/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Clifford Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ // [[CITE]] ABC // Berkeley Logic Synthesis and Verification Group, ABC: A System for Sequential Synthesis and Verification // http://www.eecs.berkeley.edu/~alanmi/abc/ // [[CITE]] Berkeley Logic Interchange Format (BLIF) // University of California. Berkeley. July 28, 1992 // http://www.ece.cmu.edu/~ee760/760docs/blif.pdf // [[CITE]] Kahn's Topological sorting algorithm // Kahn, Arthur B. (1962), "Topological sorting of large networks", Communications of the ACM 5 (11): 558–562, doi:10.1145/368996.369025 // http://en.wikipedia.org/wiki/Topological_sorting #define ABC_COMMAND_LIB "strash; scorr -v; ifraig -v; retime -v {D}; strash; dch -vf; map -v {D}" #define ABC_COMMAND_CTR "strash; scorr -v; ifraig -v; retime -v {D}; strash; dch -vf; map -v {D}; buffer -v; upsize -v {D}; dnsize -v {D}; stime -p" #define ABC_COMMAND_LUT "strash; scorr -v; ifraig -v; retime -v; strash; dch -vf; if -v" #define ABC_COMMAND_DFL "strash; scorr -v; ifraig -v; retime -v; strash; dch -vf; map -v" #define ABC_FAST_COMMAND_LIB "retime -v {D}; map -v {D}" #define ABC_FAST_COMMAND_CTR "retime -v {D}; map -v {D}; buffer -v; upsize -v {D}; dnsize -v {D}; stime -p" #define ABC_FAST_COMMAND_LUT "retime -v; if -v" #define ABC_FAST_COMMAND_DFL "retime -v; map -v" #include "kernel/register.h" #include "kernel/sigtools.h" #include "kernel/cost.h" #include "kernel/log.h" #include #include #include #include #include #include #ifndef _WIN32 # include # include #endif #include "blifparse.h" USING_YOSYS_NAMESPACE PRIVATE_NAMESPACE_BEGIN enum class gate_type_t { G_NONE, G_FF, G_BUF, G_NOT, G_AND, G_NAND, G_OR, G_NOR, G_XOR, G_XNOR, G_MUX, G_AOI3, G_OAI3, G_AOI4, G_OAI4 }; #define G(_name) gate_type_t::G_ ## _name struct gate_t { int id; gate_type_t type; int in1, in2, in3, in4; bool is_port; RTLIL::SigBit bit; }; int map_autoidx; SigMap assign_map; RTLIL::Module *module; std::vector signal_list; std::map signal_map; bool clk_polarity, en_polarity; RTLIL::SigSpec clk_sig, en_sig; int map_signal(RTLIL::SigBit bit, gate_type_t gate_type = G(NONE), int in1 = -1, int in2 = -1, int in3 = -1, int in4 = -1) { assign_map.apply(bit); if (signal_map.count(bit) == 0) { gate_t gate; gate.id = signal_list.size(); gate.type = G(NONE); gate.in1 = -1; gate.in2 = -1; gate.in3 = -1; gate.in4 = -1; gate.is_port = false; gate.bit = bit; signal_list.push_back(gate); signal_map[bit] = gate.id; } gate_t &gate = signal_list[signal_map[bit]]; if (gate_type != G(NONE)) gate.type = gate_type; if (in1 >= 0) gate.in1 = in1; if (in2 >= 0) gate.in2 = in2; if (in3 >= 0) gate.in3 = in3; if (in4 >= 0) gate.in4 = in4; return gate.id; } void mark_port(RTLIL::SigSpec sig) { for (auto &bit : assign_map(sig)) if (bit.wire != NULL && signal_map.count(bit) > 0) signal_list[signal_map[bit]].is_port = true; } void extract_cell(RTLIL::Cell *cell, bool keepff) { if (cell->type == "$_DFF_N_" || cell->type == "$_DFF_P_") { if (clk_polarity != (cell->type == "$_DFF_P_")) return; if (clk_sig != assign_map(cell->getPort("\\C"))) return; if (GetSize(en_sig) != 0) return; goto matching_dff; } if (cell->type == "$_DFFE_NN_" || cell->type == "$_DFFE_NP_" || cell->type == "$_DFFE_PN_" || cell->type == "$_DFFE_PP_") { if (clk_polarity != (cell->type == "$_DFFE_PN_" || cell->type == "$_DFFE_PP_")) return; if (en_polarity != (cell->type == "$_DFFE_NP_" || cell->type == "$_DFFE_PP_")) return; if (clk_sig != assign_map(cell->getPort("\\C"))) return; if (en_sig != assign_map(cell->getPort("\\E"))) return; goto matching_dff; } if (0) { matching_dff: RTLIL::SigSpec sig_d = cell->getPort("\\D"); RTLIL::SigSpec sig_q = cell->getPort("\\Q"); if (keepff) for (auto &c : sig_q.chunks()) if (c.wire != NULL) c.wire->attributes["\\keep"] = 1; assign_map.apply(sig_d); assign_map.apply(sig_q); map_signal(sig_q, G(FF), map_signal(sig_d)); module->remove(cell); return; } if (cell->type.in("$_BUF_", "$_NOT_")) { RTLIL::SigSpec sig_a = cell->getPort("\\A"); RTLIL::SigSpec sig_y = cell->getPort("\\Y"); assign_map.apply(sig_a); assign_map.apply(sig_y); map_signal(sig_y, cell->type == "$_BUF_" ? G(BUF) : G(NOT), map_signal(sig_a)); module->remove(cell); return; } if (cell->type.in("$_AND_", "$_NAND_", "$_OR_", "$_NOR_", "$_XOR_", "$_XNOR_")) { RTLIL::SigSpec sig_a = cell->getPort("\\A"); RTLIL::SigSpec sig_b = cell->getPort("\\B"); RTLIL::SigSpec sig_y = cell->getPort("\\Y"); assign_map.apply(sig_a); assign_map.apply(sig_b); assign_map.apply(sig_y); int mapped_a = map_signal(sig_a); int mapped_b = map_signal(sig_b); if (cell->type == "$_AND_") map_signal(sig_y, G(AND), mapped_a, mapped_b); else if (cell->type == "$_NAND_") map_signal(sig_y, G(NAND), mapped_a, mapped_b); else if (cell->type == "$_OR_") map_signal(sig_y, G(OR), mapped_a, mapped_b); else if (cell->type == "$_NOR_") map_signal(sig_y, G(NOR), mapped_a, mapped_b); else if (cell->type == "$_XOR_") map_signal(sig_y, G(XOR), mapped_a, mapped_b); else if (cell->type == "$_XNOR_") map_signal(sig_y, G(XNOR), mapped_a, mapped_b); else log_abort(); module->remove(cell); return; } if (cell->type == "$_MUX_") { RTLIL::SigSpec sig_a = cell->getPort("\\A"); RTLIL::SigSpec sig_b = cell->getPort("\\B"); RTLIL::SigSpec sig_s = cell->getPort("\\S"); RTLIL::SigSpec sig_y = cell->getPort("\\Y"); assign_map.apply(sig_a); assign_map.apply(sig_b); assign_map.apply(sig_s); assign_map.apply(sig_y); int mapped_a = map_signal(sig_a); int mapped_b = map_signal(sig_b); int mapped_s = map_signal(sig_s); map_signal(sig_y, G(MUX), mapped_a, mapped_b, mapped_s); module->remove(cell); return; } if (cell->type.in("$_AOI3_", "$_OAI3_")) { RTLIL::SigSpec sig_a = cell->getPort("\\A"); RTLIL::SigSpec sig_b = cell->getPort("\\B"); RTLIL::SigSpec sig_c = cell->getPort("\\C"); RTLIL::SigSpec sig_y = cell->getPort("\\Y"); assign_map.apply(sig_a); assign_map.apply(sig_b); assign_map.apply(sig_c); assign_map.apply(sig_y); int mapped_a = map_signal(sig_a); int mapped_b = map_signal(sig_b); int mapped_c = map_signal(sig_c); map_signal(sig_y, cell->type == "$_AOI3_" ? G(AOI3) : G(OAI3), mapped_a, mapped_b, mapped_c); module->remove(cell); return; } if (cell->type.in("$_AOI4_", "$_OAI4_")) { RTLIL::SigSpec sig_a = cell->getPort("\\A"); RTLIL::SigSpec sig_b = cell->getPort("\\B"); RTLIL::SigSpec sig_c = cell->getPort("\\C"); RTLIL::SigSpec sig_d = cell->getPort("\\D"); RTLIL::SigSpec sig_y = cell->getPort("\\Y"); assign_map.apply(sig_a); assign_map.apply(sig_b); assign_map.apply(sig_c); assign_map.apply(sig_d); assign_map.apply(sig_y); int mapped_a = map_signal(sig_a); int mapped_b = map_signal(sig_b); int mapped_c = map_signal(sig_c); int mapped_d = map_signal(sig_d); map_signal(sig_y, cell->type == "$_AOI4_" ? G(AOI4) : G(OAI4), mapped_a, mapped_b, mapped_c, mapped_d); module->remove(cell); return; } } std::string remap_name(RTLIL::IdString abc_name) { std::stringstream sstr; sstr << "$abc$" << map_autoidx << "$" << abc_name.substr(1); return sstr.str(); } void dump_loop_graph(FILE *f, int &nr, std::map> &edges, std::set &workpool, std::vector &in_counts) { if (f == NULL) return; log("Dumping loop state graph to slide %d.\n", ++nr); fprintf(f, "digraph \"slide%d\" {\n", nr); fprintf(f, " label=\"slide%d\";\n", nr); fprintf(f, " rankdir=\"TD\";\n"); std::set nodes; for (auto &e : edges) { nodes.insert(e.first); for (auto n : e.second) nodes.insert(n); } for (auto n : nodes) fprintf(f, " n%d [label=\"%s\\nid=%d, count=%d\"%s];\n", n, log_signal(signal_list[n].bit), n, in_counts[n], workpool.count(n) ? ", shape=box" : ""); for (auto &e : edges) for (auto n : e.second) fprintf(f, " n%d -> n%d;\n", e.first, n); fprintf(f, "}\n"); } void handle_loops() { // http://en.wikipedia.org/wiki/Topological_sorting // (Kahn, Arthur B. (1962), "Topological sorting of large networks") std::map> edges; std::vector in_edges_count(signal_list.size()); std::set workpool; FILE *dot_f = NULL; int dot_nr = 0; // uncomment for troubleshooting the loop detection code // dot_f = fopen("test.dot", "w"); for (auto &g : signal_list) { if (g.type == G(NONE) || g.type == G(FF)) { workpool.insert(g.id); } else { if (g.in1 >= 0) { edges[g.in1].insert(g.id); in_edges_count[g.id]++; } if (g.in2 >= 0 && g.in2 != g.in1) { edges[g.in2].insert(g.id); in_edges_count[g.id]++; } if (g.in3 >= 0 && g.in3 != g.in2 && g.in3 != g.in1) { edges[g.in3].insert(g.id); in_edges_count[g.id]++; } if (g.in4 >= 0 && g.in4 != g.in3 && g.in4 != g.in2 && g.in4 != g.in1) { edges[g.in4].insert(g.id); in_edges_count[g.id]++; } } } dump_loop_graph(dot_f, dot_nr, edges, workpool, in_edges_count); while (workpool.size() > 0) { int id = *workpool.begin(); workpool.erase(id); // log("Removing non-loop node %d from graph: %s\n", id, log_signal(signal_list[id].bit)); for (int id2 : edges[id]) { log_assert(in_edges_count[id2] > 0); if (--in_edges_count[id2] == 0) workpool.insert(id2); } edges.erase(id); dump_loop_graph(dot_f, dot_nr, edges, workpool, in_edges_count); while (workpool.size() == 0) { if (edges.size() == 0) break; int id1 = edges.begin()->first; for (auto &edge_it : edges) { int id2 = edge_it.first; RTLIL::Wire *w1 = signal_list[id1].bit.wire; RTLIL::Wire *w2 = signal_list[id2].bit.wire; if (w1 == NULL) id1 = id2; else if (w2 == NULL) continue; else if (w1->name[0] == '$' && w2->name[0] == '\\') id1 = id2; else if (w1->name[0] == '\\' && w2->name[0] == '$') continue; else if (edges[id1].size() < edges[id2].size()) id1 = id2; else if (edges[id1].size() > edges[id2].size()) continue; else if (w2->name.str() < w1->name.str()) id1 = id2; } if (edges[id1].size() == 0) { edges.erase(id1); continue; } log_assert(signal_list[id1].bit.wire != NULL); std::stringstream sstr; sstr << "$abcloop$" << (autoidx++); RTLIL::Wire *wire = module->addWire(sstr.str()); bool first_line = true; for (int id2 : edges[id1]) { if (first_line) log("Breaking loop using new signal %s: %s -> %s\n", log_signal(RTLIL::SigSpec(wire)), log_signal(signal_list[id1].bit), log_signal(signal_list[id2].bit)); else log(" %*s %s -> %s\n", int(strlen(log_signal(RTLIL::SigSpec(wire)))), "", log_signal(signal_list[id1].bit), log_signal(signal_list[id2].bit)); first_line = false; } int id3 = map_signal(RTLIL::SigSpec(wire)); signal_list[id1].is_port = true; signal_list[id3].is_port = true; log_assert(id3 == int(in_edges_count.size())); in_edges_count.push_back(0); workpool.insert(id3); for (int id2 : edges[id1]) { if (signal_list[id2].in1 == id1) signal_list[id2].in1 = id3; if (signal_list[id2].in2 == id1) signal_list[id2].in2 = id3; if (signal_list[id2].in3 == id1) signal_list[id2].in3 = id3; if (signal_list[id2].in4 == id1) signal_list[id2].in4 = id3; } edges[id1].swap(edges[id3]); module->connect(RTLIL::SigSig(signal_list[id3].bit, signal_list[id1].bit)); dump_loop_graph(dot_f, dot_nr, edges, workpool, in_edges_count); } } if (dot_f != NULL) fclose(dot_f); } std::string add_echos_to_abc_cmd(std::string str) { std::string new_str, token; for (size_t i = 0; i < str.size(); i++) { token += str[i]; if (str[i] == ';') { while (i+1 < str.size() && str[i+1] == ' ') i++; if (!new_str.empty()) new_str += "echo; "; new_str += "echo + " + token + " " + token + " "; token.clear(); } } if (!token.empty()) { if (!new_str.empty()) new_str += "echo; echo + " + token + "; "; new_str += token; } return new_str; } std::string fold_abc_cmd(std::string str) { std::string token, new_str = " "; int char_counter = 10; for (size_t i = 0; i <= str.size(); i++) { if (i < str.size()) token += str[i]; if (i == str.size() || str[i] == ';') { if (char_counter + token.size() > 75) new_str += "\n ", char_counter = 14; new_str += token, char_counter += token.size(); token.clear(); } } return new_str; } struct abc_output_filter { bool got_cr; int escape_seq_state; std::string linebuf; abc_output_filter() { got_cr = false; escape_seq_state = 0; } void next_char(char ch) { if (escape_seq_state == 0 && ch == '\033') { escape_seq_state = 1; return; } if (escape_seq_state == 1) { escape_seq_state = ch == '[' ? 2 : 0; return; } if (escape_seq_state == 2) { if ((ch < '0' || '9' < ch) && ch != ';') escape_seq_state = 0; return; } escape_seq_state = 0; if (ch == '\r') { got_cr = true; return; } if (ch == '\n') { log("ABC: %s\n", linebuf.c_str()); got_cr = false, linebuf.clear(); return; } if (got_cr) got_cr = false, linebuf.clear(); linebuf += ch; } void next_line(const std::string &line) { for (char ch : line) next_char(ch); } }; void abc_module(RTLIL::Design *design, RTLIL::Module *current_module, std::string script_file, std::string exe_file, std::string liberty_file, std::string constr_file, bool cleanup, int lut_mode, bool dff_mode, std::string clk_str, bool keepff, std::string delay_target, bool fast_mode) { module = current_module; map_autoidx = autoidx++; signal_map.clear(); signal_list.clear(); assign_map.set(module); clk_polarity = true; clk_sig = RTLIL::SigSpec(); en_polarity = true; en_sig = RTLIL::SigSpec(); std::string tempdir_name = "/tmp/yosys-abc-XXXXXX"; if (!cleanup) tempdir_name[0] = tempdir_name[4] = '_'; tempdir_name = make_temp_dir(tempdir_name); log_header("Extracting gate netlist of module `%s' to `%s/input.blif'..\n", module->name.c_str(), tempdir_name.c_str()); std::string abc_script = stringf("read_blif %s/input.blif; ", tempdir_name.c_str()); if (!liberty_file.empty()) { abc_script += stringf("read_lib -w %s; ", liberty_file.c_str()); if (!constr_file.empty()) abc_script += stringf("read_constr -v %s; ", constr_file.c_str()); } else if (lut_mode) abc_script += stringf("read_lut %s/lutdefs.txt; ", tempdir_name.c_str()); else abc_script += stringf("read_library %s/stdcells.genlib; ", tempdir_name.c_str()); if (!script_file.empty()) { if (script_file[0] == '+') { for (size_t i = 1; i < script_file.size(); i++) if (script_file[i] == '\'') abc_script += "'\\''"; else if (script_file[i] == ',') abc_script += " "; else abc_script += script_file[i]; } else abc_script += stringf("source %s", script_file.c_str()); } else if (lut_mode) abc_script += fast_mode ? ABC_FAST_COMMAND_LUT : ABC_COMMAND_LUT; else if (!liberty_file.empty()) abc_script += constr_file.empty() ? (fast_mode ? ABC_FAST_COMMAND_LIB : ABC_COMMAND_LIB) : (fast_mode ? ABC_FAST_COMMAND_CTR : ABC_COMMAND_CTR); else abc_script += fast_mode ? ABC_FAST_COMMAND_DFL : ABC_COMMAND_DFL; for (size_t pos = abc_script.find("{D}"); pos != std::string::npos; pos = abc_script.find("{D}", pos)) abc_script = abc_script.substr(0, pos) + delay_target + abc_script.substr(pos+3); abc_script += stringf("; write_blif %s/output.blif", tempdir_name.c_str()); abc_script = add_echos_to_abc_cmd(abc_script); for (size_t i = 0; i+1 < abc_script.size(); i++) if (abc_script[i] == ';' && abc_script[i+1] == ' ') abc_script[i+1] = '\n'; FILE *f = fopen(stringf("%s/abc.script", tempdir_name.c_str()).c_str(), "wt"); fprintf(f, "%s\n", abc_script.c_str()); fclose(f); if (clk_str.empty()) { if (clk_str.find(',') != std::string::npos) { int pos = clk_str.find(','); std::string en_str = clk_str.substr(pos+1); clk_str = clk_str.substr(0, pos); if (en_str[0] == '!') { en_polarity = false; en_str = en_str.substr(1); } if (module->wires_.count(RTLIL::escape_id(en_str)) != 0) en_sig = assign_map(RTLIL::SigSpec(module->wires_.at(RTLIL::escape_id(en_str)), 0)); } if (clk_str[0] == '!') { clk_polarity = false; clk_str = clk_str.substr(1); } if (module->wires_.count(RTLIL::escape_id(clk_str)) != 0) clk_sig = assign_map(RTLIL::SigSpec(module->wires_.at(RTLIL::escape_id(clk_str)), 0)); } if (dff_mode && clk_sig.size() == 0) { int best_dff_counter = 0; typedef std::tuple clkdomain_t; std::map dff_counters; for (auto &it : module->cells_) { RTLIL::Cell *cell = it.second; clkdomain_t key; if (cell->type == "$_DFF_N_" || cell->type == "$_DFF_P_") { key = clkdomain_t(cell->type == "$_DFF_P_", assign_map(cell->getPort("\\C")), true, RTLIL::SigSpec()); } else if (cell->type == "$_DFFE_NN_" || cell->type == "$_DFFE_NP_" || cell->type == "$_DFFE_PN_" || cell->type == "$_DFFE_PP_") { bool this_clk_pol = cell->type == "$_DFFE_PN_" || cell->type == "$_DFFE_PP_"; bool this_en_pol = cell->type == "$_DFFE_NP_" || cell->type == "$_DFFE_PP_"; key = clkdomain_t(this_clk_pol, assign_map(cell->getPort("\\C")), this_en_pol, assign_map(cell->getPort("\\E"))); } else continue; if (++dff_counters[key] > best_dff_counter) { best_dff_counter = dff_counters[key]; clk_polarity = std::get<0>(key); clk_sig = std::get<1>(key); en_polarity = std::get<2>(key); en_sig = std::get<3>(key); } } } if (dff_mode || !clk_str.empty()) { if (clk_sig.size() == 0) log("No (matching) clock domain found. Not extracting any FF cells.\n"); else { log("Found (matching) %s clock domain: %s", clk_polarity ? "posedge" : "negedge", log_signal(clk_sig)); if (en_sig.size() != 0) log(", enabled by %s%s", en_polarity ? "" : "!", log_signal(en_sig)); log("\n"); } } std::vector cells; cells.reserve(module->cells_.size()); for (auto &it : module->cells_) if (design->selected(current_module, it.second)) cells.push_back(it.second); for (auto c : cells) extract_cell(c, keepff); for (auto &wire_it : module->wires_) { if (wire_it.second->port_id > 0 || wire_it.second->get_bool_attribute("\\keep")) mark_port(RTLIL::SigSpec(wire_it.second)); } for (auto &cell_it : module->cells_) for (auto &port_it : cell_it.second->connections()) mark_port(port_it.second); if (clk_sig.size() != 0) mark_port(clk_sig); if (en_sig.size() != 0) mark_port(en_sig); handle_loops(); std::string buffer = stringf("%s/input.blif", tempdir_name.c_str()); f = fopen(buffer.c_str(), "wt"); if (f == NULL) log_error("Opening %s for writing failed: %s\n", buffer.c_str(), strerror(errno)); fprintf(f, ".model netlist\n"); int count_input = 0; fprintf(f, ".inputs"); for (auto &si : signal_list) { if (!si.is_port || si.type != G(NONE)) continue; fprintf(f, " n%d", si.id); count_input++; } if (count_input == 0) fprintf(f, " dummy_input\n"); fprintf(f, "\n"); int count_output = 0; fprintf(f, ".outputs"); for (auto &si : signal_list) { if (!si.is_port || si.type == G(NONE)) continue; fprintf(f, " n%d", si.id); count_output++; } fprintf(f, "\n"); for (auto &si : signal_list) fprintf(f, "# n%-5d %s\n", si.id, log_signal(si.bit)); for (auto &si : signal_list) { if (si.bit.wire == NULL) { fprintf(f, ".names n%d\n", si.id); if (si.bit == RTLIL::State::S1) fprintf(f, "1\n"); } } int count_gates = 0; for (auto &si : signal_list) { if (si.type == G(BUF)) { fprintf(f, ".names n%d n%d\n", si.in1, si.id); fprintf(f, "1 1\n"); } else if (si.type == G(NOT)) { fprintf(f, ".names n%d n%d\n", si.in1, si.id); fprintf(f, "0 1\n"); } else if (si.type == G(AND)) { fprintf(f, ".names n%d n%d n%d\n", si.in1, si.in2, si.id); fprintf(f, "11 1\n"); } else if (si.type == G(NAND)) { fprintf(f, ".names n%d n%d n%d\n", si.in1, si.in2, si.id); fprintf(f, "0- 1\n"); fprintf(f, "-0 1\n"); } else if (si.type == G(OR)) { fprintf(f, ".names n%d n%d n%d\n", si.in1, si.in2, si.id); fprintf(f, "-1 1\n"); fprintf(f, "1- 1\n"); } else if (si.type == G(NOR)) { fprintf(f, ".names n%d n%d n%d\n", si.in1, si.in2, si.id); fprintf(f, "00 1\n"); } else if (si.type == G(XOR)) { fprintf(f, ".names n%d n%d n%d\n", si.in1, si.in2, si.id); fprintf(f, "01 1\n"); fprintf(f, "10 1\n"); } else if (si.type == G(XNOR)) { fprintf(f, ".names n%d n%d n%d\n", si.in1, si.in2, si.id); fprintf(f, "00 1\n"); fprintf(f, "11 1\n"); } else if (si.type == G(MUX)) { fprintf(f, ".names n%d n%d n%d n%d\n", si.in1, si.in2, si.in3, si.id); fprintf(f, "1-0 1\n"); fprintf(f, "-11 1\n"); } else if (si.type == G(AOI3)) { fprintf(f, ".names n%d n%d n%d n%d\n", si.in1, si.in2, si.in3, si.id); fprintf(f, "-00 1\n"); fprintf(f, "0-0 1\n"); } else if (si.type == G(OAI3)) { fprintf(f, ".names n%d n%d n%d n%d\n", si.in1, si.in2, si.in3, si.id); fprintf(f, "00- 1\n"); fprintf(f, "--0 1\n"); } else if (si.type == G(AOI4)) { fprintf(f, ".names n%d n%d n%d n%d n%d\n", si.in1, si.in2, si.in3, si.in4, si.id); fprintf(f, "-0-0 1\n"); fprintf(f, "-00- 1\n"); fprintf(f, "0--0 1\n"); fprintf(f, "0-0- 1\n"); } else if (si.type == G(OAI4)) { fprintf(f, ".names n%d n%d n%d n%d n%d\n", si.in1, si.in2, si.in3, si.in4, si.id); fprintf(f, "00-- 1\n"); fprintf(f, "--00 1\n"); } else if (si.type == G(FF)) { fprintf(f, ".latch n%d n%d\n", si.in1, si.id); } else if (si.type != G(NONE)) log_abort(); if (si.type != G(NONE)) count_gates++; } fprintf(f, ".end\n"); fclose(f); log("Extracted %d gates and %d wires to a netlist network with %d inputs and %d outputs.\n", count_gates, GetSize(signal_list), count_input, count_output); log_push(); if (count_output > 0) { log_header("Executing ABC.\n"); buffer = stringf("%s/stdcells.genlib", tempdir_name.c_str()); f = fopen(buffer.c_str(), "wt"); if (f == NULL) log_error("Opening %s for writing failed: %s\n", buffer.c_str(), strerror(errno)); fprintf(f, "GATE ZERO 1 Y=CONST0;\n"); fprintf(f, "GATE ONE 1 Y=CONST1;\n"); fprintf(f, "GATE BUF %d Y=A; PIN * NONINV 1 999 1 0 1 0\n", get_cell_cost("$_BUF_")); fprintf(f, "GATE NOT %d Y=!A; PIN * INV 1 999 1 0 1 0\n", get_cell_cost("$_NOT_")); fprintf(f, "GATE AND %d Y=A*B; PIN * NONINV 1 999 1 0 1 0\n", get_cell_cost("$_AND_")); fprintf(f, "GATE NAND %d Y=!(A*B); PIN * INV 1 999 1 0 1 0\n", get_cell_cost("$_NAND_")); fprintf(f, "GATE OR %d Y=A+B; PIN * NONINV 1 999 1 0 1 0\n", get_cell_cost("$_OR_")); fprintf(f, "GATE NOR %d Y=!(A+B); PIN * INV 1 999 1 0 1 0\n", get_cell_cost("$_NOR_")); fprintf(f, "GATE XOR %d Y=(A*!B)+(!A*B); PIN * UNKNOWN 1 999 1 0 1 0\n", get_cell_cost("$_XOR_")); fprintf(f, "GATE XNOR %d Y=(A*B)+(!A*!B); PIN * UNKNOWN 1 999 1 0 1 0\n", get_cell_cost("$_XNOR_")); fprintf(f, "GATE AOI3 %d Y=!((A*B)+C); PIN * INV 1 999 1 0 1 0\n", get_cell_cost("$_AOI3_")); fprintf(f, "GATE OAI3 %d Y=!((A+B)*C); PIN * INV 1 999 1 0 1 0\n", get_cell_cost("$_OAI3_")); fprintf(f, "GATE AOI4 %d Y=!((A*B)+(C*D)); PIN * INV 1 999 1 0 1 0\n", get_cell_cost("$_AOI4_")); fprintf(f, "GATE OAI4 %d Y=!((A+B)*(C+D)); PIN * INV 1 999 1 0 1 0\n", get_cell_cost("$_OAI4_")); fprintf(f, "GATE MUX %d Y=(A*B)+(S*B)+(!S*A); PIN * UNKNOWN 1 999 1 0 1 0\n", get_cell_cost("$_MUX_")); fclose(f); if (lut_mode) { buffer = stringf("%s/lutdefs.txt", tempdir_name.c_str()); f = fopen(buffer.c_str(), "wt"); if (f == NULL) log_error("Opening %s for writing failed: %s\n", buffer.c_str(), strerror(errno)); for (int i = 0; i < lut_mode; i++) fprintf(f, "%d 1.00 1.00\n", i+1); fclose(f); } buffer = stringf("%s -s -f %s/abc.script 2>&1", exe_file.c_str(), tempdir_name.c_str()); log("Running ABC command: %s\n", buffer.c_str()); abc_output_filter filt; int ret = run_command(buffer, std::bind(&abc_output_filter::next_line, filt, std::placeholders::_1)); if (ret != 0) log_error("ABC: execution of command \"%s\" failed: return code %d.\n", buffer.c_str(), ret); buffer = stringf("%s/%s", tempdir_name.c_str(), "output.blif"); f = fopen(buffer.c_str(), "rt"); if (f == NULL) log_error("Can't open ABC output file `%s'.\n", buffer.c_str()); bool builtin_lib = liberty_file.empty() && script_file.empty() && !lut_mode; RTLIL::Design *mapped_design = abc_parse_blif(f, builtin_lib ? "\\DFF" : "\\_dff_"); fclose(f); log_header("Re-integrating ABC results.\n"); RTLIL::Module *mapped_mod = mapped_design->modules_["\\netlist"]; if (mapped_mod == NULL) log_error("ABC output file does not contain a module `netlist'.\n"); for (auto &it : mapped_mod->wires_) { RTLIL::Wire *w = it.second; RTLIL::Wire *wire = module->addWire(remap_name(w->name)); design->select(module, wire); } std::map cell_stats; if (builtin_lib) { for (auto &it : mapped_mod->cells_) { RTLIL::Cell *c = it.second; cell_stats[RTLIL::unescape_id(c->type)]++; if (c->type == "\\ZERO" || c->type == "\\ONE") { RTLIL::SigSig conn; conn.first = RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\Y").as_wire()->name)]); conn.second = RTLIL::SigSpec(c->type == "\\ZERO" ? 0 : 1, 1); module->connect(conn); continue; } if (c->type == "\\BUF") { RTLIL::SigSig conn; conn.first = RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\Y").as_wire()->name)]); conn.second = RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\A").as_wire()->name)]); module->connect(conn); continue; } if (c->type == "\\NOT") { RTLIL::Cell *cell = module->addCell(remap_name(c->name), "$_NOT_"); cell->setPort("\\A", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\A").as_wire()->name)])); cell->setPort("\\Y", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\Y").as_wire()->name)])); design->select(module, cell); continue; } if (c->type == "\\AND" || c->type == "\\OR" || c->type == "\\XOR" || c->type == "\\NAND" || c->type == "\\NOR" || c->type == "\\XNOR") { RTLIL::Cell *cell = module->addCell(remap_name(c->name), "$_" + c->type.substr(1) + "_"); cell->setPort("\\A", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\A").as_wire()->name)])); cell->setPort("\\B", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\B").as_wire()->name)])); cell->setPort("\\Y", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\Y").as_wire()->name)])); design->select(module, cell); continue; } if (c->type == "\\MUX") { RTLIL::Cell *cell = module->addCell(remap_name(c->name), "$_MUX_"); cell->setPort("\\A", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\A").as_wire()->name)])); cell->setPort("\\B", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\B").as_wire()->name)])); cell->setPort("\\S", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\S").as_wire()->name)])); cell->setPort("\\Y", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\Y").as_wire()->name)])); design->select(module, cell); continue; } if (c->type == "\\AOI3" || c->type == "\\OAI3") { RTLIL::Cell *cell = module->addCell(remap_name(c->name), "$_" + c->type.substr(1) + "_"); cell->setPort("\\A", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\A").as_wire()->name)])); cell->setPort("\\B", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\B").as_wire()->name)])); cell->setPort("\\C", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\C").as_wire()->name)])); cell->setPort("\\Y", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\Y").as_wire()->name)])); design->select(module, cell); continue; } if (c->type == "\\AOI4" || c->type == "\\OAI4") { RTLIL::Cell *cell = module->addCell(remap_name(c->name), "$_" + c->type.substr(1) + "_"); cell->setPort("\\A", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\A").as_wire()->name)])); cell->setPort("\\B", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\B").as_wire()->name)])); cell->setPort("\\C", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\C").as_wire()->name)])); cell->setPort("\\D", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\D").as_wire()->name)])); cell->setPort("\\Y", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\Y").as_wire()->name)])); design->select(module, cell); continue; } if (c->type == "\\DFF") { log_assert(clk_sig.size() == 1); RTLIL::Cell *cell; if (en_sig.size() == 0) { cell = module->addCell(remap_name(c->name), clk_polarity ? "$_DFF_P_" : "$_DFF_N_"); } else { log_assert(en_sig.size() == 1); cell = module->addCell(remap_name(c->name), stringf("$_DFFE_%c%c_", clk_polarity ? 'P' : 'N', en_polarity ? 'P' : 'N')); cell->setPort("\\E", en_sig); } cell->setPort("\\D", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\D").as_wire()->name)])); cell->setPort("\\Q", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\Q").as_wire()->name)])); cell->setPort("\\C", clk_sig); design->select(module, cell); continue; } log_abort(); } } else { for (auto &it : mapped_mod->cells_) { RTLIL::Cell *c = it.second; cell_stats[RTLIL::unescape_id(c->type)]++; if (c->type == "\\_const0_" || c->type == "\\_const1_") { RTLIL::SigSig conn; conn.first = RTLIL::SigSpec(module->wires_[remap_name(c->connections().begin()->second.as_wire()->name)]); conn.second = RTLIL::SigSpec(c->type == "\\_const0_" ? 0 : 1, 1); module->connect(conn); continue; } if (c->type == "\\_dff_") { log_assert(clk_sig.size() == 1); RTLIL::Cell *cell; if (en_sig.size() == 0) { cell = module->addCell(remap_name(c->name), clk_polarity ? "$_DFF_P_" : "$_DFF_N_"); } else { log_assert(en_sig.size() == 1); cell = module->addCell(remap_name(c->name), stringf("$_DFFE_%c%c_", clk_polarity ? 'P' : 'N', en_polarity ? 'P' : 'N')); cell->setPort("\\E", en_sig); } cell->setPort("\\D", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\D").as_wire()->name)])); cell->setPort("\\Q", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\Q").as_wire()->name)])); cell->setPort("\\C", clk_sig); design->select(module, cell); continue; } RTLIL::Cell *cell = module->addCell(remap_name(c->name), c->type); cell->parameters = c->parameters; for (auto &conn : c->connections()) { RTLIL::SigSpec newsig; for (auto &c : conn.second.chunks()) { if (c.width == 0) continue; log_assert(c.width == 1); newsig.append(module->wires_[remap_name(c.wire->name)]); } cell->setPort(conn.first, newsig); } design->select(module, cell); } } for (auto conn : mapped_mod->connections()) { if (!conn.first.is_fully_const()) conn.first = RTLIL::SigSpec(module->wires_[remap_name(conn.first.as_wire()->name)]); if (!conn.second.is_fully_const()) conn.second = RTLIL::SigSpec(module->wires_[remap_name(conn.second.as_wire()->name)]); module->connect(conn); } for (auto &it : cell_stats) log("ABC RESULTS: %15s cells: %8d\n", it.first.c_str(), it.second); int in_wires = 0, out_wires = 0; for (auto &si : signal_list) if (si.is_port) { char buffer[100]; snprintf(buffer, 100, "\\n%d", si.id); RTLIL::SigSig conn; if (si.type != G(NONE)) { conn.first = si.bit; conn.second = RTLIL::SigSpec(module->wires_[remap_name(buffer)]); out_wires++; } else { conn.first = RTLIL::SigSpec(module->wires_[remap_name(buffer)]); conn.second = si.bit; in_wires++; } module->connect(conn); } log("ABC RESULTS: internal signals: %8d\n", int(signal_list.size()) - in_wires - out_wires); log("ABC RESULTS: input signals: %8d\n", in_wires); log("ABC RESULTS: output signals: %8d\n", out_wires); delete mapped_design; } else { log("Don't call ABC as there is nothing to map.\n"); } if (cleanup) { log_header("Removing temp directory `%s':\n", tempdir_name.c_str()); remove_directory(tempdir_name); } log_pop(); } struct AbcPass : public Pass { AbcPass() : Pass("abc", "use ABC for technology mapping") { } virtual void help() { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" abc [options] [selection]\n"); log("\n"); log("This pass uses the ABC tool [1] for technology mapping of yosys's internal gate\n"); log("library to a target architecture.\n"); log("\n"); log(" -exe \n"); log(" use the specified command name instead of \"yosys-abc\" to execute ABC.\n"); log(" This can e.g. be used to call a specific version of ABC or a wrapper.\n"); log("\n"); log(" -script \n"); log(" use the specified ABC script file instead of the default script.\n"); log("\n"); log(" if starts with a plus sign (+), then the rest of the filename\n"); log(" string is interprated as the command string to be passed to ABC. the\n"); log(" leading plus sign is removed and all commas (,) in the string are\n"); log(" replaced with blanks before the string is passed to ABC.\n"); log("\n"); log(" if no -script parameter is given, the following scripts are used:\n"); log("\n"); log(" for -liberty without -constr:\n"); log("%s\n", fold_abc_cmd(ABC_COMMAND_LIB).c_str()); log("\n"); log(" for -liberty with -constr:\n"); log("%s\n", fold_abc_cmd(ABC_COMMAND_CTR).c_str()); log("\n"); log(" for -lut:\n"); log("%s\n", fold_abc_cmd(ABC_COMMAND_LUT).c_str()); log("\n"); log(" otherwise:\n"); log("%s\n", fold_abc_cmd(ABC_COMMAND_DFL).c_str()); log("\n"); log(" -fast\n"); log(" use different default scripts that are slightly faster (at the cost\n"); log(" of output quality):\n"); log("\n"); log(" for -liberty without -constr:\n"); log("%s\n", fold_abc_cmd(ABC_FAST_COMMAND_LIB).c_str()); log("\n"); log(" for -liberty with -constr:\n"); log("%s\n", fold_abc_cmd(ABC_FAST_COMMAND_CTR).c_str()); log("\n"); log(" for -lut:\n"); log("%s\n", fold_abc_cmd(ABC_FAST_COMMAND_LUT).c_str()); log("\n"); log(" otherwise:\n"); log("%s\n", fold_abc_cmd(ABC_FAST_COMMAND_DFL).c_str()); log("\n"); log(" -liberty \n"); log(" generate netlists for the specified cell library (using the liberty\n"); log(" file format).\n"); log("\n"); log(" -constr \n"); log(" pass this file with timing constraints to ABC. use with -liberty.\n"); log("\n"); log(" a constr file contains two lines:\n"); log(" set_driving_cell \n"); log(" set_load \n"); log("\n"); log(" the set_driving_cell statement defines which cell type is assumed to\n"); log(" drive the primary inputs and the set_load statement sets the load in\n"); log(" femtofarads for each primary output.\n"); log("\n"); log(" -D \n"); log(" set delay target. the string {D} in the default scripts above is\n"); log(" replaced by this option when used, and an empty string otherwise.\n"); log("\n"); log(" -lut \n"); log(" generate netlist using luts of (max) the specified width.\n"); log("\n"); log(" -dff\n"); log(" also pass $_DFF_?_ cells through ABC (only one clock domain, if many\n"); log(" clock domains are present in a module, the one with the largest number\n"); log(" of $_DFF_?_ cells in it is used)\n"); log("\n"); log(" -clk [!]\n"); log(" use the specified clock domain. (when this option is used in combination\n"); log(" with -dff, then it falls back to the automatic dection of clock domain\n"); log(" if the specified clock is not found in a module.)\n"); log("\n"); log(" -keepff\n"); log(" set the \"keep\" attribute on flip-flop output wires. (and thus preserve\n"); log(" them, for example for equivialence checking.)\n"); log("\n"); log(" -nocleanup\n"); log(" when this option is used, the temporary files created by this pass\n"); log(" are not removed. this is useful for debugging.\n"); log("\n"); log("When neither -liberty nor -lut is used, the Yosys standard cell library is\n"); log("loaded into ABC before the ABC script is executed.\n"); log("\n"); log("This pass does not operate on modules with unprocessed processes in it.\n"); log("(I.e. the 'proc' pass should be used first to convert processes to netlists.)\n"); log("\n"); log("[1] http://www.eecs.berkeley.edu/~alanmi/abc/\n"); log("\n"); } virtual void execute(std::vector args, RTLIL::Design *design) { log_header("Executing ABC pass (technology mapping using ABC).\n"); log_push(); std::string exe_file = proc_self_dirname() + "yosys-abc"; std::string script_file, liberty_file, constr_file, clk_str, delay_target; bool fast_mode = false, dff_mode = false, keepff = false, cleanup = true; int lut_mode = 0; #ifdef _WIN32 if (!check_file_exists(exe_file + ".exe") && check_file_exists(proc_self_dirname() + "..\\yosys-abc.exe")) exe_file = proc_self_dirname() + "..\\yosys-abc"; #endif size_t argidx; char pwd [PATH_MAX]; if (!getcwd(pwd, sizeof(pwd))) { log_cmd_error("getcwd failed: %s\n", strerror(errno)); log_abort(); } for (argidx = 1; argidx < args.size(); argidx++) { std::string arg = args[argidx]; if (arg == "-exe" && argidx+1 < args.size()) { exe_file = args[++argidx]; continue; } if (arg == "-script" && argidx+1 < args.size()) { script_file = args[++argidx]; if (!script_file.empty() && script_file[0] != '/' && script_file[0] != '+') script_file = std::string(pwd) + "/" + script_file; continue; } if (arg == "-liberty" && argidx+1 < args.size()) { liberty_file = args[++argidx]; if (!liberty_file.empty() && liberty_file[0] != '/') liberty_file = std::string(pwd) + "/" + liberty_file; continue; } if (arg == "-constr" && argidx+1 < args.size()) { constr_file = args[++argidx]; if (!constr_file.empty() && constr_file[0] != '/') constr_file = std::string(pwd) + "/" + constr_file; continue; } if (arg == "-D" && argidx+1 < args.size()) { delay_target = "-D " + args[++argidx]; continue; } if (arg == "-lut" && argidx+1 < args.size()) { lut_mode = atoi(args[++argidx].c_str()); continue; } if (arg == "-fast") { fast_mode = true; continue; } if (arg == "-dff") { dff_mode = true; continue; } if (arg == "-clk" && argidx+1 < args.size()) { clk_str = args[++argidx]; continue; } if (arg == "-keepff") { keepff = true; continue; } if (arg == "-nocleanup") { cleanup = false; continue; } break; } extra_args(args, argidx, design); if (lut_mode != 0 && !liberty_file.empty()) log_cmd_error("Got -lut and -liberty! This two options are exclusive.\n"); if (!constr_file.empty() && liberty_file.empty()) log_cmd_error("Got -constr but no -liberty!\n"); for (auto &mod_it : design->modules_) if (design->selected(mod_it.second)) { if (mod_it.second->processes.size() > 0) log("Skipping module %s as it contains processes.\n", mod_it.second->name.c_str()); else abc_module(design, mod_it.second, script_file, exe_file, liberty_file, constr_file, cleanup, lut_mode, dff_mode, clk_str, keepff, delay_target, fast_mode); } assign_map.clear(); signal_list.clear(); signal_map.clear(); log_pop(); } } AbcPass; PRIVATE_NAMESPACE_END