/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Clifford Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "kernel/register.h" #include "kernel/bitpattern.h" #include "kernel/log.h" #include #include #include USING_YOSYS_NAMESPACE PRIVATE_NAMESPACE_BEGIN struct SigSnippets { idict sigidx; dict bit2snippet; pool snippets; void insert(SigSpec sig) { if (sig.empty()) return; int key = sigidx(sig); if (snippets.count(key)) return; SigSpec new_sig; for (int i = 0; i < GetSize(sig); i++) { int other_key = bit2snippet.at(sig[i], -1); if (other_key < 0) { new_sig.append(sig[i]); continue; } if (!new_sig.empty()) { int new_key = sigidx(new_sig); snippets.insert(new_key); for (auto bit : new_sig) bit2snippet[bit] = new_key; new_sig = SigSpec(); } SigSpec other_sig = sigidx[other_key]; int k = 0, n = 1; while (other_sig[k] != sig[i]) { k++; log_assert(k < GetSize(other_sig)); } while (i+n < GetSize(sig) && k+n < GetSize(other_sig) && sig[i+n] == other_sig[k+n]) n++; SigSpec sig1 = other_sig.extract(0, k); SigSpec sig2 = other_sig.extract(k, n); SigSpec sig3 = other_sig.extract(k+n, GetSize(other_sig)-k-n); for (auto bit : other_sig) bit2snippet.erase(bit); snippets.erase(other_key); insert(sig1); insert(sig2); insert(sig3); i += n-1; } if (!new_sig.empty()) { int new_key = sigidx(new_sig); snippets.insert(new_key); for (auto bit : new_sig) bit2snippet[bit] = new_key; } } void insert(const RTLIL::CaseRule *cs) { for (auto &action : cs->actions) insert(action.first); for (auto sw : cs->switches) for (auto cs2 : sw->cases) insert(cs2); } }; struct SnippetSwCache { dict, hash_ptr_ops> cache; const SigSnippets *snippets; int current_snippet; bool check(RTLIL::SwitchRule *sw) { return cache[sw].count(current_snippet) != 0; } void insert(const RTLIL::CaseRule *cs, vector &sw_stack) { for (auto &action : cs->actions) for (auto bit : action.first) { int sn = snippets->bit2snippet.at(bit, -1); if (sn < 0) continue; for (auto sw : sw_stack) cache[sw].insert(sn); } for (auto sw : cs->switches) { sw_stack.push_back(sw); for (auto cs2 : sw->cases) insert(cs2, sw_stack); sw_stack.pop_back(); } } void insert(const RTLIL::CaseRule *cs) { vector sw_stack; insert(cs, sw_stack); } }; RTLIL::SigSpec gen_cmp(RTLIL::Module *mod, const RTLIL::SigSpec &signal, const std::vector &compare, RTLIL::SwitchRule *sw, bool ifxmode) { std::stringstream sstr; sstr << "$procmux$" << (autoidx++); RTLIL::Wire *cmp_wire = mod->addWire(sstr.str() + "_CMP", 0); for (auto comp : compare) { RTLIL::SigSpec sig = signal; // get rid of don't-care bits log_assert(sig.size() == comp.size()); for (int i = 0; i < comp.size(); i++) if (comp[i] == RTLIL::State::Sa) { sig.remove(i); comp.remove(i--); } if (comp.size() == 0) return RTLIL::SigSpec(); if (sig.size() == 1 && comp == RTLIL::SigSpec(1,1) && !ifxmode) { mod->connect(RTLIL::SigSig(RTLIL::SigSpec(cmp_wire, cmp_wire->width++), sig)); } else { // create compare cell RTLIL::Cell *eq_cell = mod->addCell(stringf("%s_CMP%d", sstr.str().c_str(), cmp_wire->width), ifxmode ? "$eqx" : "$eq"); eq_cell->attributes = sw->attributes; eq_cell->parameters["\\A_SIGNED"] = RTLIL::Const(0); eq_cell->parameters["\\B_SIGNED"] = RTLIL::Const(0); eq_cell->parameters["\\A_WIDTH"] = RTLIL::Const(sig.size()); eq_cell->parameters["\\B_WIDTH"] = RTLIL::Const(comp.size()); eq_cell->parameters["\\Y_WIDTH"] = RTLIL::Const(1); eq_cell->setPort("\\A", sig); eq_cell->setPort("\\B", comp); eq_cell->setPort("\\Y", RTLIL::SigSpec(cmp_wire, cmp_wire->width++)); } } RTLIL::Wire *ctrl_wire; if (cmp_wire->width == 1) { ctrl_wire = cmp_wire; } else { ctrl_wire = mod->addWire(sstr.str() + "_CTRL"); // reduce cmp vector to one logic signal RTLIL::Cell *any_cell = mod->addCell(sstr.str() + "_ANY", "$reduce_or"); any_cell->attributes = sw->attributes; any_cell->parameters["\\A_SIGNED"] = RTLIL::Const(0); any_cell->parameters["\\A_WIDTH"] = RTLIL::Const(cmp_wire->width); any_cell->parameters["\\Y_WIDTH"] = RTLIL::Const(1); any_cell->setPort("\\A", cmp_wire); any_cell->setPort("\\Y", RTLIL::SigSpec(ctrl_wire)); } return RTLIL::SigSpec(ctrl_wire); } RTLIL::SigSpec gen_mux(RTLIL::Module *mod, const RTLIL::SigSpec &signal, const std::vector &compare, RTLIL::SigSpec when_signal, RTLIL::SigSpec else_signal, RTLIL::Cell *&last_mux_cell, RTLIL::SwitchRule *sw, bool ifxmode) { log_assert(when_signal.size() == else_signal.size()); std::stringstream sstr; sstr << "$procmux$" << (autoidx++); // the trivial cases if (compare.size() == 0 || when_signal == else_signal) return when_signal; // compare results RTLIL::SigSpec ctrl_sig = gen_cmp(mod, signal, compare, sw, ifxmode); if (ctrl_sig.size() == 0) return when_signal; log_assert(ctrl_sig.size() == 1); // prepare multiplexer output signal RTLIL::Wire *result_wire = mod->addWire(sstr.str() + "_Y", when_signal.size()); // create the multiplexer itself RTLIL::Cell *mux_cell = mod->addCell(sstr.str(), "$mux"); mux_cell->attributes = sw->attributes; mux_cell->parameters["\\WIDTH"] = RTLIL::Const(when_signal.size()); mux_cell->setPort("\\A", else_signal); mux_cell->setPort("\\B", when_signal); mux_cell->setPort("\\S", ctrl_sig); mux_cell->setPort("\\Y", RTLIL::SigSpec(result_wire)); last_mux_cell = mux_cell; return RTLIL::SigSpec(result_wire); } void append_pmux(RTLIL::Module *mod, const RTLIL::SigSpec &signal, const std::vector &compare, RTLIL::SigSpec when_signal, RTLIL::Cell *last_mux_cell, RTLIL::SwitchRule *sw, bool ifxmode) { log_assert(last_mux_cell != NULL); log_assert(when_signal.size() == last_mux_cell->getPort("\\A").size()); if (when_signal == last_mux_cell->getPort("\\A")) return; RTLIL::SigSpec ctrl_sig = gen_cmp(mod, signal, compare, sw, ifxmode); log_assert(ctrl_sig.size() == 1); last_mux_cell->type = "$pmux"; RTLIL::SigSpec new_s = last_mux_cell->getPort("\\S"); new_s.append(ctrl_sig); last_mux_cell->setPort("\\S", new_s); RTLIL::SigSpec new_b = last_mux_cell->getPort("\\B"); new_b.append(when_signal); last_mux_cell->setPort("\\B", new_b); last_mux_cell->parameters["\\S_WIDTH"] = last_mux_cell->getPort("\\S").size(); } RTLIL::SigSpec signal_to_mux_tree(RTLIL::Module *mod, SnippetSwCache &swcache, dict &swpara, RTLIL::CaseRule *cs, const RTLIL::SigSpec &sig, const RTLIL::SigSpec &defval, bool ifxmode) { RTLIL::SigSpec result = defval; for (auto &action : cs->actions) { sig.replace(action.first, action.second, &result); action.first.remove2(sig, &action.second); } for (auto sw : cs->switches) { if (!swcache.check(sw)) continue; // detect groups of parallel cases std::vector pgroups(sw->cases.size()); bool is_simple_parallel_case = true; if (!sw->get_bool_attribute("\\parallel_case")) { if (!swpara.count(sw)) { pool case_values; for (size_t i = 0; i < sw->cases.size(); i++) { RTLIL::CaseRule *cs2 = sw->cases[i]; for (auto pat : cs2->compare) { if (!pat.is_fully_def()) goto not_simple_parallel_case; Const cpat = pat.as_const(); if (case_values.count(cpat)) goto not_simple_parallel_case; case_values.insert(cpat); } } if (0) not_simple_parallel_case: is_simple_parallel_case = false; swpara[sw] = is_simple_parallel_case; } else { is_simple_parallel_case = swpara.at(sw); } } if (!is_simple_parallel_case) { BitPatternPool pool(sw->signal.size()); bool extra_group_for_next_case = false; for (size_t i = 0; i < sw->cases.size(); i++) { RTLIL::CaseRule *cs2 = sw->cases[i]; if (i != 0) { pgroups[i] = pgroups[i-1]; if (extra_group_for_next_case) { pgroups[i] = pgroups[i-1]+1; extra_group_for_next_case = false; } for (auto pat : cs2->compare) if (!pat.is_fully_const() || !pool.has_all(pat)) pgroups[i] = pgroups[i-1]+1; if (cs2->compare.empty()) pgroups[i] = pgroups[i-1]+1; if (pgroups[i] != pgroups[i-1]) pool = BitPatternPool(sw->signal.size()); } for (auto pat : cs2->compare) if (!pat.is_fully_const()) extra_group_for_next_case = true; else if (!ifxmode) pool.take(pat); } } // evaluate in reverse order to give the first entry the top priority RTLIL::SigSpec initial_val = result; RTLIL::Cell *last_mux_cell = NULL; bool shiftx = initial_val.is_fully_undef(); for (size_t i = 0; i < sw->cases.size(); i++) { int case_idx = sw->cases.size() - i - 1; RTLIL::CaseRule *cs2 = sw->cases[case_idx]; RTLIL::SigSpec value = signal_to_mux_tree(mod, swcache, swpara, cs2, sig, initial_val, ifxmode); if (last_mux_cell && pgroups[case_idx] == pgroups[case_idx+1]) append_pmux(mod, sw->signal, cs2->compare, value, last_mux_cell, sw, ifxmode); else result = gen_mux(mod, sw->signal, cs2->compare, value, result, last_mux_cell, sw, ifxmode); // Ignore output values which are entirely don't care if (shiftx && !value.is_fully_undef()) { // Keep checking if case condition is the same as the current case index if (cs2->compare.size() == 1 && cs2->compare.front().is_fully_const()) shiftx = (cs2->compare.front().as_int() == case_idx); else shiftx = false; } } // Transform into a $shiftx where possible if (shiftx && last_mux_cell && last_mux_cell->type == "$pmux") { // Create bit-blasted $shiftx-es that shifts by the address line used in the case statement auto pmux_b_port = last_mux_cell->getPort("\\B"); auto pmux_y_port = last_mux_cell->getPort("\\Y"); int width = last_mux_cell->getParam("\\WIDTH").as_int(); for (int i = 0; i < width; ++i) { RTLIL::SigSpec a_port; // Because we went in reverse order above, un-reverse $pmux's B port here for (int j = pmux_b_port.size()/width-1; j >= 0; --j) a_port.append(pmux_b_port.extract(j*width+i, 1)); // Create a $shiftx that shifts by the address line used in the case statement mod->addShiftx(NEW_ID, a_port, sw->signal, pmux_y_port.extract(i, 1)); } // Disconnect $pmux by replacing its output port with a floating wire last_mux_cell->setPort("\\Y", mod->addWire(NEW_ID, width)); } } return result; } void proc_mux(RTLIL::Module *mod, RTLIL::Process *proc, bool ifxmode) { log("Creating decoders for process `%s.%s'.\n", mod->name.c_str(), proc->name.c_str()); SigSnippets sigsnip; sigsnip.insert(&proc->root_case); SnippetSwCache swcache; swcache.snippets = &sigsnip; swcache.insert(&proc->root_case); dict swpara; int cnt = 0; for (int idx : sigsnip.snippets) { swcache.current_snippet = idx; RTLIL::SigSpec sig = sigsnip.sigidx[idx]; log("%6d/%d: %s\n", ++cnt, GetSize(sigsnip.snippets), log_signal(sig)); RTLIL::SigSpec value = signal_to_mux_tree(mod, swcache, swpara, &proc->root_case, sig, RTLIL::SigSpec(RTLIL::State::Sx, sig.size()), ifxmode); mod->connect(RTLIL::SigSig(sig, value)); } } struct ProcMuxPass : public Pass { ProcMuxPass() : Pass("proc_mux", "convert decision trees to multiplexers") { } void help() YS_OVERRIDE { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" proc_mux [options] [selection]\n"); log("\n"); log("This pass converts the decision trees in processes (originating from if-else\n"); log("and case statements) to trees of multiplexer cells.\n"); log("\n"); log(" -ifx\n"); log(" Use Verilog simulation behavior with respect to undef values in\n"); log(" 'case' expressions and 'if' conditions.\n"); log("\n"); } void execute(std::vector args, RTLIL::Design *design) YS_OVERRIDE { bool ifxmode = false; log_header(design, "Executing PROC_MUX pass (convert decision trees to multiplexers).\n"); size_t argidx; for (argidx = 1; argidx < args.size(); argidx++) { if (args[argidx] == "-ifx") { ifxmode = true; continue; } break; } extra_args(args, argidx, design); for (auto mod : design->modules()) if (design->selected(mod)) for (auto &proc_it : mod->processes) if (design->selected(mod, proc_it.second)) proc_mux(mod, proc_it.second, ifxmode); } } ProcMuxPass; PRIVATE_NAMESPACE_END