/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Clifford Wolf * Copyright (C) 2014 Ahmed Irfan * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ // [[CITE]] BTOR: Bit-Precise Modelling of Word-Level Problems for Model Checking // Johannes Kepler University, Linz, Austria // http://fmv.jku.at/papers/BrummayerBiereLonsing-BPR08.pdf #include "kernel/rtlil.h" #include "kernel/register.h" #include "kernel/sigtools.h" #include "kernel/celltypes.h" #include "kernel/log.h" #include #include struct BtorDumperConfig { bool subckt_mode; bool conn_mode; bool impltf_mode; std::string buf_type, buf_in, buf_out; std::string true_type, true_out, false_type, false_out; BtorDumperConfig() : subckt_mode(false), conn_mode(false), impltf_mode(false) { } }; struct WireInfo { RTLIL::IdString cell_name; const RTLIL::SigChunk *chunk; WireInfo(RTLIL::IdString c, const RTLIL::SigChunk* ch) : cell_name(c), chunk(ch) { } }; struct WireInfoOrder { bool operator() (const WireInfo& x, const WireInfo& y) { return x.chunk < y.chunk; } }; struct BtorDumper { FILE *f; RTLIL::Module *module; RTLIL::Design *design; BtorDumperConfig *config; CellTypes ct; SigMap sigmap; std::map> inter_wire_map;// for maping the intermediate wires that are output of some cell std::map line_ref;//mapping of ids to line_num of the btor file std::map sig_ref;//mapping of sigspec to the line_num of the btor file int line_num;//last line number of btor file std::string str;//temp string for writing file std::map basic_wires;//input wires and registers RTLIL::IdString curr_cell; //current cell being dumped std::map cell_type_translation, s_cell_type_translation; //RTLIL to BTOR translation BtorDumper(FILE *f, RTLIL::Module *module, RTLIL::Design *design, BtorDumperConfig *config) : f(f), module(module), design(design), config(config), ct(design), sigmap(module) { line_num=0; str.clear(); for(auto it=module->wires_.begin(); it!=module->wires_.end(); ++it) { if(it->second->port_input) { basic_wires[it->first]=true; } else { basic_wires[it->first]=false; } inter_wire_map[it->first].clear(); } curr_cell.clear(); //assert cell_type_translation["$assert"] = "root"; //unary cell_type_translation["$not"] = "not"; cell_type_translation["$neg"] = "neg"; cell_type_translation["$reduce_and"] = "redand"; cell_type_translation["$reduce_or"] = "redor"; cell_type_translation["$reduce_xor"] = "redxor"; cell_type_translation["$reduce_bool"] = "redor"; //binary cell_type_translation["$and"] = "and"; cell_type_translation["$or"] = "or"; cell_type_translation["$xor"] = "xor"; cell_type_translation["$xnor"] = "xnor"; cell_type_translation["$shr"] = "srl"; cell_type_translation["$shl"] = "sll"; cell_type_translation["$sshr"] = "sra"; cell_type_translation["$sshl"] = "sll"; cell_type_translation["$lt"] = "ult"; cell_type_translation["$le"] = "ulte"; cell_type_translation["$gt"] = "ugt"; cell_type_translation["$ge"] = "ugte"; cell_type_translation["$eq"] = "eq"; cell_type_translation["$eqx"] = "eq"; cell_type_translation["$ne"] = "ne"; cell_type_translation["$nex"] = "ne"; cell_type_translation["$add"] = "add"; cell_type_translation["$sub"] = "sub"; cell_type_translation["$mul"] = "mul"; cell_type_translation["$mod"] = "urem"; cell_type_translation["$div"] = "udiv"; //mux cell_type_translation["$mux"] = "cond"; //reg cell_type_translation["$dff"] = "next"; cell_type_translation["$adff"] = "next"; cell_type_translation["$dffsr"] = "next"; //memories //nothing here //slice cell_type_translation["$slice"] = "slice"; //concat cell_type_translation["$concat"] = "concat"; //signed cell type translation //binary s_cell_type_translation["$modx"] = "srem"; s_cell_type_translation["$mody"] = "smod"; s_cell_type_translation["$div"] = "sdiv"; s_cell_type_translation["$lt"] = "slt"; s_cell_type_translation["$le"] = "slte"; s_cell_type_translation["$gt"] = "sgt"; s_cell_type_translation["$ge"] = "sgte"; } std::vector cstr_buf; const char *cstr(const RTLIL::IdString id) { str = RTLIL::unescape_id(id); for (size_t i = 0; i < str.size(); ++i) if (str[i] == '#' || str[i] == '=') str[i] = '?'; cstr_buf.push_back(str); return cstr_buf.back().c_str(); } int dump_wire(RTLIL::Wire* wire) { if(basic_wires[wire->name]) { log("writing wire %s\n", cstr(wire->name)); auto it = line_ref.find(wire->name); if(it==std::end(line_ref)) { ++line_num; line_ref[wire->name]=line_num; str = stringf("%d var %d %s", line_num, wire->width, cstr(wire->name)); fprintf(f, "%s\n", str.c_str()); return line_num; } else return it->second; } else // case when the wire is not basic wire { log("case of non-basic wire - %s\n", cstr(wire->name)); auto it = line_ref.find(wire->name); if(it==std::end(line_ref)) { std::set& dep_set = inter_wire_map.at(wire->name); int wire_line = 0; int wire_width = 0; for(auto dep_set_it=dep_set.begin(); dep_set_it!=dep_set.end(); ++dep_set_it) { RTLIL::IdString cell_id = dep_set_it->cell_name; if(cell_id == curr_cell) break; log(" -- found cell %s\n", cstr(cell_id)); RTLIL::Cell* cell = module->cells_.at(cell_id); const RTLIL::SigSpec* cell_output = get_cell_output(cell); int cell_line = dump_cell(cell); if(dep_set.size()==1 && wire->width == cell_output->size()) { wire_line = cell_line; break; } else { int prev_wire_line=0; //previously dumped wire line int start_bit=0; for(unsigned j=0; jchunks().size(); ++j) { start_bit+=cell_output->chunks().at(j).width; if(cell_output->chunks().at(j).wire->name == wire->name) { prev_wire_line = wire_line; wire_line = ++line_num; str = stringf("%d slice %d %d %d %d;1", line_num, cell_output->chunks().at(j).width, cell_line, start_bit-1, start_bit-cell_output->chunks().at(j).width); fprintf(f, "%s\n", str.c_str()); wire_width += cell_output->chunks().at(j).width; if(prev_wire_line!=0) { ++line_num; str = stringf("%d concat %d %d %d", line_num, wire_width, wire_line, prev_wire_line); fprintf(f, "%s\n", str.c_str()); wire_line = line_num; } } } } } if(dep_set.size()==0) { log(" - checking sigmap\n"); RTLIL::SigSpec s = RTLIL::SigSpec(wire); wire_line = dump_sigspec(&s, s.size()); line_ref[wire->name]=wire_line; } line_ref[wire->name]=wire_line; return wire_line; } else { log(" -- already processed wire\n"); return it->second; } } log_abort(); return -1; } int dump_memory(const RTLIL::Memory* memory) { log("writing memory %s\n", cstr(memory->name)); auto it = line_ref.find(memory->name); if(it==std::end(line_ref)) { ++line_num; int address_bits = ceil(log(memory->size)/log(2)); str = stringf("%d array %d %d", line_num, memory->width, address_bits); line_ref[memory->name]=line_num; fprintf(f, "%s\n", str.c_str()); return line_num; } else return it->second; } int dump_const(const RTLIL::Const* data, int width, int offset) { log("writing const \n"); if((data->flags & RTLIL::CONST_FLAG_STRING) == 0) { if(width<0) width = data->bits.size() - offset; std::string data_str = data->as_string(); //if(offset > 0) data_str = data_str.substr(offset, width); ++line_num; str = stringf("%d const %d %s", line_num, width, data_str.c_str()); fprintf(f, "%s\n", str.c_str()); return line_num; } else log("writing const error\n"); log_abort(); return -1; } int dump_sigchunk(const RTLIL::SigChunk* chunk) { log("writing sigchunk\n"); int l=-1; if(chunk->wire == NULL) { l=dump_const(&chunk->data, chunk->width, chunk->offset); } else { if (chunk->width == chunk->wire->width && chunk->offset == 0) l = dump_wire(chunk->wire); else { int wire_line_num = dump_wire(chunk->wire); log_assert(wire_line_num>0); ++line_num; str = stringf("%d slice %d %d %d %d;2", line_num, chunk->width, wire_line_num, chunk->width + chunk->offset - 1, chunk->offset); fprintf(f, "%s\n", str.c_str()); l = line_num; } } return l; } int dump_sigspec(const RTLIL::SigSpec* sig, int expected_width) { log("writing sigspec\n"); RTLIL::SigSpec s = sigmap(*sig); int l = -1; auto it = sig_ref.find(s); if(it == std::end(sig_ref)) { if (s.is_chunk()) { l = dump_sigchunk(&s.chunks().front()); } else { int l1, l2, w1, w2; l1 = dump_sigchunk(&s.chunks().front()); log_assert(l1>0); w1 = s.chunks().front().width; for (unsigned i=1; i < s.chunks().size(); ++i) { l2 = dump_sigchunk(&s.chunks().at(i)); log_assert(l2>0); w2 = s.chunks().at(i).width; ++line_num; str = stringf("%d concat %d %d %d", line_num, w1+w2, l2, l1); fprintf(f, "%s\n", str.c_str()); l1=line_num; w1+=w2; } l = line_num; } sig_ref[s] = l; } else { l = it->second; } if (expected_width != s.size()) { log(" - changing width of sigspec\n"); //TODO: this block may not be needed anymore, due to explicit type conversion by "splice" command if(expected_width > s.size()) { //TODO: case the signal is signed ++line_num; str = stringf ("%d zero %d", line_num, expected_width - s.size()); fprintf(f, "%s\n", str.c_str()); ++line_num; str = stringf ("%d concat %d %d %d", line_num, expected_width, line_num-1, l); fprintf(f, "%s\n", str.c_str()); l = line_num; } else if(expected_width < s.size()) { ++line_num; str = stringf ("%d slice %d %d %d %d;3", line_num, expected_width, l, expected_width-1, 0); fprintf(f, "%s\n", str.c_str()); l = line_num; } } log_assert(l>0); return l; } int dump_cell(const RTLIL::Cell* cell) { auto it = line_ref.find(cell->name); if(it==std::end(line_ref)) { curr_cell = cell->name; //assert cell if(cell->type == "$assert") { log("writing assert cell - %s\n", cstr(cell->type)); const RTLIL::SigSpec* expr = &cell->get(RTLIL::IdString("\\A")); const RTLIL::SigSpec* en = &cell->get(RTLIL::IdString("\\EN")); log_assert(expr->size() == 1); log_assert(en->size() == 1); int expr_line = dump_sigspec(expr, 1); int en_line = dump_sigspec(en, 1); int one_line = ++line_num; str = stringf("%d one 1", line_num); fprintf(f, "%s\n", str.c_str()); ++line_num; str = stringf("%d %s %d %d %d", line_num, cell_type_translation.at("$eq").c_str(), 1, en_line, one_line); fprintf(f, "%s\n", str.c_str()); ++line_num; str = stringf("%d %s %d %d %d %d", line_num, cell_type_translation.at("$mux").c_str(), 1, line_num-1, expr_line, one_line); fprintf(f, "%s\n", str.c_str()); int cell_line = ++line_num; str = stringf("%d %s %d %d", line_num, cell_type_translation.at("$assert").c_str(), 1, -1*(line_num-1)); //multiplying the line number with -1, which means logical negation //the reason for negative sign is that the properties in btor are given as "negation of the original property" //bug identified by bobosoft //http://www.reddit.com/r/yosys/comments/1w3xig/btor_backend_bug/ fprintf(f, "%s\n", str.c_str()); line_ref[cell->name]=cell_line; } //unary cells if(cell->type == "$not" || cell->type == "$neg" || cell->type == "$pos" || cell->type == "$reduce_and" || cell->type == "$reduce_or" || cell->type == "$reduce_xor" || cell->type == "$reduce_bool") { log("writing unary cell - %s\n", cstr(cell->type)); int w = cell->parameters.at(RTLIL::IdString("\\A_WIDTH")).as_int(); int output_width = cell->parameters.at(RTLIL::IdString("\\Y_WIDTH")).as_int(); w = w>output_width ? w:output_width; //padding of w int l = dump_sigspec(&cell->get(RTLIL::IdString("\\A")), w); int cell_line = l; if(cell->type != "$pos") { cell_line = ++line_num; bool reduced = (cell->type == "$not" || cell->type == "$neg") ? false : true; str = stringf ("%d %s %d %d", cell_line, cell_type_translation.at(cell->type).c_str(), reduced?output_width:w, l); fprintf(f, "%s\n", str.c_str()); } if(output_width < w && (cell->type == "$not" || cell->type == "$neg" || cell->type == "$pos")) { ++line_num; str = stringf ("%d slice %d %d %d %d;4", line_num, output_width, cell_line, output_width-1, 0); fprintf(f, "%s\n", str.c_str()); cell_line = line_num; } line_ref[cell->name]=cell_line; } else if(cell->type == "$reduce_xnor" || cell->type == "$logic_not")//no direct translation in btor { log("writing unary cell - %s\n", cstr(cell->type)); int w = cell->parameters.at(RTLIL::IdString("\\A_WIDTH")).as_int(); int output_width = cell->parameters.at(RTLIL::IdString("\\Y_WIDTH")).as_int(); log_assert(output_width == 1); int l = dump_sigspec(&cell->get(RTLIL::IdString("\\A")), w); if(cell->type == "$logic_not" && w > 1) { ++line_num; str = stringf ("%d %s %d %d", line_num, cell_type_translation.at("$reduce_or").c_str(), output_width, l); fprintf(f, "%s\n", str.c_str()); } else if(cell->type == "$reduce_xnor") { ++line_num; str = stringf ("%d %s %d %d", line_num, cell_type_translation.at("$reduce_xor").c_str(), output_width, l); fprintf(f, "%s\n", str.c_str()); } ++line_num; str = stringf ("%d %s %d %d", line_num, cell_type_translation.at("$not").c_str(), output_width, line_num-1); fprintf(f, "%s\n", str.c_str()); line_ref[cell->name]=line_num; } //binary cells else if(cell->type == "$and" || cell->type == "$or" || cell->type == "$xor" || cell->type == "$xnor" || cell->type == "$lt" || cell->type == "$le" || cell->type == "$eq" || cell->type == "$ne" || cell->type == "$eqx" || cell->type == "$nex" || cell->type == "$ge" || cell->type == "$gt" ) { log("writing binary cell - %s\n", cstr(cell->type)); int output_width = cell->parameters.at(RTLIL::IdString("\\Y_WIDTH")).as_int(); log_assert(!(cell->type == "$eq" || cell->type == "$ne" || cell->type == "$eqx" || cell->type == "$nex" || cell->type == "$ge" || cell->type == "$gt") || output_width == 1); bool l1_signed = cell->parameters.at(RTLIL::IdString("\\A_SIGNED")).as_bool(); bool l2_signed = cell->parameters.at(RTLIL::IdString("\\B_SIGNED")).as_bool(); int l1_width = cell->parameters.at(RTLIL::IdString("\\A_WIDTH")).as_int(); int l2_width = cell->parameters.at(RTLIL::IdString("\\B_WIDTH")).as_int(); log_assert(l1_signed == l2_signed); l1_width = l1_width > output_width ? l1_width : output_width; l1_width = l1_width > l2_width ? l1_width : l2_width; l2_width = l2_width > l1_width ? l2_width : l1_width; int l1 = dump_sigspec(&cell->get(RTLIL::IdString("\\A")), l1_width); int l2 = dump_sigspec(&cell->get(RTLIL::IdString("\\B")), l2_width); ++line_num; std::string op = cell_type_translation.at(cell->type); if(cell->type == "$lt" || cell->type == "$le" || cell->type == "$eq" || cell->type == "$ne" || cell->type == "$eqx" || cell->type == "$nex" || cell->type == "$ge" || cell->type == "$gt") { if(l1_signed) op = s_cell_type_translation.at(cell->type); } str = stringf ("%d %s %d %d %d", line_num, op.c_str(), output_width, l1, l2); fprintf(f, "%s\n", str.c_str()); line_ref[cell->name]=line_num; } else if(cell->type == "$add" || cell->type == "$sub" || cell->type == "$mul" || cell->type == "$div" || cell->type == "$mod" ) { //TODO: division by zero case log("writing binary cell - %s\n", cstr(cell->type)); int output_width = cell->parameters.at(RTLIL::IdString("\\Y_WIDTH")).as_int(); bool l1_signed = cell->parameters.at(RTLIL::IdString("\\A_SIGNED")).as_bool(); bool l2_signed = cell->parameters.at(RTLIL::IdString("\\B_SIGNED")).as_bool(); int l1_width = cell->parameters.at(RTLIL::IdString("\\A_WIDTH")).as_int(); int l2_width = cell->parameters.at(RTLIL::IdString("\\B_WIDTH")).as_int(); log_assert(l1_signed == l2_signed); l1_width = l1_width > output_width ? l1_width : output_width; l1_width = l1_width > l2_width ? l1_width : l2_width; l2_width = l2_width > l1_width ? l2_width : l1_width; int l1 = dump_sigspec(&cell->get(RTLIL::IdString("\\A")), l1_width); int l2 = dump_sigspec(&cell->get(RTLIL::IdString("\\B")), l2_width); ++line_num; std::string op = cell_type_translation.at(cell->type); if(cell->type == "$div" && l1_signed) op = s_cell_type_translation.at(cell->type); else if(cell->type == "$mod") { if(l1_signed) op = s_cell_type_translation.at("$modx"); else if(l2_signed) op = s_cell_type_translation.at("$mody"); } str = stringf ("%d %s %d %d %d", line_num, op.c_str(), l1_width, l1, l2); fprintf(f, "%s\n", str.c_str()); if(output_width < l1_width) { ++line_num; str = stringf ("%d slice %d %d %d %d;5", line_num, output_width, line_num-1, output_width-1, 0); fprintf(f, "%s\n", str.c_str()); } line_ref[cell->name]=line_num; } else if(cell->type == "$shr" || cell->type == "$shl" || cell->type == "$sshr" || cell->type == "$sshl") { log("writing binary cell - %s\n", cstr(cell->type)); int output_width = cell->parameters.at(RTLIL::IdString("\\Y_WIDTH")).as_int(); bool l1_signed = cell->parameters.at(RTLIL::IdString("\\A_SIGNED")).as_bool(); //bool l2_signed = cell->parameters.at(RTLIL::IdString("\\B_SIGNED")).as_bool(); int l1_width = cell->parameters.at(RTLIL::IdString("\\A_WIDTH")).as_int(); l1_width = pow(2, ceil(log(l1_width)/log(2))); int l2_width = cell->parameters.at(RTLIL::IdString("\\B_WIDTH")).as_int(); //log_assert(l2_width <= ceil(log(l1_width)/log(2)) ); int l1 = dump_sigspec(&cell->get(RTLIL::IdString("\\A")), l1_width); int l2 = dump_sigspec(&cell->get(RTLIL::IdString("\\B")), ceil(log(l1_width)/log(2))); int cell_output = ++line_num; str = stringf ("%d %s %d %d %d", line_num, cell_type_translation.at(cell->type).c_str(), l1_width, l1, l2); fprintf(f, "%s\n", str.c_str()); if(l2_width > ceil(log(l1_width)/log(2))) { int extra_width = l2_width - ceil(log(l1_width)/log(2)); l2 = dump_sigspec(&cell->get(RTLIL::IdString("\\B")), l2_width); ++line_num; str = stringf ("%d slice %d %d %d %d;6", line_num, extra_width, l2, l2_width-1, l2_width-extra_width); fprintf(f, "%s\n", str.c_str()); ++line_num; str = stringf ("%d one %d", line_num, extra_width); fprintf(f, "%s\n", str.c_str()); int mux = ++line_num; str = stringf ("%d %s %d %d %d", line_num, cell_type_translation.at("$gt").c_str(), 1, line_num-2, line_num-1); fprintf(f, "%s\n", str.c_str()); ++line_num; str = stringf("%d %s %d", line_num, l1_signed && cell->type == "$sshr" ? "ones":"zero", l1_width); fprintf(f, "%s\n", str.c_str()); ++line_num; str = stringf ("%d %s %d %d %d %d", line_num, cell_type_translation.at("$mux").c_str(), l1_width, mux, line_num-1, cell_output); fprintf(f, "%s\n", str.c_str()); cell_output = line_num; } if(output_width < l1_width) { ++line_num; str = stringf ("%d slice %d %d %d %d;5", line_num, output_width, cell_output, output_width-1, 0); fprintf(f, "%s\n", str.c_str()); cell_output = line_num; } line_ref[cell->name] = cell_output; } else if(cell->type == "$logic_and" || cell->type == "$logic_or")//no direct translation in btor { log("writing binary cell - %s\n", cstr(cell->type)); int output_width = cell->parameters.at(RTLIL::IdString("\\Y_WIDTH")).as_int(); log_assert(output_width == 1); int l1 = dump_sigspec(&cell->get(RTLIL::IdString("\\A")), output_width); int l2 = dump_sigspec(&cell->get(RTLIL::IdString("\\B")), output_width); int l1_width = cell->parameters.at(RTLIL::IdString("\\A_WIDTH")).as_int(); int l2_width = cell->parameters.at(RTLIL::IdString("\\B_WIDTH")).as_int(); if(l1_width >1) { ++line_num; str = stringf ("%d %s %d %d", line_num, cell_type_translation.at("$reduce_or").c_str(), output_width, l1); fprintf(f, "%s\n", str.c_str()); l1 = line_num; } if(l2_width > 1) { ++line_num; str = stringf ("%d %s %d %d", line_num, cell_type_translation.at("$reduce_or").c_str(), output_width, l2); fprintf(f, "%s\n", str.c_str()); l2 = line_num; } if(cell->type == "$logic_and") { ++line_num; str = stringf ("%d %s %d %d %d", line_num, cell_type_translation.at("$and").c_str(), output_width, l1, l2); } else if(cell->type == "$logic_or") { ++line_num; str = stringf ("%d %s %d %d %d", line_num, cell_type_translation.at("$or").c_str(), output_width, l1, l2); } fprintf(f, "%s\n", str.c_str()); line_ref[cell->name]=line_num; } //multiplexers else if(cell->type == "$mux") { log("writing mux cell\n"); int output_width = cell->parameters.at(RTLIL::IdString("\\WIDTH")).as_int(); int l1 = dump_sigspec(&cell->get(RTLIL::IdString("\\A")), output_width); int l2 = dump_sigspec(&cell->get(RTLIL::IdString("\\B")), output_width); int s = dump_sigspec(&cell->get(RTLIL::IdString("\\S")), 1); ++line_num; str = stringf ("%d %s %d %d %d %d", line_num, cell_type_translation.at(cell->type).c_str(), output_width, s, l2, l1);//if s is 0 then l1, if s is 1 then l2 //according to the implementation of mux cell fprintf(f, "%s\n", str.c_str()); line_ref[cell->name]=line_num; } //registers else if(cell->type == "$dff" || cell->type == "$adff" || cell->type == "$dffsr") { //TODO: remodelling fo adff cells log("writing cell - %s\n", cstr(cell->type)); int output_width = cell->parameters.at(RTLIL::IdString("\\WIDTH")).as_int(); log(" - width is %d\n", output_width); int cond = dump_sigspec(&cell->get(RTLIL::IdString("\\CLK")), 1); bool polarity = cell->parameters.at(RTLIL::IdString("\\CLK_POLARITY")).as_bool(); const RTLIL::SigSpec* cell_output = &cell->get(RTLIL::IdString("\\Q")); int value = dump_sigspec(&cell->get(RTLIL::IdString("\\D")), output_width); unsigned start_bit = 0; for(unsigned i=0; ichunks().size(); ++i) { output_width = cell_output->chunks().at(i).width; log_assert( output_width == cell_output->chunks().at(i).wire->width);//full reg is given the next value int reg = dump_wire(cell_output->chunks().at(i).wire);//register int slice = value; if(cell_output->chunks().size()>1) { start_bit+=output_width; slice = ++line_num; str = stringf ("%d slice %d %d %d %d;", line_num, output_width, value, start_bit-1, start_bit-output_width); fprintf(f, "%s\n", str.c_str()); } if(cell->type == "$dffsr") { int sync_reset = dump_sigspec(&cell->get(RTLIL::IdString("\\CLR")), 1); bool sync_reset_pol = cell->parameters.at(RTLIL::IdString("\\CLR_POLARITY")).as_bool(); int sync_reset_value = dump_sigspec(&cell->get(RTLIL::IdString("\\SET")), output_width); bool sync_reset_value_pol = cell->parameters.at(RTLIL::IdString("\\SET_POLARITY")).as_bool(); ++line_num; str = stringf ("%d %s %d %s%d %s%d %d", line_num, cell_type_translation.at("$mux").c_str(), output_width, sync_reset_pol ? "":"-", sync_reset, sync_reset_value_pol? "":"-", sync_reset_value, slice); fprintf(f, "%s\n", str.c_str()); slice = line_num; } ++line_num; str = stringf ("%d %s %d %s%d %d %d", line_num, cell_type_translation.at("$mux").c_str(), output_width, polarity?"":"-", cond, slice, reg); fprintf(f, "%s\n", str.c_str()); int next = line_num; if(cell->type == "$adff") { int async_reset = dump_sigspec(&cell->get(RTLIL::IdString("\\ARST")), 1); bool async_reset_pol = cell->parameters.at(RTLIL::IdString("\\ARST_POLARITY")).as_bool(); int async_reset_value = dump_const(&cell->parameters.at(RTLIL::IdString("\\ARST_VALUE")), output_width, 0); ++line_num; str = stringf ("%d %s %d %s%d %d %d", line_num, cell_type_translation.at("$mux").c_str(), output_width, async_reset_pol ? "":"-", async_reset, async_reset_value, next); fprintf(f, "%s\n", str.c_str()); } ++line_num; str = stringf ("%d %s %d %d %d", line_num, cell_type_translation.at(cell->type).c_str(), output_width, reg, next); fprintf(f, "%s\n", str.c_str()); } line_ref[cell->name]=line_num; } //memories else if(cell->type == "$memrd") { log("writing memrd cell\n"); if (cell->parameters.at("\\CLK_ENABLE").as_bool() == true) log_error("The btor backen does not support $memrd cells with built-in registers. Run memory_dff with -wr_only.\n"); str = cell->parameters.at(RTLIL::IdString("\\MEMID")).decode_string(); int mem = dump_memory(module->memories.at(RTLIL::IdString(str.c_str()))); int address_width = cell->parameters.at(RTLIL::IdString("\\ABITS")).as_int(); int address = dump_sigspec(&cell->get(RTLIL::IdString("\\ADDR")), address_width); int data_width = cell->parameters.at(RTLIL::IdString("\\WIDTH")).as_int(); ++line_num; str = stringf("%d read %d %d %d", line_num, data_width, mem, address); fprintf(f, "%s\n", str.c_str()); line_ref[cell->name]=line_num; } else if(cell->type == "$memwr") { log("writing memwr cell\n"); if (cell->parameters.at("\\CLK_ENABLE").as_bool() == false) log_error("The btor backen does not support $memwr cells without built-in registers. Run memory_dff (but with -wr_only).\n"); int clk = dump_sigspec(&cell->get(RTLIL::IdString("\\CLK")), 1); bool polarity = cell->parameters.at(RTLIL::IdString("\\CLK_POLARITY")).as_bool(); int enable = dump_sigspec(&cell->get(RTLIL::IdString("\\EN")), 1); int address_width = cell->parameters.at(RTLIL::IdString("\\ABITS")).as_int(); int address = dump_sigspec(&cell->get(RTLIL::IdString("\\ADDR")), address_width); int data_width = cell->parameters.at(RTLIL::IdString("\\WIDTH")).as_int(); int data = dump_sigspec(&cell->get(RTLIL::IdString("\\DATA")), data_width); str = cell->parameters.at(RTLIL::IdString("\\MEMID")).decode_string(); int mem = dump_memory(module->memories.at(RTLIL::IdString(str.c_str()))); ++line_num; if(polarity) str = stringf("%d one 1", line_num); else str = stringf("%d zero 1", line_num); fprintf(f, "%s\n", str.c_str()); ++line_num; str = stringf("%d eq 1 %d %d", line_num, clk, line_num-1); fprintf(f, "%s\n", str.c_str()); ++line_num; str = stringf("%d and 1 %d %d", line_num, line_num-1, enable); fprintf(f, "%s\n", str.c_str()); ++line_num; str = stringf("%d write %d %d %d %d %d", line_num, data_width, address_width, mem, address, data); fprintf(f, "%s\n", str.c_str()); ++line_num; str = stringf("%d acond %d %d %d %d %d", line_num, data_width, address_width, line_num-2/*enable*/, line_num-1, mem); fprintf(f, "%s\n", str.c_str()); ++line_num; str = stringf("%d anext %d %d %d %d", line_num, data_width, address_width, mem, line_num-1); fprintf(f, "%s\n", str.c_str()); line_ref[cell->name]=line_num; } else if(cell->type == "$slice") { log("writing slice cell\n"); const RTLIL::SigSpec* input = &cell->get(RTLIL::IdString("\\A")); int input_width = cell->parameters.at(RTLIL::IdString("\\A_WIDTH")).as_int(); log_assert(input->size() == input_width); int input_line = dump_sigspec(input, input_width); const RTLIL::SigSpec* output = &cell->get(RTLIL::IdString("\\Y")); int output_width = cell->parameters.at(RTLIL::IdString("\\Y_WIDTH")).as_int(); log_assert(output->size() == output_width); int offset = cell->parameters.at(RTLIL::IdString("\\OFFSET")).as_int(); ++line_num; str = stringf("%d %s %d %d %d %d", line_num, cell_type_translation.at(cell->type).c_str(), output_width, input_line, output_width+offset-1, offset); fprintf(f, "%s\n", str.c_str()); line_ref[cell->name]=line_num; } else if(cell->type == "$concat") { log("writing concat cell\n"); const RTLIL::SigSpec* input_a = &cell->get(RTLIL::IdString("\\A")); int input_a_width = cell->parameters.at(RTLIL::IdString("\\A_WIDTH")).as_int(); log_assert(input_a->size() == input_a_width); int input_a_line = dump_sigspec(input_a, input_a_width); const RTLIL::SigSpec* input_b = &cell->get(RTLIL::IdString("\\B")); int input_b_width = cell->parameters.at(RTLIL::IdString("\\B_WIDTH")).as_int(); log_assert(input_b->size() == input_b_width); int input_b_line = dump_sigspec(input_b, input_b_width); ++line_num; str = stringf("%d %s %d %d %d", line_num, cell_type_translation.at(cell->type).c_str(), input_a_width+input_b_width, input_a_line, input_b_line); fprintf(f, "%s\n", str.c_str()); line_ref[cell->name]=line_num; } curr_cell.clear(); return line_num; } else { return it->second; } } const RTLIL::SigSpec* get_cell_output(RTLIL::Cell* cell) { const RTLIL::SigSpec *output_sig = nullptr; if (cell->type == "$memrd") { output_sig = &cell->get(RTLIL::IdString("\\DATA")); } else if(cell->type == "$memwr" || cell->type == "$assert") { //no output } else if(cell->type == "$dff" || cell->type == "$adff" || cell->type == "$dffsr") { output_sig = &cell->get(RTLIL::IdString("\\Q")); } else { output_sig = &cell->get(RTLIL::IdString("\\Y")); } return output_sig; } void dump_property(RTLIL::Wire *wire) { int l = dump_wire(wire); ++line_num; str = stringf("%d root 1 %d", line_num, l); fprintf(f, "%s\n", str.c_str()); } void dump() { fprintf(f, ";module %s\n", cstr(module->name)); log("creating intermediate wires map\n"); //creating map of intermediate wires as output of some cell for (auto it = module->cells_.begin(); it != module->cells_.end(); ++it) { RTLIL::Cell *cell = it->second; const RTLIL::SigSpec* output_sig = get_cell_output(cell); if(output_sig==nullptr) continue; RTLIL::SigSpec s = sigmap(*output_sig); output_sig = &s; log(" - %s\n", cstr(it->second->type)); if (cell->type == "$memrd") { for(unsigned i=0; ichunks().size(); ++i) { RTLIL::Wire *w = output_sig->chunks().at(i).wire; RTLIL::IdString wire_id = w->name; inter_wire_map[wire_id].insert(WireInfo(cell->name,&output_sig->chunks().at(i))); } } else if(cell->type == "$memwr") { continue;//nothing to do } else if(cell->type == "$dff" || cell->type == "$adff" || cell->type == "$dffsr") { RTLIL::IdString wire_id = output_sig->chunks().front().wire->name; for(unsigned i=0; ichunks().size(); ++i) { RTLIL::Wire *w = output_sig->chunks().at(i).wire; RTLIL::IdString wire_id = w->name; inter_wire_map[wire_id].insert(WireInfo(cell->name,&output_sig->chunks().at(i))); basic_wires[wire_id] = true; } } else { for(unsigned i=0; ichunks().size(); ++i) { RTLIL::Wire *w = output_sig->chunks().at(i).wire; RTLIL::IdString wire_id = w->name; inter_wire_map[wire_id].insert(WireInfo(cell->name,&output_sig->chunks().at(i))); } } } log("writing input\n"); std::map inputs, outputs; std::vector safety; for (auto &wire_it : module->wires_) { RTLIL::Wire *wire = wire_it.second; if (wire->port_input) inputs[wire->port_id] = wire; if (wire->port_output) { outputs[wire->port_id] = wire; if (wire->name.find("safety") != std::string::npos ) safety.push_back(wire); } } fprintf(f, ";inputs\n"); for (auto &it : inputs) { RTLIL::Wire *wire = it.second; dump_wire(wire); } fprintf(f, "\n"); log("writing memories\n"); for(auto mem_it = module->memories.begin(); mem_it != module->memories.end(); ++mem_it) { dump_memory(mem_it->second); } log("writing output wires\n"); for (auto &it : outputs) { RTLIL::Wire *wire = it.second; dump_wire(wire); } log("writing cells\n"); for(auto cell_it = module->cells_.begin(); cell_it != module->cells_.end(); ++cell_it) { dump_cell(cell_it->second); } for(auto it: safety) dump_property(it); fprintf(f, "\n"); log("writing outputs info\n"); fprintf(f, ";outputs\n"); for (auto &it : outputs) { RTLIL::Wire *wire = it.second; int l = dump_wire(wire); fprintf(f, ";%d %s", l, cstr(wire->name)); } fprintf(f, "\n"); } static void dump(FILE *f, RTLIL::Module *module, RTLIL::Design *design, BtorDumperConfig &config) { BtorDumper dumper(f, module, design, &config); dumper.dump(); } }; struct BtorBackend : public Backend { BtorBackend() : Backend("btor", "write design to BTOR file") { } virtual void help() { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" write_btor [filename]\n"); log("\n"); log("Write the current design to an BTOR file.\n"); } virtual void execute(FILE *&f, std::string filename, std::vector args, RTLIL::Design *design) { std::string top_module_name; std::string buf_type, buf_in, buf_out; std::string true_type, true_out; std::string false_type, false_out; BtorDumperConfig config; log_header("Executing BTOR backend.\n"); size_t argidx=1; extra_args(f, filename, args, argidx); if (top_module_name.empty()) for (auto & mod_it:design->modules_) if (mod_it.second->get_bool_attribute("\\top")) top_module_name = mod_it.first; fprintf(f, "; Generated by %s\n", yosys_version_str); fprintf(f, "; %s developed and maintained by Clifford Wolf \n", yosys_version_str); fprintf(f, "; BTOR Backend developed by Ahmed Irfan - Fondazione Bruno Kessler, Trento, Italy\n"); fprintf(f, ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;\n"); std::vector mod_list; for (auto module_it : design->modules_) { RTLIL::Module *module = module_it.second; if (module->get_bool_attribute("\\blackbox")) continue; if (module->processes.size() != 0) log_error("Found unmapped processes in module %s: unmapped processes are not supported in BTOR backend!\n", RTLIL::id2cstr(module->name)); if (module->name == RTLIL::escape_id(top_module_name)) { BtorDumper::dump(f, module, design, config); top_module_name.clear(); continue; } mod_list.push_back(module); } if (!top_module_name.empty()) log_error("Can't find top module `%s'!\n", top_module_name.c_str()); for (auto module : mod_list) BtorDumper::dump(f, module, design, config); } } BtorBackend;