/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Clifford Wolf * Copyright (C) 2019 Eddie Hung * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ // [[CITE]] ABC // Berkeley Logic Synthesis and Verification Group, ABC: A System for Sequential Synthesis and Verification // http://www.eecs.berkeley.edu/~alanmi/abc/ #define ABC_COMMAND_LIB "strash; ifraig; scorr; dc2; dretime; strash; &get -n; &dch -f; &nf {D}; &put" #define ABC_COMMAND_CTR "strash; ifraig; scorr; dc2; dretime; strash; &get -n; &dch -f; &nf {D}; &put; buffer; upsize {D}; dnsize {D}; stime -p" //#define ABC_COMMAND_LUT "strash; ifraig; scorr; dc2; dretime; strash; dch -f; if; mfs2" #define ABC_COMMAND_LUT "&st; &sweep; &scorr; "/*"&dc2; */"&retime; &dch -f; &ps -l; &if -W 160 -v; &ps -l" #define ABC_COMMAND_SOP "strash; ifraig; scorr; dc2; dretime; strash; dch -f; cover {I} {P}" #define ABC_COMMAND_DFL "strash; ifraig; scorr; dc2; dretime; strash; &get -n; &dch -f; &nf {D}; &put" #define ABC_FAST_COMMAND_LIB "strash; dretime; map {D}" #define ABC_FAST_COMMAND_CTR "strash; dretime; map {D}; buffer; upsize {D}; dnsize {D}; stime -p" #define ABC_FAST_COMMAND_LUT "&st; &retime; &if" #define ABC_FAST_COMMAND_SOP "strash; dretime; cover -I {I} -P {P}" #define ABC_FAST_COMMAND_DFL "strash; dretime; map" #include "kernel/register.h" #include "kernel/sigtools.h" #include "kernel/celltypes.h" #include "kernel/cost.h" #include "kernel/log.h" #include #include #include #include #include #include #ifndef _WIN32 # include # include #endif #include "frontends/aiger/aigerparse.h" #ifdef YOSYS_LINK_ABC extern "C" int Abc_RealMain(int argc, char *argv[]); #endif USING_YOSYS_NAMESPACE PRIVATE_NAMESPACE_BEGIN bool map_mux4; bool map_mux8; bool map_mux16; bool markgroups; int map_autoidx; SigMap assign_map; RTLIL::Module *module; std::map signal_map; std::map signal_init; pool enabled_gates; bool recover_init; bool clk_polarity, en_polarity; RTLIL::SigSpec clk_sig, en_sig; dict pi_map, po_map; std::string remap_name(RTLIL::IdString abc_name) { std::stringstream sstr; sstr << "$abc$" << map_autoidx << "$" << abc_name.substr(1); return sstr.str(); } void handle_loops(RTLIL::Design *design) { Pass::call(design, "scc -set_attr abc_scc_id {}"); design->selection_stack.emplace_back(false); RTLIL::Selection& sel = design->selection_stack.back(); // For every unique SCC found, (arbitrarily) find the first // cell in the component, and select (and mark) all its output // wires pool ids_seen; for (auto cell : module->cells()) { auto it = cell->attributes.find("\\abc_scc_id"); if (it != cell->attributes.end()) { auto r = ids_seen.insert(it->second); if (r.second) { for (const auto &c : cell->connections()) { if (c.second.is_fully_const()) continue; if (cell->output(c.first)) { SigBit b = c.second.as_bit(); Wire *w = b.wire; w->set_bool_attribute("\\abc_scc_break"); sel.select(module, w); } } } cell->attributes.erase(it); } } // Then cut those selected wires to expose them as new PO/PI Pass::call(design, "expose -cut -sep .abc"); design->selection_stack.pop_back(); } std::string add_echos_to_abc_cmd(std::string str) { std::string new_str, token; for (size_t i = 0; i < str.size(); i++) { token += str[i]; if (str[i] == ';') { while (i+1 < str.size() && str[i+1] == ' ') i++; new_str += "echo + " + token + " " + token + " "; token.clear(); } } if (!token.empty()) { if (!new_str.empty()) new_str += "echo + " + token + "; "; new_str += token; } return new_str; } std::string fold_abc_cmd(std::string str) { std::string token, new_str = " "; int char_counter = 10; for (size_t i = 0; i <= str.size(); i++) { if (i < str.size()) token += str[i]; if (i == str.size() || str[i] == ';') { if (char_counter + token.size() > 75) new_str += "\n ", char_counter = 14; new_str += token, char_counter += token.size(); token.clear(); } } return new_str; } std::string replace_tempdir(std::string text, std::string tempdir_name, bool show_tempdir) { if (show_tempdir) return text; while (1) { size_t pos = text.find(tempdir_name); if (pos == std::string::npos) break; text = text.substr(0, pos) + "" + text.substr(pos + GetSize(tempdir_name)); } std::string selfdir_name = proc_self_dirname(); if (selfdir_name != "/") { while (1) { size_t pos = text.find(selfdir_name); if (pos == std::string::npos) break; text = text.substr(0, pos) + "/" + text.substr(pos + GetSize(selfdir_name)); } } return text; } struct abc_output_filter { bool got_cr; int escape_seq_state; std::string linebuf; std::string tempdir_name; bool show_tempdir; abc_output_filter(std::string tempdir_name, bool show_tempdir) : tempdir_name(tempdir_name), show_tempdir(show_tempdir) { got_cr = false; escape_seq_state = 0; } void next_char(char ch) { if (escape_seq_state == 0 && ch == '\033') { escape_seq_state = 1; return; } if (escape_seq_state == 1) { escape_seq_state = ch == '[' ? 2 : 0; return; } if (escape_seq_state == 2) { if ((ch < '0' || '9' < ch) && ch != ';') escape_seq_state = 0; return; } escape_seq_state = 0; if (ch == '\r') { got_cr = true; return; } if (ch == '\n') { log("ABC: %s\n", replace_tempdir(linebuf, tempdir_name, show_tempdir).c_str()); got_cr = false, linebuf.clear(); return; } if (got_cr) got_cr = false, linebuf.clear(); linebuf += ch; } void next_line(const std::string &line) { int pi, po; if (sscanf(line.c_str(), "Start-point = pi%d. End-point = po%d.", &pi, &po) == 2) { log("ABC: Start-point = pi%d (%s). End-point = po%d (%s).\n", pi, pi_map.count(pi) ? pi_map.at(pi).c_str() : "???", po, po_map.count(po) ? po_map.at(po).c_str() : "???"); return; } for (char ch : line) next_char(ch); } }; static std::pair wideports_split(std::string name) { int pos = -1; if (name.empty() || name.back() != ']') goto failed; for (int i = 0; i+1 < GetSize(name); i++) { if (name[i] == '[') pos = i; else if (name[i] < '0' || name[i] > '9') pos = -1; else if (i == pos+1 && name[i] == '0' && name[i+1] != ']') pos = -1; } if (pos >= 0) return std::pair(RTLIL::escape_id(name.substr(0, pos)), atoi(name.c_str() + pos+1)); failed: return std::pair(name, 0); } void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::string script_file, std::string exe_file, std::string liberty_file, std::string constr_file, bool cleanup, vector lut_costs, bool dff_mode, std::string clk_str, bool keepff, std::string delay_target, std::string sop_inputs, std::string sop_products, std::string lutin_shared, bool fast_mode, const std::vector &cells, bool show_tempdir, bool sop_mode, std::string box_file, std::string lut_file) { module = current_module; map_autoidx = autoidx++; signal_map.clear(); pi_map.clear(); po_map.clear(); recover_init = false; if (clk_str != "$") { clk_polarity = true; clk_sig = RTLIL::SigSpec(); en_polarity = true; en_sig = RTLIL::SigSpec(); } if (!clk_str.empty() && clk_str != "$") { if (clk_str.find(',') != std::string::npos) { int pos = clk_str.find(','); std::string en_str = clk_str.substr(pos+1); clk_str = clk_str.substr(0, pos); if (en_str[0] == '!') { en_polarity = false; en_str = en_str.substr(1); } if (module->wires_.count(RTLIL::escape_id(en_str)) != 0) en_sig = assign_map(RTLIL::SigSpec(module->wires_.at(RTLIL::escape_id(en_str)), 0)); } if (clk_str[0] == '!') { clk_polarity = false; clk_str = clk_str.substr(1); } if (module->wires_.count(RTLIL::escape_id(clk_str)) != 0) clk_sig = assign_map(RTLIL::SigSpec(module->wires_.at(RTLIL::escape_id(clk_str)), 0)); } if (dff_mode && clk_sig.empty()) log_cmd_error("Clock domain %s not found.\n", clk_str.c_str()); std::string tempdir_name = "/tmp/yosys-abc-XXXXXX"; if (!cleanup) tempdir_name[0] = tempdir_name[4] = '_'; tempdir_name = make_temp_dir(tempdir_name); log_header(design, "Extracting gate netlist of module `%s' to `%s/input.xaig'..\n", module->name.c_str(), replace_tempdir(tempdir_name, tempdir_name, show_tempdir).c_str()); std::string abc_script; if (!liberty_file.empty()) { abc_script += stringf("read_lib -w %s; ", liberty_file.c_str()); if (!constr_file.empty()) abc_script += stringf("read_constr -v %s; ", constr_file.c_str()); } else if (!lut_costs.empty()) { abc_script += stringf("read_lut %s/lutdefs.txt; ", tempdir_name.c_str()); if (!box_file.empty()) abc_script += stringf("read_box -v %s; ", box_file.c_str()); } else if (!lut_file.empty()) { abc_script += stringf("read_lut %s; ", lut_file.c_str()); if (!box_file.empty()) abc_script += stringf("read_box -v %s; ", box_file.c_str()); } else abc_script += stringf("read_library %s/stdcells.genlib; ", tempdir_name.c_str()); abc_script += stringf("&read %s/input.xaig; &ps; ", tempdir_name.c_str()); if (!script_file.empty()) { if (script_file[0] == '+') { for (size_t i = 1; i < script_file.size(); i++) if (script_file[i] == '\'') abc_script += "'\\''"; else if (script_file[i] == ',') abc_script += " "; else abc_script += script_file[i]; } else abc_script += stringf("source %s", script_file.c_str()); } else if (!lut_costs.empty() || !lut_file.empty()) { //bool all_luts_cost_same = true; //for (int this_cost : lut_costs) // if (this_cost != lut_costs.front()) // all_luts_cost_same = false; abc_script += fast_mode ? ABC_FAST_COMMAND_LUT : ABC_COMMAND_LUT; //if (all_luts_cost_same && !fast_mode) // abc_script += "; lutpack {S}"; } else if (!liberty_file.empty()) abc_script += constr_file.empty() ? (fast_mode ? ABC_FAST_COMMAND_LIB : ABC_COMMAND_LIB) : (fast_mode ? ABC_FAST_COMMAND_CTR : ABC_COMMAND_CTR); else if (sop_mode) abc_script += fast_mode ? ABC_FAST_COMMAND_SOP : ABC_COMMAND_SOP; else abc_script += fast_mode ? ABC_FAST_COMMAND_DFL : ABC_COMMAND_DFL; if (script_file.empty() && !delay_target.empty()) for (size_t pos = abc_script.find("dretime;"); pos != std::string::npos; pos = abc_script.find("dretime;", pos+1)) abc_script = abc_script.substr(0, pos) + "dretime; retime -o {D};" + abc_script.substr(pos+8); for (size_t pos = abc_script.find("{D}"); pos != std::string::npos; pos = abc_script.find("{D}", pos)) abc_script = abc_script.substr(0, pos) + delay_target + abc_script.substr(pos+3); for (size_t pos = abc_script.find("{I}"); pos != std::string::npos; pos = abc_script.find("{D}", pos)) abc_script = abc_script.substr(0, pos) + sop_inputs + abc_script.substr(pos+3); for (size_t pos = abc_script.find("{P}"); pos != std::string::npos; pos = abc_script.find("{D}", pos)) abc_script = abc_script.substr(0, pos) + sop_products + abc_script.substr(pos+3); for (size_t pos = abc_script.find("{S}"); pos != std::string::npos; pos = abc_script.find("{S}", pos)) abc_script = abc_script.substr(0, pos) + lutin_shared + abc_script.substr(pos+3); abc_script += stringf("; &write %s/output.aig", tempdir_name.c_str()); abc_script = add_echos_to_abc_cmd(abc_script); for (size_t i = 0; i+1 < abc_script.size(); i++) if (abc_script[i] == ';' && abc_script[i+1] == ' ') abc_script[i+1] = '\n'; FILE *f = fopen(stringf("%s/abc.script", tempdir_name.c_str()).c_str(), "wt"); fprintf(f, "%s\n", abc_script.c_str()); fclose(f); if (dff_mode || !clk_str.empty()) { if (clk_sig.size() == 0) log("No%s clock domain found. Not extracting any FF cells.\n", clk_str.empty() ? "" : " matching"); else { log("Found%s %s clock domain: %s", clk_str.empty() ? "" : " matching", clk_polarity ? "posedge" : "negedge", log_signal(clk_sig)); if (en_sig.size() != 0) log(", enabled by %s%s", en_polarity ? "" : "!", log_signal(en_sig)); log("\n"); } } design->selection_stack.emplace_back(false); RTLIL::Selection& sel = design->selection_stack.back(); sel.select(module); // Behave as for "abc" where BLIF writer implicitly outputs all undef as zero Pass::call(design, "setundef -zero"); Pass::call(design, "aigmap"); handle_loops(design); Pass::call(design, stringf("write_xaiger -O -map %s/input.sym %s/input.xaig; ", tempdir_name.c_str(), tempdir_name.c_str())); #if 0 std::string buffer = stringf("%s/%s", tempdir_name.c_str(), "input.xaig"); std::ifstream ifs; ifs.open(buffer); if (ifs.fail()) log_error("Can't open ABC output file `%s'.\n", buffer.c_str()); buffer = stringf("%s/%s", tempdir_name.c_str(), "input.sym"); log_assert(!design->module("$__abc9__")); AigerReader reader(design, ifs, "$__abc9__", "" /* clk_name */, buffer.c_str() /* map_filename */, false /* wideports */); reader.parse_xaiger(); ifs.close(); Pass::call(design, stringf("write_verilog -noexpr -norename %s/%s", tempdir_name.c_str(), "input.v")); design->remove(design->module("$__abc9__")); #endif design->selection_stack.pop_back(); // Now 'unexpose' those wires by undoing // the expose operation -- remove them from PO/PI // and re-connecting them back together for (auto wire : module->wires()) { auto it = wire->attributes.find("\\abc_scc_break"); if (it != wire->attributes.end()) { wire->attributes.erase(it); log_assert(wire->port_output); wire->port_output = false; RTLIL::Wire *i_wire = module->wire(wire->name.str() + ".abci"); log_assert(i_wire); log_assert(i_wire->port_input); i_wire->port_input = false; module->connect(i_wire, wire); } } module->fixup_ports(); //log("Extracted %d gates and %d wires to a netlist network with %d inputs and %d outputs.\n", // count_gates, GetSize(signal_list), count_input, count_output); log_push(); //if (count_output > 0) { log_header(design, "Executing ABC9.\n"); std::string buffer = stringf("%s/stdcells.genlib", tempdir_name.c_str()); f = fopen(buffer.c_str(), "wt"); if (f == NULL) log_error("Opening %s for writing failed: %s\n", buffer.c_str(), strerror(errno)); fprintf(f, "GATE ZERO 1 Y=CONST0;\n"); fprintf(f, "GATE ONE 1 Y=CONST1;\n"); fprintf(f, "GATE BUF %d Y=A; PIN * NONINV 1 999 1 0 1 0\n", get_cell_cost("$_BUF_")); fprintf(f, "GATE NOT %d Y=!A; PIN * INV 1 999 1 0 1 0\n", get_cell_cost("$_NOT_")); if (enabled_gates.empty() || enabled_gates.count("AND")) fprintf(f, "GATE AND %d Y=A*B; PIN * NONINV 1 999 1 0 1 0\n", get_cell_cost("$_AND_")); if (enabled_gates.empty() || enabled_gates.count("NAND")) fprintf(f, "GATE NAND %d Y=!(A*B); PIN * INV 1 999 1 0 1 0\n", get_cell_cost("$_NAND_")); if (enabled_gates.empty() || enabled_gates.count("OR")) fprintf(f, "GATE OR %d Y=A+B; PIN * NONINV 1 999 1 0 1 0\n", get_cell_cost("$_OR_")); if (enabled_gates.empty() || enabled_gates.count("NOR")) fprintf(f, "GATE NOR %d Y=!(A+B); PIN * INV 1 999 1 0 1 0\n", get_cell_cost("$_NOR_")); if (enabled_gates.empty() || enabled_gates.count("XOR")) fprintf(f, "GATE XOR %d Y=(A*!B)+(!A*B); PIN * UNKNOWN 1 999 1 0 1 0\n", get_cell_cost("$_XOR_")); if (enabled_gates.empty() || enabled_gates.count("XNOR")) fprintf(f, "GATE XNOR %d Y=(A*B)+(!A*!B); PIN * UNKNOWN 1 999 1 0 1 0\n", get_cell_cost("$_XNOR_")); if (enabled_gates.empty() || enabled_gates.count("ANDNOT")) fprintf(f, "GATE ANDNOT %d Y=A*!B; PIN * UNKNOWN 1 999 1 0 1 0\n", get_cell_cost("$_ANDNOT_")); if (enabled_gates.empty() || enabled_gates.count("ORNOT")) fprintf(f, "GATE ORNOT %d Y=A+!B; PIN * UNKNOWN 1 999 1 0 1 0\n", get_cell_cost("$_ORNOT_")); if (enabled_gates.empty() || enabled_gates.count("AOI3")) fprintf(f, "GATE AOI3 %d Y=!((A*B)+C); PIN * INV 1 999 1 0 1 0\n", get_cell_cost("$_AOI3_")); if (enabled_gates.empty() || enabled_gates.count("OAI3")) fprintf(f, "GATE OAI3 %d Y=!((A+B)*C); PIN * INV 1 999 1 0 1 0\n", get_cell_cost("$_OAI3_")); if (enabled_gates.empty() || enabled_gates.count("AOI4")) fprintf(f, "GATE AOI4 %d Y=!((A*B)+(C*D)); PIN * INV 1 999 1 0 1 0\n", get_cell_cost("$_AOI4_")); if (enabled_gates.empty() || enabled_gates.count("OAI4")) fprintf(f, "GATE OAI4 %d Y=!((A+B)*(C+D)); PIN * INV 1 999 1 0 1 0\n", get_cell_cost("$_OAI4_")); if (enabled_gates.empty() || enabled_gates.count("MUX")) fprintf(f, "GATE MUX %d Y=(A*B)+(S*B)+(!S*A); PIN * UNKNOWN 1 999 1 0 1 0\n", get_cell_cost("$_MUX_")); if (map_mux4) fprintf(f, "GATE MUX4 %d Y=(!S*!T*A)+(S*!T*B)+(!S*T*C)+(S*T*D); PIN * UNKNOWN 1 999 1 0 1 0\n", 2*get_cell_cost("$_MUX_")); if (map_mux8) fprintf(f, "GATE MUX8 %d Y=(!S*!T*!U*A)+(S*!T*!U*B)+(!S*T*!U*C)+(S*T*!U*D)+(!S*!T*U*E)+(S*!T*U*F)+(!S*T*U*G)+(S*T*U*H); PIN * UNKNOWN 1 999 1 0 1 0\n", 4*get_cell_cost("$_MUX_")); if (map_mux16) fprintf(f, "GATE MUX16 %d Y=(!S*!T*!U*!V*A)+(S*!T*!U*!V*B)+(!S*T*!U*!V*C)+(S*T*!U*!V*D)+(!S*!T*U*!V*E)+(S*!T*U*!V*F)+(!S*T*U*!V*G)+(S*T*U*!V*H)+(!S*!T*!U*V*I)+(S*!T*!U*V*J)+(!S*T*!U*V*K)+(S*T*!U*V*L)+(!S*!T*U*V*M)+(S*!T*U*V*N)+(!S*T*U*V*O)+(S*T*U*V*P); PIN * UNKNOWN 1 999 1 0 1 0\n", 8*get_cell_cost("$_MUX_")); fclose(f); if (!lut_costs.empty()) { buffer = stringf("%s/lutdefs.txt", tempdir_name.c_str()); f = fopen(buffer.c_str(), "wt"); if (f == NULL) log_error("Opening %s for writing failed: %s\n", buffer.c_str(), strerror(errno)); for (int i = 0; i < GetSize(lut_costs); i++) fprintf(f, "%d %d.00 1.00\n", i+1, lut_costs.at(i)); fclose(f); } buffer = stringf("%s -s -f %s/abc.script 2>&1", exe_file.c_str(), tempdir_name.c_str()); log("Running ABC command: %s\n", replace_tempdir(buffer, tempdir_name, show_tempdir).c_str()); #ifndef YOSYS_LINK_ABC abc_output_filter filt(tempdir_name, show_tempdir); int ret = run_command(buffer, std::bind(&abc_output_filter::next_line, filt, std::placeholders::_1)); #else // These needs to be mutable, supposedly due to getopt char *abc_argv[5]; string tmp_script_name = stringf("%s/abc.script", tempdir_name.c_str()); abc_argv[0] = strdup(exe_file.c_str()); abc_argv[1] = strdup("-s"); abc_argv[2] = strdup("-f"); abc_argv[3] = strdup(tmp_script_name.c_str()); abc_argv[4] = 0; int ret = Abc_RealMain(4, abc_argv); free(abc_argv[0]); free(abc_argv[1]); free(abc_argv[2]); free(abc_argv[3]); #endif if (ret != 0) log_error("ABC: execution of command \"%s\" failed: return code %d.\n", buffer.c_str(), ret); buffer = stringf("%s/%s", tempdir_name.c_str(), "output.aig"); std::ifstream ifs; ifs.open(buffer); if (ifs.fail()) log_error("Can't open ABC output file `%s'.\n", buffer.c_str()); bool builtin_lib = liberty_file.empty(); //parse_blif(mapped_design, ifs, builtin_lib ? "\\DFF" : "\\_dff_", false, sop_mode); buffer = stringf("%s/%s", tempdir_name.c_str(), "input.sym"); log_assert(!design->module("$__abc9__")); AigerReader reader(design, ifs, "$__abc9__", "" /* clk_name */, buffer.c_str() /* map_filename */, false /* wideports */); reader.parse_xaiger(); ifs.close(); #if 0 Pass::call(design, stringf("write_verilog -noexpr -norename %s/%s", tempdir_name.c_str(), "output.v")); #endif log_header(design, "Re-integrating ABC9 results.\n"); RTLIL::Module *mapped_mod = design->module("$__abc9__"); if (mapped_mod == NULL) log_error("ABC output file does not contain a module `$__abc9__'.\n"); pool output_bits; for (auto &it : mapped_mod->wires_) { RTLIL::Wire *w = it.second; RTLIL::Wire *remap_wire = module->addWire(remap_name(w->name), GetSize(w)); if (markgroups) remap_wire->attributes["\\abcgroup"] = map_autoidx; if (w->port_output) { RTLIL::Wire *wire = module->wire(w->name); if (wire) { for (int i = 0; i < GetSize(wire); i++) output_bits.insert({wire, i}); } else { //if (w->name == "\\__dummy_o__") { // log("Don't call ABC as there is nothing to map.\n"); // goto cleanup; //} // Attempt another wideports_split here because there // exists the possibility that different bits of a port // could be an input and output, therefore parse_xaiger() // could not combine it into a wideport auto r = wideports_split(w->name.str()); wire = module->wire(r.first); log_assert(wire); int i = r.second; output_bits.insert({wire, i}); } } } // Remove all AND, NOT, and ABC box instances // in preparation for stitching mapped_mod in pool erased_boxes; for (auto it = module->cells_.begin(); it != module->cells_.end(); ) { RTLIL::Cell* cell = it->second; if (cell->type.in("$_AND_", "$_NOT_")) { it = module->cells_.erase(it); continue; } RTLIL::Module* box_module = design->module(cell->type); if (box_module && box_module->attributes.count("\\abc_box_id")) { erased_boxes.insert(it->first); it = module->cells_.erase(it); continue; } ++it; } // Do the same for module connections for (auto &it : module->connections_) { auto &signal = it.first; auto bits = signal.bits(); for (auto &b : bits) if (output_bits.count(b)) b = module->addWire(NEW_ID); signal = std::move(bits); } std::map cell_stats; for (auto c : mapped_mod->cells()) { if (builtin_lib) { if (c->type == "$_NOT_") { RTLIL::Cell *cell; RTLIL::SigBit a_bit = c->getPort("\\A").as_bit(); RTLIL::SigBit y_bit = c->getPort("\\Y").as_bit(); if (!lut_costs.empty() || !lut_file.empty()) { RTLIL::Cell* driving_lut = nullptr; // ABC can return NOT gates that drive POs if (!a_bit.wire->port_input) { // If it's not a NOT gate that that comes from a PI directly, // find the driving LUT and clone that to guarantee that we won't // increase the max logic depth // (TODO: Optimise by not cloning unless will increase depth) RTLIL::IdString driver_name; if (GetSize(a_bit.wire) == 1) driver_name = stringf("%s$lut", a_bit.wire->name.c_str()); else driver_name = stringf("%s[%d]$lut", a_bit.wire->name.c_str(), a_bit.offset); driving_lut = mapped_mod->cell(driver_name); } if (!driving_lut) { // If a driver couldn't be found (could be from PI, // or from a box) then implement using a LUT cell = module->addLut(remap_name(stringf("%s$lut", c->name.c_str())), RTLIL::SigBit(module->wires_[remap_name(a_bit.wire->name)], a_bit.offset), RTLIL::SigBit(module->wires_[remap_name(y_bit.wire->name)], y_bit.offset), 1); } else { auto driver_a = driving_lut->getPort("\\A").chunks(); for (auto &chunk : driver_a) chunk.wire = module->wires_[remap_name(chunk.wire->name)]; RTLIL::Const driver_lut = driving_lut->getParam("\\LUT"); for (auto &b : driver_lut.bits) { if (b == RTLIL::State::S0) b = RTLIL::State::S1; else if (b == RTLIL::State::S1) b = RTLIL::State::S0; } cell = module->addLut(remap_name(stringf("%s$lut", c->name.c_str())), driver_a, RTLIL::SigBit(module->wires_[remap_name(y_bit.wire->name)], y_bit.offset), driver_lut); } } else { cell = module->addCell(remap_name(c->name), "$_NOT_"); cell->setPort("\\A", RTLIL::SigBit(module->wires_[remap_name(a_bit.wire->name)], a_bit.offset)); cell->setPort("\\Y", RTLIL::SigBit(module->wires_[remap_name(y_bit.wire->name)], y_bit.offset)); cell_stats[RTLIL::unescape_id(c->type)]++; } if (markgroups) cell->attributes["\\abcgroup"] = map_autoidx; continue; } cell_stats[RTLIL::unescape_id(c->type)]++; if (c->type == "\\ZERO" || c->type == "\\ONE") { RTLIL::SigSig conn; conn.first = RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\Y").as_wire()->name)]); conn.second = RTLIL::SigSpec(c->type == "\\ZERO" ? 0 : 1, 1); module->connect(conn); continue; } if (c->type == "\\BUF") { RTLIL::SigSig conn; conn.first = RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\Y").as_wire()->name)]); conn.second = RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\A").as_wire()->name)]); module->connect(conn); continue; } if (c->type == "\\AND" || c->type == "\\OR" || c->type == "\\XOR" || c->type == "\\NAND" || c->type == "\\NOR" || c->type == "\\XNOR" || c->type == "\\ANDNOT" || c->type == "\\ORNOT") { RTLIL::Cell *cell = module->addCell(remap_name(c->name), "$_" + c->type.substr(1) + "_"); if (markgroups) cell->attributes["\\abcgroup"] = map_autoidx; cell->setPort("\\A", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\A").as_wire()->name)])); cell->setPort("\\B", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\B").as_wire()->name)])); cell->setPort("\\Y", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\Y").as_wire()->name)])); continue; } if (c->type == "\\MUX") { RTLIL::Cell *cell = module->addCell(remap_name(c->name), "$_MUX_"); if (markgroups) cell->attributes["\\abcgroup"] = map_autoidx; cell->setPort("\\A", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\A").as_wire()->name)])); cell->setPort("\\B", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\B").as_wire()->name)])); cell->setPort("\\S", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\S").as_wire()->name)])); cell->setPort("\\Y", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\Y").as_wire()->name)])); continue; } if (c->type == "\\MUX4") { RTLIL::Cell *cell = module->addCell(remap_name(c->name), "$_MUX4_"); if (markgroups) cell->attributes["\\abcgroup"] = map_autoidx; cell->setPort("\\A", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\A").as_wire()->name)])); cell->setPort("\\B", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\B").as_wire()->name)])); cell->setPort("\\C", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\C").as_wire()->name)])); cell->setPort("\\D", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\D").as_wire()->name)])); cell->setPort("\\S", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\S").as_wire()->name)])); cell->setPort("\\T", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\T").as_wire()->name)])); cell->setPort("\\Y", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\Y").as_wire()->name)])); continue; } if (c->type == "\\MUX8") { RTLIL::Cell *cell = module->addCell(remap_name(c->name), "$_MUX8_"); if (markgroups) cell->attributes["\\abcgroup"] = map_autoidx; cell->setPort("\\A", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\A").as_wire()->name)])); cell->setPort("\\B", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\B").as_wire()->name)])); cell->setPort("\\C", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\C").as_wire()->name)])); cell->setPort("\\D", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\D").as_wire()->name)])); cell->setPort("\\E", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\E").as_wire()->name)])); cell->setPort("\\F", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\F").as_wire()->name)])); cell->setPort("\\G", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\G").as_wire()->name)])); cell->setPort("\\H", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\H").as_wire()->name)])); cell->setPort("\\S", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\S").as_wire()->name)])); cell->setPort("\\T", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\T").as_wire()->name)])); cell->setPort("\\U", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\U").as_wire()->name)])); cell->setPort("\\Y", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\Y").as_wire()->name)])); continue; } if (c->type == "\\MUX16") { RTLIL::Cell *cell = module->addCell(remap_name(c->name), "$_MUX16_"); if (markgroups) cell->attributes["\\abcgroup"] = map_autoidx; cell->setPort("\\A", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\A").as_wire()->name)])); cell->setPort("\\B", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\B").as_wire()->name)])); cell->setPort("\\C", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\C").as_wire()->name)])); cell->setPort("\\D", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\D").as_wire()->name)])); cell->setPort("\\E", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\E").as_wire()->name)])); cell->setPort("\\F", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\F").as_wire()->name)])); cell->setPort("\\G", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\G").as_wire()->name)])); cell->setPort("\\H", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\H").as_wire()->name)])); cell->setPort("\\I", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\I").as_wire()->name)])); cell->setPort("\\J", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\J").as_wire()->name)])); cell->setPort("\\K", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\K").as_wire()->name)])); cell->setPort("\\L", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\L").as_wire()->name)])); cell->setPort("\\M", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\M").as_wire()->name)])); cell->setPort("\\N", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\N").as_wire()->name)])); cell->setPort("\\O", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\O").as_wire()->name)])); cell->setPort("\\P", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\P").as_wire()->name)])); cell->setPort("\\S", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\S").as_wire()->name)])); cell->setPort("\\T", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\T").as_wire()->name)])); cell->setPort("\\U", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\U").as_wire()->name)])); cell->setPort("\\V", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\V").as_wire()->name)])); cell->setPort("\\Y", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\Y").as_wire()->name)])); continue; } if (c->type == "\\AOI3" || c->type == "\\OAI3") { RTLIL::Cell *cell = module->addCell(remap_name(c->name), "$_" + c->type.substr(1) + "_"); if (markgroups) cell->attributes["\\abcgroup"] = map_autoidx; cell->setPort("\\A", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\A").as_wire()->name)])); cell->setPort("\\B", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\B").as_wire()->name)])); cell->setPort("\\C", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\C").as_wire()->name)])); cell->setPort("\\Y", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\Y").as_wire()->name)])); continue; } if (c->type == "\\AOI4" || c->type == "\\OAI4") { RTLIL::Cell *cell = module->addCell(remap_name(c->name), "$_" + c->type.substr(1) + "_"); if (markgroups) cell->attributes["\\abcgroup"] = map_autoidx; cell->setPort("\\A", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\A").as_wire()->name)])); cell->setPort("\\B", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\B").as_wire()->name)])); cell->setPort("\\C", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\C").as_wire()->name)])); cell->setPort("\\D", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\D").as_wire()->name)])); cell->setPort("\\Y", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\Y").as_wire()->name)])); continue; } if (c->type == "\\DFF") { log_assert(clk_sig.size() == 1); RTLIL::Cell *cell; if (en_sig.size() == 0) { cell = module->addCell(remap_name(c->name), clk_polarity ? "$_DFF_P_" : "$_DFF_N_"); } else { log_assert(en_sig.size() == 1); cell = module->addCell(remap_name(c->name), stringf("$_DFFE_%c%c_", clk_polarity ? 'P' : 'N', en_polarity ? 'P' : 'N')); cell->setPort("\\E", en_sig); } if (markgroups) cell->attributes["\\abcgroup"] = map_autoidx; cell->setPort("\\D", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\D").as_wire()->name)])); cell->setPort("\\Q", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\Q").as_wire()->name)])); cell->setPort("\\C", clk_sig); continue; } } else cell_stats[RTLIL::unescape_id(c->type)]++; if (c->type == "\\_const0_" || c->type == "\\_const1_") { RTLIL::SigSig conn; conn.first = RTLIL::SigSpec(module->wires_[remap_name(c->connections().begin()->second.as_wire()->name)]); conn.second = RTLIL::SigSpec(c->type == "\\_const0_" ? 0 : 1, 1); module->connect(conn); continue; } if (c->type == "\\_dff_") { log_assert(clk_sig.size() == 1); RTLIL::Cell *cell; if (en_sig.size() == 0) { cell = module->addCell(remap_name(c->name), clk_polarity ? "$_DFF_P_" : "$_DFF_N_"); } else { log_assert(en_sig.size() == 1); cell = module->addCell(remap_name(c->name), stringf("$_DFFE_%c%c_", clk_polarity ? 'P' : 'N', en_polarity ? 'P' : 'N')); cell->setPort("\\E", en_sig); } if (markgroups) cell->attributes["\\abcgroup"] = map_autoidx; cell->setPort("\\D", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\D").as_wire()->name)])); cell->setPort("\\Q", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\Q").as_wire()->name)])); cell->setPort("\\C", clk_sig); continue; } RTLIL::Cell* cell; if (c->type == "$lut") { if (GetSize(c->getPort("\\A")) == 1 && c->getParam("\\LUT").as_int() == 2) { SigSpec my_a = module->wires_[remap_name(c->getPort("\\A").as_wire()->name)]; SigSpec my_y = module->wires_[remap_name(c->getPort("\\Y").as_wire()->name)]; module->connect(my_y, my_a); continue; } } else log_assert(erased_boxes.count(c->name)); cell = module->addCell(remap_name(c->name), c->type); if (markgroups) cell->attributes["\\abcgroup"] = map_autoidx; cell->parameters = c->parameters; for (auto &conn : c->connections()) { RTLIL::SigSpec newsig; for (auto c : conn.second.chunks()) { if (c.width == 0) continue; //log_assert(c.width == 1); if (c.wire) c.wire = module->wires_[remap_name(c.wire->name)]; newsig.append(c); } cell->setPort(conn.first, newsig); } } // Copy connections (and rename) from mapped_mod to module for (auto conn : mapped_mod->connections()) { if (!conn.first.is_fully_const()) { auto chunks = conn.first.chunks(); for (auto &c : chunks) c.wire = module->wires_[remap_name(c.wire->name)]; conn.first = std::move(chunks); } if (!conn.second.is_fully_const()) { auto chunks = conn.second.chunks(); for (auto &c : chunks) if (c.wire) c.wire = module->wires_[remap_name(c.wire->name)]; conn.second = std::move(chunks); } module->connect(conn); } if (recover_init) for (auto wire : mapped_mod->wires()) { if (wire->attributes.count("\\init")) { Wire *w = module->wires_[remap_name(wire->name)]; log_assert(w->attributes.count("\\init") == 0); w->attributes["\\init"] = wire->attributes.at("\\init"); } } for (auto &it : cell_stats) log("ABC RESULTS: %15s cells: %8d\n", it.first.c_str(), it.second); int in_wires = 0, out_wires = 0; //for (auto &si : signal_list) // if (si.is_port) { // char buffer[100]; // snprintf(buffer, 100, "\\n%d", si.id); // RTLIL::SigSig conn; // if (si.type != G(NONE)) { // conn.first = si.bit; // conn.second = RTLIL::SigSpec(module->wires_[remap_name(buffer)]); // out_wires++; // } else { // conn.first = RTLIL::SigSpec(module->wires_[remap_name(buffer)]); // conn.second = si.bit; // in_wires++; // } // module->connect(conn); // } // Stitch in mapped_mod's inputs/outputs into module for (auto &it : mapped_mod->wires_) { RTLIL::Wire *w = it.second; if (!w->port_input && !w->port_output) continue; RTLIL::Wire *wire = module->wire(w->name); RTLIL::Wire *remap_wire = module->wire(remap_name(w->name)); RTLIL::SigSpec signal; if (wire) { signal = RTLIL::SigSpec(wire, 0, GetSize(remap_wire)); } else { // Attempt another wideports_split here because there // exists the possibility that different bits of a port // could be an input and output, therefore parse_xiager() // could not combine it into a wideport auto r = wideports_split(w->name.str()); wire = module->wire(r.first); log_assert(wire); int i = r.second; signal = RTLIL::SigSpec(wire, i); } log_assert(GetSize(signal) >= GetSize(remap_wire)); log_assert(w->port_input || w->port_output); RTLIL::SigSig conn; if (w->port_input) { conn.first = remap_wire; conn.second = signal; in_wires++; module->connect(conn); } if (w->port_output) { conn.first = signal; conn.second = remap_wire; out_wires++; module->connect(conn); } } //log("ABC RESULTS: internal signals: %8d\n", int(signal_list.size()) - in_wires - out_wires); log("ABC RESULTS: input signals: %8d\n", in_wires); log("ABC RESULTS: output signals: %8d\n", out_wires); design->remove(mapped_mod); } //else //{ // log("Don't call ABC as there is nothing to map.\n"); //} cleanup: if (cleanup) { log("Removing temp directory.\n"); remove_directory(tempdir_name); } log_pop(); } struct Abc9Pass : public Pass { Abc9Pass() : Pass("abc9", "use ABC for technology mapping") { } void help() YS_OVERRIDE { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" abc9 [options] [selection]\n"); log("\n"); log("This pass uses the ABC tool [1] for technology mapping of yosys's internal gate\n"); log("library to a target architecture.\n"); log("\n"); log(" -exe \n"); #ifdef ABCEXTERNAL log(" use the specified command instead of \"" ABCEXTERNAL "\" to execute ABC.\n"); #else log(" use the specified command instead of \"/yosys-abc\" to execute ABC.\n"); #endif log(" This can e.g. be used to call a specific version of ABC or a wrapper.\n"); log("\n"); log(" -script \n"); log(" use the specified ABC script file instead of the default script.\n"); log("\n"); log(" if starts with a plus sign (+), then the rest of the filename\n"); log(" string is interpreted as the command string to be passed to ABC. The\n"); log(" leading plus sign is removed and all commas (,) in the string are\n"); log(" replaced with blanks before the string is passed to ABC.\n"); log("\n"); log(" if no -script parameter is given, the following scripts are used:\n"); log("\n"); log(" for -liberty without -constr:\n"); log("%s\n", fold_abc_cmd(ABC_COMMAND_LIB).c_str()); log("\n"); log(" for -liberty with -constr:\n"); log("%s\n", fold_abc_cmd(ABC_COMMAND_CTR).c_str()); log("\n"); log(" for -lut/-luts (only one LUT size):\n"); log("%s\n", fold_abc_cmd(ABC_COMMAND_LUT "; lutpack {S}").c_str()); log("\n"); log(" for -lut/-luts (different LUT sizes):\n"); log("%s\n", fold_abc_cmd(ABC_COMMAND_LUT).c_str()); log("\n"); log(" for -sop:\n"); log("%s\n", fold_abc_cmd(ABC_COMMAND_SOP).c_str()); log("\n"); log(" otherwise:\n"); log("%s\n", fold_abc_cmd(ABC_COMMAND_DFL).c_str()); log("\n"); log(" -fast\n"); log(" use different default scripts that are slightly faster (at the cost\n"); log(" of output quality):\n"); log("\n"); log(" for -liberty without -constr:\n"); log("%s\n", fold_abc_cmd(ABC_FAST_COMMAND_LIB).c_str()); log("\n"); log(" for -liberty with -constr:\n"); log("%s\n", fold_abc_cmd(ABC_FAST_COMMAND_CTR).c_str()); log("\n"); log(" for -lut/-luts:\n"); log("%s\n", fold_abc_cmd(ABC_FAST_COMMAND_LUT).c_str()); log("\n"); log(" for -sop:\n"); log("%s\n", fold_abc_cmd(ABC_FAST_COMMAND_SOP).c_str()); log("\n"); log(" otherwise:\n"); log("%s\n", fold_abc_cmd(ABC_FAST_COMMAND_DFL).c_str()); log("\n"); log(" -liberty \n"); log(" generate netlists for the specified cell library (using the liberty\n"); log(" file format).\n"); log("\n"); log(" -constr \n"); log(" pass this file with timing constraints to ABC. Use with -liberty.\n"); log("\n"); log(" a constr file contains two lines:\n"); log(" set_driving_cell \n"); log(" set_load \n"); log("\n"); log(" the set_driving_cell statement defines which cell type is assumed to\n"); log(" drive the primary inputs and the set_load statement sets the load in\n"); log(" femtofarads for each primary output.\n"); log("\n"); log(" -D \n"); log(" set delay target. the string {D} in the default scripts above is\n"); log(" replaced by this option when used, and an empty string otherwise.\n"); log(" this also replaces 'dretime' with 'dretime; retime -o {D}' in the\n"); log(" default scripts above.\n"); log("\n"); log(" -I \n"); log(" maximum number of SOP inputs.\n"); log(" (replaces {I} in the default scripts above)\n"); log("\n"); log(" -P \n"); log(" maximum number of SOP products.\n"); log(" (replaces {P} in the default scripts above)\n"); log("\n"); log(" -S \n"); log(" maximum number of LUT inputs shared.\n"); log(" (replaces {S} in the default scripts above, default: -S 1)\n"); log("\n"); log(" -lut \n"); log(" generate netlist using luts of (max) the specified width.\n"); log("\n"); log(" -lut :\n"); log(" generate netlist using luts of (max) the specified width . All\n"); log(" luts with width <= have constant cost. for luts larger than \n"); log(" the area cost doubles with each additional input bit. the delay cost\n"); log(" is still constant for all lut widths.\n"); log("\n"); log(" -lut \n"); log(" pass this file with lut library to ABC.\n"); log("\n"); log(" -luts ,,,:,..\n"); log(" generate netlist using luts. Use the specified costs for luts with 1,\n"); log(" 2, 3, .. inputs.\n"); log("\n"); log(" -sop\n"); log(" map to sum-of-product cells and inverters\n"); log("\n"); // log(" -mux4, -mux8, -mux16\n"); // log(" try to extract 4-input, 8-input, and/or 16-input muxes\n"); // log(" (ignored when used with -liberty or -lut)\n"); // log("\n"); log(" -g type1,type2,...\n"); log(" Map to the specified list of gate types. Supported gates types are:\n"); log(" AND, NAND, OR, NOR, XOR, XNOR, ANDNOT, ORNOT, MUX, AOI3, OAI3, AOI4, OAI4.\n"); log(" (The NOT gate is always added to this list automatically.)\n"); log("\n"); log(" The following aliases can be used to reference common sets of gate types:\n"); log(" simple: AND OR XOR MUX\n"); log(" cmos2: NAND NOR\n"); log(" cmos3: NAND NOR AOI3 OAI3\n"); log(" cmos4: NAND NOR AOI3 OAI3 AOI4 OAI4\n"); log(" gates: AND NAND OR NOR XOR XNOR ANDNOT ORNOT\n"); log(" aig: AND NAND OR NOR ANDNOT ORNOT\n"); log("\n"); log(" Prefix a gate type with a '-' to remove it from the list. For example\n"); log(" the arguments 'AND,OR,XOR' and 'simple,-MUX' are equivalent.\n"); log("\n"); log(" -dff\n"); log(" also pass $_DFF_?_ and $_DFFE_??_ cells through ABC. modules with many\n"); log(" clock domains are automatically partitioned in clock domains and each\n"); log(" domain is passed through ABC independently.\n"); log("\n"); log(" -clk [!][,[!]]\n"); log(" use only the specified clock domain. this is like -dff, but only FF\n"); log(" cells that belong to the specified clock domain are used.\n"); log("\n"); log(" -keepff\n"); log(" set the \"keep\" attribute on flip-flop output wires. (and thus preserve\n"); log(" them, for example for equivalence checking.)\n"); log("\n"); log(" -nocleanup\n"); log(" when this option is used, the temporary files created by this pass\n"); log(" are not removed. this is useful for debugging.\n"); log("\n"); log(" -showtmp\n"); log(" print the temp dir name in log. usually this is suppressed so that the\n"); log(" command output is identical across runs.\n"); log("\n"); log(" -markgroups\n"); log(" set a 'abcgroup' attribute on all objects created by ABC. The value of\n"); log(" this attribute is a unique integer for each ABC process started. This\n"); log(" is useful for debugging the partitioning of clock domains.\n"); log("\n"); log(" -box \n"); log(" pass this file with box library to ABC. Use with -lut.\n"); log("\n"); log("When neither -liberty nor -lut is used, the Yosys standard cell library is\n"); log("loaded into ABC before the ABC script is executed.\n"); log("\n"); log("Note that this is a logic optimization pass within Yosys that is calling ABC\n"); log("internally. This is not going to \"run ABC on your design\". It will instead run\n"); log("ABC on logic snippets extracted from your design. You will not get any useful\n"); log("output when passing an ABC script that writes a file. Instead write your full\n"); log("design as BLIF file with write_blif and the load that into ABC externally if\n"); log("you want to use ABC to convert your design into another format.\n"); log("\n"); log("[1] http://www.eecs.berkeley.edu/~alanmi/abc/\n"); log("\n"); } void execute(std::vector args, RTLIL::Design *design) YS_OVERRIDE { log_header(design, "Executing ABC9 pass (technology mapping using ABC).\n"); log_push(); assign_map.clear(); signal_map.clear(); signal_init.clear(); pi_map.clear(); po_map.clear(); #ifdef ABCEXTERNAL std::string exe_file = ABCEXTERNAL; #else std::string exe_file = proc_self_dirname() + "yosys-abc"; #endif std::string script_file, liberty_file, constr_file, clk_str, box_file, lut_file; std::string delay_target, sop_inputs, sop_products, lutin_shared = "-S 1"; bool fast_mode = false, dff_mode = false, keepff = false, cleanup = true; bool show_tempdir = false, sop_mode = false; vector lut_costs; markgroups = false; #if 0 cleanup = false; show_tempdir = true; #endif map_mux4 = false; map_mux8 = false; map_mux16 = false; enabled_gates.clear(); #ifdef _WIN32 #ifndef ABCEXTERNAL if (!check_file_exists(exe_file + ".exe") && check_file_exists(proc_self_dirname() + "..\\yosys-abc.exe")) exe_file = proc_self_dirname() + "..\\yosys-abc"; #endif #endif size_t argidx; char pwd [PATH_MAX]; if (!getcwd(pwd, sizeof(pwd))) { log_cmd_error("getcwd failed: %s\n", strerror(errno)); log_abort(); } for (argidx = 1; argidx < args.size(); argidx++) { std::string arg = args[argidx]; if (arg == "-exe" && argidx+1 < args.size()) { exe_file = args[++argidx]; continue; } if (arg == "-script" && argidx+1 < args.size()) { script_file = args[++argidx]; rewrite_filename(script_file); if (!script_file.empty() && !is_absolute_path(script_file) && script_file[0] != '+') script_file = std::string(pwd) + "/" + script_file; continue; } if (arg == "-liberty" && argidx+1 < args.size()) { liberty_file = args[++argidx]; rewrite_filename(liberty_file); if (!liberty_file.empty() && !is_absolute_path(liberty_file)) liberty_file = std::string(pwd) + "/" + liberty_file; continue; } if (arg == "-constr" && argidx+1 < args.size()) { constr_file = args[++argidx]; rewrite_filename(constr_file); if (!constr_file.empty() && !is_absolute_path(constr_file)) constr_file = std::string(pwd) + "/" + constr_file; continue; } if (arg == "-D" && argidx+1 < args.size()) { delay_target = "-D " + args[++argidx]; continue; } if (arg == "-I" && argidx+1 < args.size()) { sop_inputs = "-I " + args[++argidx]; continue; } if (arg == "-P" && argidx+1 < args.size()) { sop_products = "-P " + args[++argidx]; continue; } if (arg == "-S" && argidx+1 < args.size()) { lutin_shared = "-S " + args[++argidx]; continue; } if (arg == "-lut" && argidx+1 < args.size()) { string arg = args[++argidx]; size_t pos = arg.find_first_of(':'); int lut_mode = 0, lut_mode2 = 0; if (pos != string::npos) { lut_mode = atoi(arg.substr(0, pos).c_str()); lut_mode2 = atoi(arg.substr(pos+1).c_str()); } else { pos = arg.find_first_of('.'); if (pos != string::npos) { lut_file = arg; rewrite_filename(lut_file); if (!lut_file.empty() && !is_absolute_path(lut_file)) lut_file = std::string(pwd) + "/" + lut_file; } else { lut_mode = atoi(arg.c_str()); lut_mode2 = lut_mode; } } lut_costs.clear(); for (int i = 0; i < lut_mode; i++) lut_costs.push_back(1); for (int i = lut_mode; i < lut_mode2; i++) lut_costs.push_back(2 << (i - lut_mode)); continue; } if (arg == "-luts" && argidx+1 < args.size()) { lut_costs.clear(); for (auto &tok : split_tokens(args[++argidx], ",")) { auto parts = split_tokens(tok, ":"); if (GetSize(parts) == 0 && !lut_costs.empty()) lut_costs.push_back(lut_costs.back()); else if (GetSize(parts) == 1) lut_costs.push_back(atoi(parts.at(0).c_str())); else if (GetSize(parts) == 2) while (GetSize(lut_costs) < atoi(parts.at(0).c_str())) lut_costs.push_back(atoi(parts.at(1).c_str())); else log_cmd_error("Invalid -luts syntax.\n"); } continue; } if (arg == "-sop") { sop_mode = true; continue; } if (arg == "-mux4") { map_mux4 = true; continue; } if (arg == "-mux8") { map_mux8 = true; continue; } if (arg == "-mux16") { map_mux16 = true; continue; } if (arg == "-dress") { // TODO //abc_dress = true; continue; } if (arg == "-g" && argidx+1 < args.size()) { for (auto g : split_tokens(args[++argidx], ",")) { vector gate_list; bool remove_gates = false; if (GetSize(g) > 0 && g[0] == '-') { remove_gates = true; g = g.substr(1); } if (g == "AND") goto ok_gate; if (g == "NAND") goto ok_gate; if (g == "OR") goto ok_gate; if (g == "NOR") goto ok_gate; if (g == "XOR") goto ok_gate; if (g == "XNOR") goto ok_gate; if (g == "ANDNOT") goto ok_gate; if (g == "ORNOT") goto ok_gate; if (g == "MUX") goto ok_gate; if (g == "AOI3") goto ok_gate; if (g == "OAI3") goto ok_gate; if (g == "AOI4") goto ok_gate; if (g == "OAI4") goto ok_gate; if (g == "simple") { gate_list.push_back("AND"); gate_list.push_back("OR"); gate_list.push_back("XOR"); gate_list.push_back("MUX"); goto ok_alias; } if (g == "cmos2") { gate_list.push_back("NAND"); gate_list.push_back("NOR"); goto ok_alias; } if (g == "cmos3") { gate_list.push_back("NAND"); gate_list.push_back("NOR"); gate_list.push_back("AOI3"); gate_list.push_back("OAI3"); goto ok_alias; } if (g == "cmos4") { gate_list.push_back("NAND"); gate_list.push_back("NOR"); gate_list.push_back("AOI3"); gate_list.push_back("OAI3"); gate_list.push_back("AOI4"); gate_list.push_back("OAI4"); goto ok_alias; } if (g == "gates") { gate_list.push_back("AND"); gate_list.push_back("NAND"); gate_list.push_back("OR"); gate_list.push_back("NOR"); gate_list.push_back("XOR"); gate_list.push_back("XNOR"); gate_list.push_back("ANDNOT"); gate_list.push_back("ORNOT"); goto ok_alias; } if (g == "aig") { gate_list.push_back("AND"); gate_list.push_back("NAND"); gate_list.push_back("OR"); gate_list.push_back("NOR"); gate_list.push_back("ANDNOT"); gate_list.push_back("ORNOT"); goto ok_alias; } cmd_error(args, argidx, stringf("Unsupported gate type: %s", g.c_str())); ok_gate: gate_list.push_back(g); ok_alias: for (auto gate : gate_list) { if (remove_gates) enabled_gates.erase(gate); else enabled_gates.insert(gate); } } continue; } if (arg == "-fast") { fast_mode = true; continue; } if (arg == "-dff") { dff_mode = true; continue; } if (arg == "-clk" && argidx+1 < args.size()) { clk_str = args[++argidx]; dff_mode = true; continue; } if (arg == "-keepff") { keepff = true; continue; } if (arg == "-nocleanup") { cleanup = false; continue; } if (arg == "-showtmp") { show_tempdir = true; continue; } if (arg == "-markgroups") { markgroups = true; continue; } if (arg == "-box" && argidx+1 < args.size()) { box_file = args[++argidx]; rewrite_filename(box_file); if (!box_file.empty() && !is_absolute_path(box_file)) box_file = std::string(pwd) + "/" + box_file; continue; } break; } extra_args(args, argidx, design); if ((!lut_costs.empty() || !lut_file.empty()) && !liberty_file.empty()) log_cmd_error("Got -lut and -liberty! This two options are exclusive.\n"); if (!constr_file.empty() && liberty_file.empty()) log_cmd_error("Got -constr but no -liberty!\n"); for (auto mod : design->selected_modules()) { if (mod->attributes.count("\\abc_box_id")) continue; if (mod->processes.size() > 0) { log("Skipping module %s as it contains processes.\n", log_id(mod)); continue; } if (mod->attributes.count("\\abc_box_id")) continue; assign_map.set(mod); signal_init.clear(); for (Wire *wire : mod->wires()) if (wire->attributes.count("\\init")) { SigSpec initsig = assign_map(wire); Const initval = wire->attributes.at("\\init"); for (int i = 0; i < GetSize(initsig) && i < GetSize(initval); i++) switch (initval[i]) { case State::S0: signal_init[initsig[i]] = State::S0; break; case State::S1: signal_init[initsig[i]] = State::S0; break; default: break; } } if (!dff_mode || !clk_str.empty()) { abc9_module(design, mod, script_file, exe_file, liberty_file, constr_file, cleanup, lut_costs, dff_mode, clk_str, keepff, delay_target, sop_inputs, sop_products, lutin_shared, fast_mode, mod->selected_cells(), show_tempdir, sop_mode, box_file, lut_file); continue; } CellTypes ct(design); std::vector all_cells = mod->selected_cells(); std::set unassigned_cells(all_cells.begin(), all_cells.end()); std::set expand_queue, next_expand_queue; std::set expand_queue_up, next_expand_queue_up; std::set expand_queue_down, next_expand_queue_down; typedef tuple clkdomain_t; std::map> assigned_cells; std::map assigned_cells_reverse; std::map> cell_to_bit, cell_to_bit_up, cell_to_bit_down; std::map> bit_to_cell, bit_to_cell_up, bit_to_cell_down; for (auto cell : all_cells) { clkdomain_t key; for (auto &conn : cell->connections()) for (auto bit : conn.second) { bit = assign_map(bit); if (bit.wire != nullptr) { cell_to_bit[cell].insert(bit); bit_to_cell[bit].insert(cell); if (ct.cell_input(cell->type, conn.first)) { cell_to_bit_up[cell].insert(bit); bit_to_cell_down[bit].insert(cell); } if (ct.cell_output(cell->type, conn.first)) { cell_to_bit_down[cell].insert(bit); bit_to_cell_up[bit].insert(cell); } } } if (cell->type == "$_DFF_N_" || cell->type == "$_DFF_P_") { key = clkdomain_t(cell->type == "$_DFF_P_", assign_map(cell->getPort("\\C")), true, RTLIL::SigSpec()); } else if (cell->type == "$_DFFE_NN_" || cell->type == "$_DFFE_NP_" || cell->type == "$_DFFE_PN_" || cell->type == "$_DFFE_PP_") { bool this_clk_pol = cell->type == "$_DFFE_PN_" || cell->type == "$_DFFE_PP_"; bool this_en_pol = cell->type == "$_DFFE_NP_" || cell->type == "$_DFFE_PP_"; key = clkdomain_t(this_clk_pol, assign_map(cell->getPort("\\C")), this_en_pol, assign_map(cell->getPort("\\E"))); } else continue; unassigned_cells.erase(cell); expand_queue.insert(cell); expand_queue_up.insert(cell); expand_queue_down.insert(cell); assigned_cells[key].push_back(cell); assigned_cells_reverse[cell] = key; } while (!expand_queue_up.empty() || !expand_queue_down.empty()) { if (!expand_queue_up.empty()) { RTLIL::Cell *cell = *expand_queue_up.begin(); clkdomain_t key = assigned_cells_reverse.at(cell); expand_queue_up.erase(cell); for (auto bit : cell_to_bit_up[cell]) for (auto c : bit_to_cell_up[bit]) if (unassigned_cells.count(c)) { unassigned_cells.erase(c); next_expand_queue_up.insert(c); assigned_cells[key].push_back(c); assigned_cells_reverse[c] = key; expand_queue.insert(c); } } if (!expand_queue_down.empty()) { RTLIL::Cell *cell = *expand_queue_down.begin(); clkdomain_t key = assigned_cells_reverse.at(cell); expand_queue_down.erase(cell); for (auto bit : cell_to_bit_down[cell]) for (auto c : bit_to_cell_down[bit]) if (unassigned_cells.count(c)) { unassigned_cells.erase(c); next_expand_queue_up.insert(c); assigned_cells[key].push_back(c); assigned_cells_reverse[c] = key; expand_queue.insert(c); } } if (expand_queue_up.empty() && expand_queue_down.empty()) { expand_queue_up.swap(next_expand_queue_up); expand_queue_down.swap(next_expand_queue_down); } } while (!expand_queue.empty()) { RTLIL::Cell *cell = *expand_queue.begin(); clkdomain_t key = assigned_cells_reverse.at(cell); expand_queue.erase(cell); for (auto bit : cell_to_bit.at(cell)) { for (auto c : bit_to_cell[bit]) if (unassigned_cells.count(c)) { unassigned_cells.erase(c); next_expand_queue.insert(c); assigned_cells[key].push_back(c); assigned_cells_reverse[c] = key; } bit_to_cell[bit].clear(); } if (expand_queue.empty()) expand_queue.swap(next_expand_queue); } clkdomain_t key(true, RTLIL::SigSpec(), true, RTLIL::SigSpec()); for (auto cell : unassigned_cells) { assigned_cells[key].push_back(cell); assigned_cells_reverse[cell] = key; } log_header(design, "Summary of detected clock domains:\n"); for (auto &it : assigned_cells) log(" %d cells in clk=%s%s, en=%s%s\n", GetSize(it.second), std::get<0>(it.first) ? "" : "!", log_signal(std::get<1>(it.first)), std::get<2>(it.first) ? "" : "!", log_signal(std::get<3>(it.first))); for (auto &it : assigned_cells) { clk_polarity = std::get<0>(it.first); clk_sig = assign_map(std::get<1>(it.first)); en_polarity = std::get<2>(it.first); en_sig = assign_map(std::get<3>(it.first)); abc9_module(design, mod, script_file, exe_file, liberty_file, constr_file, cleanup, lut_costs, !clk_sig.empty(), "$", keepff, delay_target, sop_inputs, sop_products, lutin_shared, fast_mode, it.second, show_tempdir, sop_mode, box_file, lut_file); assign_map.set(mod); } } Pass::call(design, "clean"); assign_map.clear(); signal_map.clear(); signal_init.clear(); pi_map.clear(); po_map.clear(); log_pop(); } } Abc9Pass; PRIVATE_NAMESPACE_END