec(f, sig_ad); f << stringf(";\n"); f << stringf("%s" " else ", indent.c_str()); } if (ff.has_srst && ff.has_ce && ff.ce_over_srst) { f << stringf("if (%s", ff.pol_ce ? "" : "!"); dump_sigspec(f, ff.sig_ce); f << stringf(")\n"); f << stringf("%s" " if (%s", indent.c_str(), ff.pol_srst ? "" : "!"); dump_sigspec(f, ff.sig_srst); f << stringf(") %s <= ", reg_bit_name.c_str()); dump_sigspec(f, val_srst); f << stringf(";\n"); f << stringf("%s" " else ", indent.c_str()); } else { if (ff.has_srst) { f << stringf("if (%s", ff.pol_srst ? "" : "!"); dump_sigspec(f, ff.sig_srst); f << stringf(") %s <= ", reg_bit_name.c_str()); dump_sigspec(f, val_srst); f << stringf(";\n"); f << stringf("%s" " else ", indent.c_str()); } if (ff.has_ce) { f << stringf("if (%s", ff.pol_ce ? "" : "!"); dump_sigspec(f, ff.sig_ce); f << stringf(") "); } } f << stringf("%s <= ", reg_bit_name.c_str()); dump_sigspec(f, sig_d); f << stringf(";\n"); } else { // Latches. f << stringf("%s" "always%s\n", indent.c_str(), systemverilog ? "_latch" : " @*"); f << stringf("%s" " ", indent.c_str()); if (ff.has_sr) { f << stringf("if (%s", ff.pol_clr ? "" : "!"); dump_sigspec(f, ff.sig_clr[i]); f << stringf(") %s = 1'b0;\n", reg_bit_name.c_str()); f << stringf("%s" " else if (%s", indent.c_str(), ff.pol_set ? "" : "!"); dump_sigspec(f, ff.sig_set[i]); f << stringf(") %s = 1'b1;\n", reg_bit_name.c_str()); if (ff.has_aload) f << stringf("%s" " else ", indent.c_str()); } else if (ff.has_arst) { f << stringf("if (%s", ff.pol_arst ? "" : "!"); dump_sigspec(f, ff.sig_arst); f << stringf(") %s = ", reg_bit_name.c_str()); dump_sigspec(f, val_arst); f << stringf(";\n"); if (ff.has_aload) f << stringf("%s" " else ", indent.c_str()); } if (ff.has_aload) { f << stringf("if (%s", ff.pol_aload ? "" : "!"); dump_sigspec(f, ff.sig_aload); f << stringf(") %s = ", reg_bit_name.c_str()); dump_sigspec(f, sig_ad); f << stringf(";\n"); } } } if (!out_is_reg_wire) { f << stringf("%s" "assign ", indent.c_str()); dump_sigspec(f, ff.sig_q); f << stringf(" = %s;\n", reg_name.c_str()); } return true; } if (cell->type.in(ID($assert), ID($assume), ID($cover))) { f << stringf("%s" "always%s if (", indent.c_str(), systemverilog ? "_comb" : " @*"); dump_sigspec(f, cell->getPort(ID::EN)); f << stringf(") %s(", cell->type.c_str()+1); dump_sigspec(f, cell->getPort(ID::A)); f << stringf(");\n"); return true; } if (cell->type.in(ID($specify2), ID($specify3))) { f << stringf("%s" "specify\n%s ", indent.c_str(), indent.c_str()); SigSpec en = cell->getPort(ID::EN); if (en != State::S1) { f << stringf("if ("); dump_sigspec(f, cell->getPort(ID::EN)); f << stringf(") "); } f << "("; if (cell->type == ID($specify3) && cell->getParam(ID::EDGE_EN).as_bool()) f << (cell->getParam(ID::EDGE_POL).as_bool() ? "posedge ": "negedge "); dump_sigspec(f, cell->getPort(ID::SRC)); f << " "; if (cell->getParam(ID::SRC_DST_PEN).as_bool()) f << (cell->getParam(ID::SRC_DST_POL).as_bool() ? "+": "-"); f << (cell->getParam(ID::FULL).as_bool() ? "*> ": "=> "); if (cell->type == ID($specify3)) { f << "("; dump_sigspec(f, cell->getPort(ID::DST)); f << " "; if (cell->getParam(ID::DAT_DST_PEN).as_bool()) f << (cell->getParam(ID::DAT_DST_POL).as_bool() ? "+": "-"); f << ": "; dump_sigspec(f, cell->getPort(ID::DAT)); f << ")"; } else { dump_sigspec(f, cell->getPort(ID::DST)); } bool bak_decimal = decimal; decimal = 1; f << ") = ("; dump_const(f, cell->getParam(ID::T_RISE_MIN)); f << ":"; dump_const(f, cell->getParam(ID::T_RISE_TYP)); f << ":"; dump_const(f, cell->getParam(ID::T_RISE_MAX)); f << ", "; dump_const(f, cell->getParam(ID::T_FALL_MIN)); f << ":"; dump_const(f, cell->getParam(ID::T_FALL_TYP)); f << ":"; dump_const(f, cell->getParam(ID::T_FALL_MAX)); f << ");\n"; decimal = bak_decimal; f << stringf("%s" "endspecify\n", indent.c_str()); return true; } if (cell->type == ID($specrule)) { f << stringf("%s" "specify\n%s ", indent.c_str(), indent.c_str()); IdString spec_type = cell->getParam(ID::TYPE).decode_string(); f << stringf("%s(", spec_type.c_str()); if (cell->getParam(ID::SRC_PEN).as_bool()) f << (cell->getParam(ID::SRC_POL).as_bool() ? "posedge ": "negedge "); dump_sigspec(f, cell->getPort(ID::SRC)); if (cell->getPort(ID::SRC_EN) != State::S1) { f << " &&& "; dump_sigspec(f, cell->getPort(ID::SRC_EN)); } f << ", "; if (cell->getParam(ID::DST_PEN).as_bool()) f << (cell->getParam(ID::DST_POL).as_bool() ? "posedge ": "negedge "); dump_sigspec(f, cell->getPort(ID::DST)); if (cell->getPort(ID::DST_EN) != State::S1) { f << " &&& "; dump_sigspec(f, cell->getPort(ID::DST_EN)); } bool bak_decimal = decimal; decimal = 1; f << ", "; dump_const(f, cell->getParam(ID::T_LIMIT_MIN)); f << ": "; dump_const(f, cell->getParam(ID::T_LIMIT_TYP)); f << ": "; dump_const(f, cell->getParam(ID::T_LIMIT_MAX)); if (spec_type.in(ID($setuphold), ID($recrem), ID($fullskew))) { f << ", "; dump_const(f, cell->getParam(ID::T_LIMIT2_MIN)); f << ": "; dump_const(f, cell->getParam(ID::T_LIMIT2_TYP)); f << ": "; dump_const(f, cell->getParam(ID::T_LIMIT2_MAX)); } f << ");\n"; decimal = bak_decimal; f << stringf("%s" "endspecify\n", indent.c_str()); return true; } if (cell->type == ID($print)) { // Sync $print cells are accumulated and handled in dump_module. if (cell->getParam(ID::TRG_ENABLE).as_bool()) return true; f << stringf("%s" "always @*\n", indent.c_str()); f << stringf("%s" " if (", indent.c_str()); dump_sigspec(f, cell->getPort(ID::EN)); f << stringf(")\n"); dump_cell_expr_print(f, indent + " ", cell); return true; } if (cell->type == ID($check)) { // Sync $check cells are accumulated and handled in dump_module. if (cell->getParam(ID::TRG_ENABLE).as_bool()) return true; f << stringf("%s" "always @*\n", indent.c_str()); f << stringf("%s" " if (", indent.c_str()); dump_sigspec(f, cell->getPort(ID::EN)); f << stringf(") begin\n"); std::string flavor = cell->getParam(ID::FLAVOR).decode_string(); if (flavor == "assert" || flavor == "assume") { Fmt fmt; fmt.parse_rtlil(cell); if (!fmt.parts.empty()) { f << stringf("%s" " if (!", indent.c_str()); dump_sigspec(f, cell->getPort(ID::A)); f << stringf(")\n"); dump_cell_expr_print(f, indent + " ", cell); } } else { f << stringf("%s" " /* message omitted */\n", indent.c_str()); } dump_cell_expr_check(f, indent + " ", cell); f << stringf("%s" " end\n", indent.c_str()); return true; } // FIXME: $fsm return false; } void dump_cell(std::ostream &f, std::string indent, RTLIL::Cell *cell) { // To keep the output compatible with other tools we ignore $scopeinfo // cells that exist only to hold metadata. If in the future that metadata // should be exposed as part of the write_verilog output it should be // opt-in and/or represented as something else than a $scopeinfo cell. if (cell->type == ID($scopeinfo)) return; // Handled by dump_memory if (cell->is_mem_cell()) return; if (cell->type[0] == '$' && !noexpr) { if (dump_cell_expr(f, indent, cell)) return; } dump_attributes(f, indent, cell->attributes); f << stringf("%s" "%s", indent.c_str(), id(cell->type, false).c_str()); if (!defparam && cell->parameters.size() > 0) { f << stringf(" #("); for (auto it = cell->parameters.begin(); it != cell->parameters.end(); ++it) { if (it != cell->parameters.begin()) f << stringf(","); f << stringf("\n%s .%s(", indent.c_str(), id(it->first).c_str()); if (it->second.size() > 0) dump_const(f, it->second); f << stringf(")"); } f << stringf("\n%s" ")", indent.c_str()); } std::string cell_name = cellname(cell); if (cell_name != id(cell->name)) f << stringf(" %s /* %s */ (", cell_name.c_str(), id(cell->name).c_str()); else f << stringf(" %s (", cell_name.c_str()); bool first_arg = true; std::set numbered_ports; for (int i = 1; true; i++) { char str[16]; snprintf(str, 16, "$%d", i); for (auto it = cell->connections().begin(); it != cell->connections().end(); ++it) { if (it->first != str) continue; if (!first_arg) f << stringf(","); first_arg = false; f << stringf("\n%s ", indent.c_str()); dump_sigspec(f, it->second); numbered_ports.insert(it->first); goto found_numbered_port; } break; found_numbered_port:; } for (auto it = cell->connections().begin(); it != cell->connections().end(); ++it) { if (numbered_ports.count(it->first)) continue; if (!first_arg) f << stringf(","); first_arg = false; f << stringf("\n%s .%s(", indent.c_str(), id(it->first).c_str()); if (it->second.size() > 0) dump_sigspec(f, it->second); f << stringf(")"); } f << stringf("\n%s" ");\n", indent.c_str()); if (defparam && cell->parameters.size() > 0) { for (auto it = cell->parameters.begin(); it != cell->parameters.end(); ++it) { f << stringf("%sdefparam %s.%s = ", indent.c_str(), cell_name.c_str(), id(it->first).c_str()); dump_const(f, it->second); f << stringf(";\n"); } } if (siminit && RTLIL::builtin_ff_cell_types().count(cell->type) && cell->hasPort(ID::Q) && !cell->type.in(ID($ff), ID($_FF_))) { std::stringstream ss; dump_reg_init(ss, cell->getPort(ID::Q)); if (!ss.str().empty()) { f << stringf("%sinitial %s.Q", indent.c_str(), cell_name.c_str()); f << ss.str(); f << ";\n"; } } } void dump_sync_effect(std::ostream &f, std::string indent, const RTLIL::SigSpec &trg, const RTLIL::Const &polarity, std::vector &cells) { if (trg.size() == 0) { f << stringf("%s" "initial begin\n", indent.c_str()); } else { f << stringf("%s" "always @(", indent.c_str()); for (int i = 0; i < trg.size(); i++) { if (i != 0) f << " or "; if (polarity[i]) f << "posedge "; else f << "negedge "; dump_sigspec(f, trg[i]); } f << ") begin\n"; } std::sort(cells.begin(), cells.end(), [](const RTLIL::Cell *a, const RTLIL::Cell *b) { return a->getParam(ID::PRIORITY).as_int() > b->getParam(ID::PRIORITY).as_int(); }); for (auto cell : cells) { f << stringf("%s" " if (", indent.c_str()); dump_sigspec(f, cell->getPort(ID::EN)); f << stringf(") begin\n"); if (cell->type == ID($print)) { dump_cell_expr_print(f, indent + " ", cell); } else if (cell->type == ID($check)) { std::string flavor = cell->getParam(ID::FLAVOR).decode_string(); if (flavor == "assert" || flavor == "assume") { Fmt fmt; fmt.parse_rtlil(cell); if (!fmt.parts.empty()) { f << stringf("%s" " if (!", indent.c_str()); dump_sigspec(f, cell->getPort(ID::A)); f << stringf(")\n"); dump_cell_expr_print(f, indent + " ", cell); } } else { f << stringf("%s" " /* message omitted */\n", indent.c_str()); } dump_cell_expr_check(f, indent + " ", cell); } f << stringf("%s" " end\n", indent.c_str()); } f << stringf("%s" "end\n", indent.c_str()); } void dump_conn(std::ostream &f, std::string indent, const RTLIL::SigSpec &left, const RTLIL::SigSpec &right) { bool all_chunks_wires = true; for (auto &chunk : left.chunks()) if (chunk.is_wire() && reg_wires.count(chunk.wire->name)) all_chunks_wires = false; if (!simple_lhs && all_chunks_wires) { f << stringf("%s" "assign ", indent.c_str()); dump_sigspec(f, left); f << stringf(" = "); dump_sigspec(f, right); f << stringf(";\n"); } else { int offset = 0; for (auto &chunk : left.chunks()) { if (chunk.is_wire() && reg_wires.count(chunk.wire->name)) f << stringf("%s" "always%s\n%s ", indent.c_str(), systemverilog ? "_comb" : " @*", indent.c_str()); else f << stringf("%s" "assign ", indent.c_str()); dump_sigspec(f, chunk); f << stringf(" = "); dump_sigspec(f, right.extract(offset, GetSize(chunk))); f << stringf(";\n"); offset += GetSize(chunk); } } } void dump_proc_switch(std::ostream &f, std::string indent, RTLIL::SwitchRule *sw); void dump_case_actions(std::ostream &f, std::string indent, RTLIL::CaseRule *cs) { for (auto it = cs->actions.begin(); it != cs->actions.end(); ++it) { if (it->first.size() == 0) continue; f << stringf("%s ", indent.c_str()); dump_sigspec(f, it->first); f << stringf(" = "); dump_sigspec(f, it->second); f << stringf(";\n"); } } bool dump_proc_switch_ifelse(std::ostream &f, std::string indent, RTLIL::SwitchRule *sw) { for (auto it = sw->cases.begin(); it != sw->cases.end(); ++it) { if ((*it)->compare.size() == 0) { break; } else if ((*it)->compare.size() == 1) { int case_index = it - sw->cases.begin(); SigSpec compare = (*it)->compare.at(0); if (case_index >= compare.size()) return false; if (compare[case_index] != State::S1) return false; for (int bit_index = 0; bit_index < compare.size(); bit_index++) if (bit_index != case_index && compare[bit_index] != State::Sa) return false; } else { return false; } } dump_attributes(f, indent, sw->attributes); f << indent; auto sig_it = sw->signal.begin(); for (auto it = sw->cases.begin(); it != sw->cases.end(); ++it, ++sig_it) { if (it != sw->cases.begin()) { if ((*it)->compare.empty()) f << " else begin\n"; else f << " else "; } if (!(*it)->compare.empty()) { f << stringf("if ("); dump_sigspec(f, *sig_it); f << stringf(") begin\n"); } dump_case_actions(f, indent, (*it)); for (auto it2 = (*it)->switches.begin(); it2 != (*it)->switches.end(); ++it2) dump_proc_switch(f, indent + " ", *it2); f << indent << "end"; if ((*it)->compare.empty()) break; } f << "\n"; return true; } void dump_case_body(std::ostream &f, std::string indent, RTLIL::CaseRule *cs, bool omit_trailing_begin = false) { int number_of_stmts = cs->switches.size() + cs->actions.size(); if (!omit_trailing_begin && number_of_stmts >= 2) f << stringf("%s" "begin\n", indent.c_str()); dump_case_actions(f, indent, cs); for (auto it = cs->switches.begin(); it != cs->switches.end(); ++it) dump_proc_switch(f, indent + " ", *it); if (!omit_trailing_begin && number_of_stmts == 0) f << stringf("%s /* empty */;\n", indent.c_str()); if (omit_trailing_begin || number_of_stmts >= 2) f << stringf("%s" "end\n", indent.c_str()); } void dump_proc_switch(std::ostream &f, std::string indent, RTLIL::SwitchRule *sw) { if (sw->signal.size() == 0) { f << stringf("%s" "begin\n", indent.c_str()); for (auto it = sw->cases.begin(); it != sw->cases.end(); ++it) { if ((*it)->compare.size() == 0) dump_case_body(f, indent + " ", *it); } f << stringf("%s" "end\n", indent.c_str()); return; } if (dump_proc_switch_ifelse(f, indent, sw)) return; dump_attributes(f, indent, sw->attributes); f << stringf("%s" "casez (", indent.c_str()); dump_sigspec(f, sw->signal); f << stringf(")\n"); for (auto it = sw->cases.begin(); it != sw->cases.end(); ++it) { bool got_default = false; dump_attributes(f, indent + " ", (*it)->attributes, "\n", /*modattr=*/false, /*regattr=*/false, /*as_comment=*/true); if ((*it)->compare.size() == 0) { f << stringf("%s default", indent.c_str()); got_default = true; } else { f << stringf("%s ", indent.c_str()); for (size_t i = 0; i < (*it)->compare.size(); i++) { if (i > 0) f << stringf(", "); dump_sigspec(f, (*it)->compare[i]); } } f << stringf(":\n"); dump_case_body(f, indent + " ", *it); if (got_default) { // If we followed up the default with more cases the Verilog // semantics would be to match those *before* the default, but // the RTLIL semantics are to match those *after* the default // (so they can never be selected). Exit now. break; } } if (sw->cases.empty()) { // Verilog does not allow empty cases. f << stringf("%s default: ;\n", indent.c_str()); } f << stringf("%s" "endcase\n", indent.c_str()); } void case_body_find_regs(RTLIL::CaseRule *cs) { for (auto it = cs->switches.begin(); it != cs->switches.end(); ++it) for (auto it2 = (*it)->cases.begin(); it2 != (*it)->cases.end(); it2++) case_body_find_regs(*it2); for (auto it = cs->actions.begin(); it != cs->actions.end(); ++it) { for (auto &c : it->first.chunks()) if (c.wire != NULL) reg_wires.insert(c.wire->name); } } void dump_process(std::ostream &f, std::string indent, RTLIL::Process *proc, bool find_regs = false) { if (find_regs) { case_body_find_regs(&proc->root_case); for (auto it = proc->syncs.begin(); it != proc->syncs.end(); ++it) for (auto it2 = (*it)->actions.begin(); it2 != (*it)->actions.end(); it2++) { for (auto &c : it2->first.chunks()) if (c.wire != NULL) reg_wires.insert(c.wire->name); } return; } f << stringf("%s" "always%s begin\n", indent.c_str(), systemverilog ? "_comb" : " @*"); if (!systemverilog) f << indent + " " << "if (" << id(initial_id) << ") begin end\n"; dump_case_body(f, indent, &proc->root_case, true); std::string backup_indent = indent; for (size_t i = 0; i < proc->syncs.size(); i++) { RTLIL::SyncRule *sync = proc->syncs[i]; indent = backup_indent; if (sync->type == RTLIL::STa) { f << stringf("%s" "always%s begin\n", indent.c_str(), systemverilog ? "_comb" : " @*"); } else if (sync->type == RTLIL::STi) { f << stringf("%s" "initial begin\n", indent.c_str()); } else { f << stringf("%s" "always%s @(", indent.c_str(), systemverilog ? "_ff" : ""); if (sync->type == RTLIL::STp || sync->type == RTLIL::ST1) f << stringf("posedge "); if (sync->type == RTLIL::STn || sync->type == RTLIL::ST0) f << stringf("negedge "); dump_sigspec(f, sync->signal); f << stringf(") begin\n"); } std::string ends = indent + "end\n"; indent += " "; if (sync->type == RTLIL::ST0 || sync->type == RTLIL::ST1) { f << stringf("%s" "if (%s", indent.c_str(), sync->type == RTLIL::ST0 ? "!" : ""); dump_sigspec(f, sync->signal); f << stringf(") begin\n"); ends = indent + "end\n" + ends; indent += " "; } if (sync->type == RTLIL::STp || sync->type == RTLIL::STn) { for (size_t j = 0; j < proc->syncs.size(); j++) { RTLIL::SyncRule *sync2 = proc->syncs[j]; if (sync2->type == RTLIL::ST0 || sync2->type == RTLIL::ST1) { f << stringf("%s" "if (%s", indent.c_str(), sync2->type == RTLIL::ST1 ? "!" : ""); dump_sigspec(f, sync2->signal); f << stringf(") begin\n"); ends = indent + "end\n" + ends; indent += " "; } } } for (auto it = sync->actions.begin(); it != sync->actions.end(); ++it) { if (it->first.size() == 0) continue; f << stringf("%s ", indent.c_str()); dump_sigspec(f, it->first); f << stringf(" <= "); dump_sigspec(f, it->second); f << stringf(";\n"); } f << stringf("%s", ends.c_str()); } } void dump_module(std::ostream &f, std::string indent, RTLIL::Module *module) { std::map, std::vector> sync_effect_cells; reg_wires.clear(); reset_auto_counter(module); active_module = module; active_sigmap.set(module); active_initdata.clear(); for (auto wire : module->wires()) if (wire->attributes.count(ID::init)) { SigSpec sig = active_sigmap(wire); Const val = wire->attributes.at(ID::init); for (int i = 0; i < GetSize(sig) && i < GetSize(val); i++) if (val[i] == State::S0 || val[i] == State::S1) active_initdata[sig[i]] = val[i]; } bool has_sync_rules = false; for (auto process : module->processes) if (!process.second->syncs.empty()) has_sync_rules = true; if (has_sync_rules) log_warning("Module %s contains RTLIL processes with sync rules. Such RTLIL " "processes can't always be mapped directly to Verilog always blocks. " "unintended changes in simulation behavior are possible! Use \"proc\" " "to convert processes to logic networks and registers.\n", log_id(module)); f << stringf("\n"); for (auto it = module->processes.begin(); it != module->processes.end(); ++it) dump_process(f, indent + " ", it->second, true); if (!noexpr) { std::set> reg_bits; for (auto cell : module->cells()) { if (cell->type.in(ID($print), ID($check)) && cell->getParam(ID::TRG_ENABLE).as_bool()) { sync_effect_cells[make_pair(cell->getPort(ID::TRG), cell->getParam(ID::TRG_POLARITY))].push_back(cell); continue; } if (!RTLIL::builtin_ff_cell_types().count(cell->type) || !cell->hasPort(ID::Q) || cell->type.in(ID($ff), ID($_FF_))) continue; RTLIL::SigSpec sig = cell->getPort(ID::Q); if (sig.is_chunk()) { RTLIL::SigChunk chunk = sig.as_chunk(); if (chunk.wire != NULL) for (int i = 0; i < chunk.width; i++) reg_bits.insert(std::pair(chunk.wire, chunk.offset+i)); } } for (auto wire : module->wires()) { for (int i = 0; i < wire->width; i++) if (reg_bits.count(std::pair(wire, i)) == 0) goto this_wire_aint_reg; if (wire->width) reg_wires.insert(wire->name); this_wire_aint_reg:; } } dump_attributes(f, indent, module->attributes, "\n", /*modattr=*/true); f << stringf("%s" "module %s(", indent.c_str(), id(module->name, false).c_str()); int cnt = 0; for (auto port : module->ports) { Wire *wire = module->wire(port); if (wire) { if (port != module->ports[0]) f << stringf(", "); f << stringf("%s", id(wire->name).c_str()); if (cnt==20) { f << stringf("\n"); cnt = 0; } else cnt++; continue; } } f << stringf(");\n"); if (!systemverilog && !module->processes.empty()) { initial_id = NEW_ID; f << indent + " " << "reg " << id(initial_id) << " = 0;\n"; } for (auto w : module->wires()) dump_wire(f, indent + " ", w); for (auto &mem : Mem::get_all_memories(module)) dump_memory(f, indent + " ", mem); for (auto cell : module->cells()) dump_cell(f, indent + " ", cell); for (auto &it : sync_effect_cells) dump_sync_effect(f, indent + " ", it.first.first, it.first.second, it.second); for (auto it = module->processes.begin(); it != module->processes.end(); ++it) dump_process(f, indent + " ", it->second); for (auto it = module->connections().begin(); it != module->connections().end(); ++it) dump_conn(f, indent + " ", it->first, it->second); f << stringf("%s" "endmodule\n", indent.c_str()); active_module = NULL; active_sigmap.clear(); active_initdata.clear(); } struct VerilogBackend : public Backend { VerilogBackend() : Backend("verilog", "write design to Verilog file") { } void help() override { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" write_verilog [options] [filename]\n"); log("\n"); log("Write the current design to a Verilog file.\n"); log("\n"); log(" -sv\n"); log(" with this option, SystemVerilog constructs like always_comb are used\n"); log("\n"); log(" -norename\n"); log(" without this option all internal object names (the ones with a dollar\n"); log(" instead of a backslash prefix) are changed to short names in the\n"); log(" format '__'.\n"); log("\n"); log(" -renameprefix \n"); log(" insert this prefix in front of auto-generated instance names\n"); log("\n"); log(" -noattr\n"); log(" with this option no attributes are included in the output\n"); log("\n"); log(" -attr2comment\n"); log(" with this option attributes are included as comments in the output\n"); log("\n"); log(" -noexpr\n"); log(" without this option all internal cells are converted to Verilog\n"); log(" expressions.\n"); log("\n"); log(" -noparallelcase\n"); log(" With this option no parallel_case attributes are used. Instead, a case\n"); log(" statement that assigns don't-care values for priority dependent inputs\n"); log(" is generated.\n"); log("\n"); log(" -siminit\n"); log(" add initial statements with hierarchical refs to initialize FFs when\n"); log(" in -noexpr mode.\n"); log("\n"); log(" -nodec\n"); log(" 32-bit constant values are by default dumped as decimal numbers,\n"); log(" not bit pattern. This option deactivates this feature and instead\n"); log(" will write out all constants in binary.\n"); log("\n"); log(" -decimal\n"); log(" dump 32-bit constants in decimal and without size and radix\n"); log("\n"); log(" -nohex\n"); log(" constant values that are compatible with hex output are usually\n"); log(" dumped as hex values. This option deactivates this feature and\n"); log(" instead will write out all constants in binary.\n"); log("\n"); log(" -nostr\n"); log(" Parameters and attributes that are specified as strings in the\n"); log(" original input will be output as strings by this back-end. This\n"); log(" deactivates this feature and instead will write string constants\n"); log(" as binary numbers.\n"); log("\n"); log(" -simple-lhs\n"); log(" Connection assignments with simple left hand side without\n"); log(" concatenations.\n"); log("\n"); log(" -extmem\n"); log(" instead of initializing memories using assignments to individual\n"); log(" elements, use the '$readmemh' function to read initialization data\n"); log(" from a file. This data is written to a file named by appending\n"); log(" a sequential index to the Verilog filename and replacing the extension\n"); log(" with '.mem', e.g. 'write_verilog -extmem foo.v' writes 'foo-1.mem',\n"); log(" 'foo-2.mem' and so on.\n"); log("\n"); log(" -defparam\n"); log(" use 'defparam' statements instead of the Verilog-2001 syntax for\n"); log(" cell parameters.\n"); log("\n"); log(" -blackboxes\n"); log(" usually modules with the 'blackbox' attribute are ignored. with\n"); log(" this option set only the modules with the 'blackbox' attribute\n"); log(" are written to the output file.\n"); log("\n"); log(" -selected\n"); log(" only write selected modules. modules must be selected entirely or\n"); log(" not at all.\n"); log("\n"); log(" -v\n"); log(" verbose output (print new names of all renamed wires and cells)\n"); log("\n"); log("Note that RTLIL processes can't always be mapped directly to Verilog\n"); log("always blocks. This frontend should only be used to export an RTLIL\n"); log("netlist, i.e. after the \"proc\" pass has been used to convert all\n"); log("processes to logic networks and registers. A warning is generated when\n"); log("this command is called on a design with RTLIL processes.\n"); log("\n"); } void execute(std::ostream *&f, std::string filename, std::vector args, RTLIL::Design *design) override { log_header(design, "Executing Verilog backend.\n"); verbose = false; norename = false; noattr = false; attr2comment = false; noexpr = false; nodec = false; nohex = false; nostr = false; extmem = false; defparam = false; decimal = false; siminit = false; simple_lhs = false; noparallelcase = false; auto_prefix = ""; bool blackboxes = false; bool selected = false; auto_name_map.clear(); reg_wires.clear(); size_t argidx; for (argidx = 1; argidx < args.size(); argidx++) { std::string arg = args[argidx]; if (arg == "-sv") { systemverilog = true; continue; } if (arg == "-norename") { norename = true; continue; } if (arg == "-renameprefix" && argidx+1 < args.size()) { auto_prefix = args[++argidx]; continue; } if (arg == "-noattr") { noattr = true; continue; } if (arg == "-attr2comment") { attr2comment = true; continue; } if (arg == "-noexpr") { noexpr = true; continue; } if (arg == "-noparallelcase") { noparallelcase = true; continue; } if (arg == "-nodec") { nodec = true; continue; } if (arg == "-nohex") { nohex = true; continue; } if (arg == "-nostr") { nostr = true; continue; } if (arg == "-extmem") { extmem = true; extmem_counter = 1; continue; } if (arg == "-defparam") { defparam = true; continue; } if (arg == "-decimal") { decimal = true; continue; } if (arg == "-siminit") { siminit = true; continue; } if (arg == "-blackboxes") { blackboxes = true; continue; } if (arg == "-selected") { selected = true; continue; } if (arg == "-simple-lhs") { simple_lhs = true; continue; } if (arg == "-v") { verbose = true; continue; } break; } extra_args(f, filename, args, argidx); if (extmem) { if (filename == "") log_cmd_error("Option -extmem must be used with a filename.\n"); extmem_prefix = filename.substr(0, filename.rfind('.')); } log_push(); if (!noexpr) { Pass::call(design, "bmuxmap"); Pass::call(design, "demuxmap"); } Pass::call(design, "clean_zerowidth"); log_pop(); design->sort(); *f << stringf("/* Generated by %s */\n", yosys_version_str); for (auto module : design->modules()) { if (module->get_blackbox_attribute() != blackboxes) continue; if (selected && !design->selected_whole_module(module->name)) { if (design->selected_module(module->name)) log_cmd_error("Can't handle partially selected module %s!\n", log_id(module->name)); continue; } log("Dumping module `%s'.\n", module->name.c_str()); dump_module(*f, "", module); } auto_name_map.clear(); reg_wires.clear(); } } VerilogBackend; PRIVATE_NAMESPACE_END