/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Claire Xenia Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "kernel/yosys.h" #include "kernel/sigtools.h" #include "kernel/ffinit.h" #include "kernel/utils.h" USING_YOSYS_NAMESPACE PRIVATE_NAMESPACE_BEGIN struct OnehotDatabase { Module *module; const SigMap &sigmap; bool verbose = false; bool initialized = false; FfInitVals initvals; dict> sig_sources_db; dict sig_onehot_cache; pool recursion_guard; OnehotDatabase(Module *module, const SigMap &sigmap) : module(module), sigmap(sigmap) { } void initialize() { log_assert(!initialized); initialized = true; initvals.set(&sigmap, module); for (auto cell : module->cells()) { vector inputs; SigSpec output; if (cell->type.in(ID($adff), ID($adffe), ID($dff), ID($dffe), ID($sdff), ID($sdffe), ID($sdffce), ID($dlatch), ID($adlatch), ID($ff))) { output = cell->getPort(ID::Q); if (cell->type.in(ID($adff), ID($adffe), ID($adlatch))) inputs.push_back(cell->getParam(ID::ARST_VALUE)); if (cell->type.in(ID($sdff), ID($sdffe), ID($sdffce))) inputs.push_back(cell->getParam(ID::SRST_VALUE)); inputs.push_back(cell->getPort(ID::D)); } if (cell->type.in(ID($mux), ID($pmux))) { output = cell->getPort(ID::Y); inputs.push_back(cell->getPort(ID::A)); SigSpec B = cell->getPort(ID::B); for (int i = 0; i < GetSize(B); i += GetSize(output)) inputs.push_back(B.extract(i, GetSize(output))); } if (!output.empty()) { output = sigmap(output); auto &srcs = sig_sources_db[output]; for (auto src : inputs) { while (!src.empty() && src[GetSize(src)-1] == State::S0) src.remove(GetSize(src)-1); srcs.insert(sigmap(src)); } } } } void query_worker(const SigSpec &sig, bool &retval, bool &cache, int indent) { if (verbose) log("%*s %s\n", indent, "", log_signal(sig)); log_assert(retval); if (recursion_guard.count(sig)) { if (verbose) log("%*s - recursion\n", indent, ""); cache = false; return; } auto it = sig_onehot_cache.find(sig); if (it != sig_onehot_cache.end()) { if (verbose) log("%*s - cached (%s)\n", indent, "", it->second ? "true" : "false"); if (!it->second) retval = false; return; } bool found_init_ones = false; for (auto bit : sig) { if (initvals(bit) == State::S1) { if (found_init_ones) { if (verbose) log("%*s - non-onehot init value\n", indent, ""); retval = false; break; } found_init_ones = true; } } if (retval) { if (sig.is_fully_const()) { bool found_ones = false; for (auto bit : sig) { if (bit == State::S1) { if (found_ones) { if (verbose) log("%*s - non-onehot constant\n", indent, ""); retval = false; break; } found_ones = true; } } } else { auto srcs = sig_sources_db.find(sig); if (srcs == sig_sources_db.end()) { if (verbose) log("%*s - no sources for non-const signal\n", indent, ""); retval = false; } else { for (auto &src : srcs->second) { bool child_cache = true; recursion_guard.insert(sig); query_worker(src, retval, child_cache, indent+4); recursion_guard.erase(sig); if (!child_cache) cache = false; if (!retval) break; } } } } // it is always safe to cache a negative result if (cache || !retval) sig_onehot_cache[sig] = retval; } bool query(const SigSpec &sig) { bool retval = true; bool cache = true; if (verbose) log("** ONEHOT QUERY START (%s)\n", log_signal(sig)); if (!initialized) initialize(); query_worker(sig, retval, cache, 3); if (verbose) log("** ONEHOT QUERY RESULT = %s\n", retval ? "true" : "false"); // it is always safe to cache the root result of a query if (!cache) sig_onehot_cache[sig] = retval; return retval; } }; struct Pmux2ShiftxPass : public Pass { Pmux2ShiftxPass() : Pass("pmux2shiftx", "transform $pmux cells to $shiftx cells") { } void help() override { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" pmux2shiftx [options] [selection]\n"); log("\n"); log("This pass transforms $pmux cells to $shiftx cells.\n"); log("\n"); log(" -v, -vv\n"); log(" verbose output\n"); log("\n"); log(" -min_density \n"); log(" specifies the minimum density for the shifter\n"); log(" default: 50\n"); log("\n"); log(" -min_choices \n"); log(" specified the minimum number of choices for a control signal\n"); log(" default: 3\n"); log("\n"); log(" -onehot ignore|pmux|shiftx\n"); log(" select strategy for one-hot encoded control signals\n"); log(" default: pmux\n"); log("\n"); log(" -norange\n"); log(" disable $sub inference for \"range decoders\"\n"); log("\n"); } void execute(std::vector args, RTLIL::Design *design) override { int min_density = 50; int min_choices = 3; bool allow_onehot = false; bool optimize_onehot = true; bool verbose = false; bool verbose_onehot = false; bool norange = false; log_header(design, "Executing PMUX2SHIFTX pass.\n"); size_t argidx; for (argidx = 1; argidx < args.size(); argidx++) { if (args[argidx] == "-min_density" && argidx+1 < args.size()) { min_density = atoi(args[++argidx].c_str()); continue; } if (args[argidx] == "-min_choices" && argidx+1 < args.size()) { min_choices = atoi(args[++argidx].c_str()); continue; } if (args[argidx] == "-onehot" && argidx+1 < args.size() && args[argidx+1] == "ignore") { argidx++; allow_onehot = false; optimize_onehot = false; continue; } if (args[argidx] == "-onehot" && argidx+1 < args.size() && args[argidx+1] == "pmux") { argidx++; allow_onehot = false; optimize_onehot = true; continue; } if (args[argidx] == "-onehot" && argidx+1 < args.size() && args[argidx+1] == "shiftx") { argidx++; allow_onehot = true; optimize_onehot = false; continue; } if (args[argidx] == "-v") { verbose = true; continue; } if (args[argidx] == "-vv") { verbose = true; verbose_onehot = true; continue; } if (args[argidx] == "-norange") { norange = true; continue; } break; } extra_args(args, argidx, design); for (auto module : design->selected_modules()) { SigMap sigmap(module); OnehotDatabase onehot_db(module, sigmap); onehot_db.verbose = verbose_onehot; dict> eqdb; for (auto cell : module->cells()) { if (cell->type == ID($eq)) { dict bits; SigSpec A = sigmap(cell->getPort(ID::A)); SigSpec B = sigmap(cell->getPort(ID::B)); int a_width = cell->getParam(ID::A_WIDTH).as_int(); int b_width = cell->getParam(ID::B_WIDTH).as_int(); if (a_width < b_width) { bool a_signed = cell->getParam(ID::A_SIGNED).as_int(); A.extend_u0(b_width, a_signed); } if (b_width < a_width) { bool b_signed = cell->getParam(ID::B_SIGNED).as_int(); B.extend_u0(a_width, b_signed); } for (int i = 0; i < GetSize(A); i++) { SigBit a_bit = A[i], b_bit = B[i]; if (b_bit.wire && !a_bit.wire) { std::swap(a_bit, b_bit); } if (!a_bit.wire || b_bit.wire) goto next_cell; if (bits.count(a_bit)) goto next_cell; bits[a_bit] = b_bit.data; } if (GetSize(bits) > 20) goto next_cell; bits.sort(); pair entry; for (auto it : bits) { entry.first.append(it.first); entry.second.bits().push_back(it.second); } eqdb[sigmap(cell->getPort(ID::Y)[0])] = entry; goto next_cell; } if (cell->type == ID($logic_not)) { dict bits; SigSpec A = sigmap(cell->getPort(ID::A)); for (int i = 0; i < GetSize(A); i++) bits[A[i]] = State::S0; bits.sort(); pair entry; for (auto it : bits) { entry.first.append(it.first); entry.second.bits().push_back(it.second); } eqdb[sigmap(cell->getPort(ID::Y)[0])] = entry; goto next_cell; } next_cell:; } for (auto cell : module->selected_cells()) { if (cell->type != ID($pmux)) continue; string src = cell->get_src_attribute(); int width = cell->getParam(ID::WIDTH).as_int(); int width_bits = ceil_log2(width); int extwidth = width; while (extwidth & (extwidth-1)) extwidth++; dict> seldb; SigSpec A = cell->getPort(ID::A); SigSpec B = cell->getPort(ID::B); SigSpec S = sigmap(cell->getPort(ID::S)); for (int i = 0; i < GetSize(S); i++) { if (!eqdb.count(S[i])) continue; auto &entry = eqdb.at(S[i]); seldb[entry.first].insert(i); } if (seldb.empty()) continue; bool printed_pmux_header = false; if (verbose) { printed_pmux_header = true; log("Inspecting $pmux cell %s/%s.\n", log_id(module), log_id(cell)); log(" data width: %d (next power-of-2 = %d, log2 = %d)\n", width, extwidth, width_bits); } SigSpec updated_S = cell->getPort(ID::S); SigSpec updated_B = cell->getPort(ID::B); while (!seldb.empty()) { // pick the largest entry in seldb SigSpec sig = seldb.begin()->first; for (auto &it : seldb) { if (GetSize(sig) < GetSize(it.first)) sig = it.first; else if (GetSize(seldb.at(sig)) < GetSize(it.second)) sig = it.first; } // find the relevant choices bool is_onehot = GetSize(sig) > 2; dict choices; for (int i : seldb.at(sig)) { Const val = eqdb.at(S[i]).second; int onebits = 0; for (auto b : val) if (b == State::S1) onebits++; if (onebits > 1) is_onehot = false; choices[val] = i; } bool full_pmux = GetSize(choices) == GetSize(S); // TBD: also find choices that are using signals that are subsets of the bits in "sig" if (!verbose) { if (is_onehot && !allow_onehot && !optimize_onehot) { seldb.erase(sig); continue; } if (GetSize(choices) < min_choices) { seldb.erase(sig); continue; } } if (!printed_pmux_header) { printed_pmux_header = true; log("Inspecting $pmux cell %s/%s.\n", log_id(module), log_id(cell)); log(" data width: %d (next power-of-2 = %d, log2 = %d)\n", width, extwidth, width_bits); } log(" checking ctrl signal %s\n", log_signal(sig)); auto print_choices = [&]() { log(" table of choices:\n"); for (auto &it : choices) log(" %3d: %s: %s\n", it.second, log_signal(it.first), log_signal(B.extract(it.second*width, width))); }; if (verbose) { if (is_onehot && !allow_onehot && !optimize_onehot) { print_choices(); log(" ignoring one-hot encoding.\n"); seldb.erase(sig); continue; } if (GetSize(choices) < min_choices) { print_choices(); log(" insufficient choices.\n"); seldb.erase(sig); continue; } } if (is_onehot && optimize_onehot) { print_choices(); if (!onehot_db.query(sig)) { log(" failed to detect onehot driver. do not optimize.\n"); } else { log(" optimizing one-hot encoding.\n"); for (auto &it : choices) { const Const &val = it.first; int index = -1; for (int i = 0; i < GetSize(val); i++) if (val[i] == State::S1) { log_assert(index < 0); index = i; } if (index < 0) { log(" %3d: zero encoding.\n", it.second); continue; } SigBit new_ctrl = sig[index]; log(" %3d: new crtl signal is %s.\n", it.second, log_signal(new_ctrl)); updated_S[it.second] = new_ctrl; } } seldb.erase(sig); continue; } // find the best permutation vector perm_new_from_old(GetSize(sig)); Const perm_xormask(State::S0, GetSize(sig)); { vector values(GetSize(choices)); vector used_src_columns(GetSize(sig)); vector> columns(GetSize(sig), vector(GetSize(values))); for (int i = 0; i < GetSize(choices); i++) { Const val = choices.element(i)->first; for (int k = 0; k < GetSize(val); k++) if (val[k] == State::S1) columns[k][i] = true; } for (int dst_col = GetSize(sig)-1; dst_col >= 0; dst_col--) { int best_src_col = -1; bool best_inv = false; int best_maxval = 0; int best_delta = 0; // find best src column for this dst column for (int src_col = 0; src_col < GetSize(sig); src_col++) { if (used_src_columns[src_col]) continue; int this_maxval = 0; int this_minval = 1 << 30; int this_inv_maxval = 0; int this_inv_minval = 1 << 30; for (int i = 0; i < GetSize(values); i++) { int val = values[i]; int inv_val = val; if (columns[src_col][i]) val |= 1 << dst_col; else inv_val |= 1 << dst_col; this_maxval = std::max(this_maxval, val); this_minval = std::min(this_minval, val); this_inv_maxval = std::max(this_inv_maxval, inv_val); this_inv_minval = std::min(this_inv_minval, inv_val); } int this_delta = this_maxval - this_minval; int this_inv_delta = this_maxval - this_minval; bool this_inv = false; if (!norange && this_delta != this_inv_delta) this_inv = this_inv_delta < this_delta; else if (this_maxval != this_inv_maxval) this_inv = this_inv_maxval < this_maxval; if (this_inv) { this_delta = this_inv_delta; this_maxval = this_inv_maxval; this_minval = this_inv_minval; } bool this_is_better = false; if (best_src_col < 0) this_is_better = true; else if (!norange && this_delta != best_delta) this_is_better = this_delta < best_delta; else if (this_maxval != best_maxval) this_is_better = this_maxval < best_maxval; else this_is_better = sig[best_src_col] < sig[src_col]; if (this_is_better) { best_src_col = src_col; best_inv = this_inv; best_maxval = this_maxval; best_delta = this_delta; } } used_src_columns[best_src_col] = true; perm_new_from_old[dst_col] = best_src_col; perm_xormask.bits()[dst_col] = best_inv ? State::S1 : State::S0; } } // permutated sig SigSpec perm_sig(State::S0, GetSize(sig)); for (int i = 0; i < GetSize(sig); i++) perm_sig[i] = sig[perm_new_from_old[i]]; log(" best permutation: %s\n", log_signal(perm_sig)); log(" best xor mask: %s\n", log_signal(perm_xormask)); // permutated choices int min_choice = 1 << 30; int max_choice = -1; dict perm_choices; for (auto &it : choices) { Const &old_c = it.first; Const new_c(State::S0, GetSize(old_c)); for (int i = 0; i < GetSize(old_c); i++) new_c.bits()[i] = old_c[perm_new_from_old[i]]; Const new_c_before_xor = new_c; new_c = const_xor(new_c, perm_xormask, false, false, GetSize(new_c)); perm_choices[new_c] = it.second; min_choice = std::min(min_choice, new_c.as_int()); max_choice = std::max(max_choice, new_c.as_int()); log(" %3d: %s -> %s -> %s: %s\n", it.second, log_signal(old_c), log_signal(new_c_before_xor), log_signal(new_c), log_signal(B.extract(it.second*width, width))); } int range_density = 100*GetSize(choices) / (max_choice-min_choice+1); int absolute_density = 100*GetSize(choices) / (max_choice+1); log(" choices: %d\n", GetSize(choices)); log(" min choice: %d\n", min_choice); log(" max choice: %d\n", max_choice); log(" range density: %d%%\n", range_density); log(" absolute density: %d%%\n", absolute_density); if (full_pmux) { int full_density = 100*GetSize(choices) / (1 << GetSize(sig)); log(" full density: %d%%\n", full_density); if (full_density < min_density) { full_pmux = false; } else { min_choice = 0; max_choice = (1 << GetSize(sig))-1; log(" update to full case.\n"); log(" new min choice: %d\n", min_choice); log(" new max choice: %d\n", max_choice); } } bool full_case = (min_choice == 0) && (max_choice == (1 << GetSize(sig))-1) && (full_pmux || max_choice+1 == GetSize(choices)); log(" full case: %s\n", full_case ? "true" : "false"); // check density percentages Const offset(State::S0, GetSize(sig)); if (!norange && absolute_density < min_density && range_density >= min_density) { offset = Const(min_choice, GetSize(sig)); log(" offset: %s\n", log_signal(offset)); min_choice -= offset.as_int(); max_choice -= offset.as_int(); dict new_perm_choices; for (auto &it : perm_choices) new_perm_choices[const_sub(it.first, offset, false, false, GetSize(sig))] = it.second; perm_choices.swap(new_perm_choices); } else if (absolute_density < min_density) { log(" insufficient density.\n"); seldb.erase(sig); continue; } // creat cmp signal SigSpec cmp = perm_sig; if (perm_xormask.as_bool()) cmp = module->Xor(NEW_ID, cmp, perm_xormask, false, src); if (offset.as_bool()) cmp = module->Sub(NEW_ID, cmp, offset, false, src); // create enable signal SigBit en = State::S1; if (!full_case) { Const enable_mask(State::S0, max_choice+1); for (auto &it : perm_choices) enable_mask.bits()[it.first.as_int()] = State::S1; en = module->addWire(NEW_ID); module->addShift(NEW_ID, enable_mask, cmp, en, false, src); } // create data signal SigSpec data(State::Sx, (max_choice+1)*extwidth); if (full_pmux) { for (int i = 0; i <= max_choice; i++) data.replace(i*extwidth, A); } for (auto &it : perm_choices) { int position = it.first.as_int()*extwidth; int data_index = it.second; data.replace(position, B.extract(data_index*width, width)); updated_S[data_index] = State::S0; updated_B.replace(data_index*width, SigSpec(State::Sx, width)); } // create shiftx cell SigSpec shifted_cmp = {cmp, SigSpec(State::S0, width_bits)}; SigSpec outsig = module->addWire(NEW_ID, width); Cell *c = module->addShiftx(NEW_ID, data, shifted_cmp, outsig, false, src); updated_S.append(en); updated_B.append(outsig); log(" created $shiftx cell %s.\n", log_id(c)); // remove this sig and continue with the next block seldb.erase(sig); } // update $pmux cell cell->setPort(ID::S, updated_S); cell->setPort(ID::B, updated_B); cell->setParam(ID::S_WIDTH, GetSize(updated_S)); } } } } Pmux2ShiftxPass; struct OnehotPass : public Pass { OnehotPass() : Pass("onehot", "optimize $eq cells for onehot signals") { } void help() override { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" onehot [options] [selection]\n"); log("\n"); log("This pass optimizes $eq cells that compare one-hot signals against constants\n"); log("\n"); log(" -v, -vv\n"); log(" verbose output\n"); log("\n"); } void execute(std::vector args, RTLIL::Design *design) override { bool verbose = false; bool verbose_onehot = false; log_header(design, "Executing ONEHOT pass.\n"); size_t argidx; for (argidx = 1; argidx < args.size(); argidx++) { if (args[argidx] == "-v") { verbose = true; continue; } if (args[argidx] == "-vv") { verbose = true; verbose_onehot = true; continue; } break; } extra_args(args, argidx, design); for (auto module : design->selected_modules()) { SigMap sigmap(module); OnehotDatabase onehot_db(module, sigmap); onehot_db.verbose = verbose_onehot; for (auto cell : module->selected_cells()) { if (cell->type != ID($eq)) continue; SigSpec A = sigmap(cell->getPort(ID::A)); SigSpec B = sigmap(cell->getPort(ID::B)); int a_width = cell->getParam(ID::A_WIDTH).as_int(); int b_width = cell->getParam(ID::B_WIDTH).as_int(); if (a_width < b_width) { bool a_signed = cell->getParam(ID::A_SIGNED).as_int(); A.extend_u0(b_width, a_signed); } if (b_width < a_width) { bool b_signed = cell->getParam(ID::B_SIGNED).as_int(); B.extend_u0(a_width, b_signed); } if (A.is_fully_const()) std::swap(A, B); if (!B.is_fully_const()) continue; if (verbose) log("Checking $eq(%s, %s) cell %s/%s.\n", log_signal(A), log_signal(B), log_id(module), log_id(cell)); if (!onehot_db.query(A)) { if (verbose) log(" onehot driver test on %s failed.\n", log_signal(A)); continue; } int index = -1; bool not_onehot = false; for (int i = 0; i < GetSize(B); i++) { if (B[i] != State::S1) continue; if (index >= 0) not_onehot = true; index = i; } if (index < 0) { if (verbose) log(" not optimizing the zero pattern.\n"); continue; } SigSpec Y = cell->getPort(ID::Y); if (not_onehot) { if (verbose) log(" replacing with constant 0 driver.\n"); else log("Replacing one-hot $eq(%s, %s) cell %s/%s with constant 0 driver.\n", log_signal(A), log_signal(B), log_id(module), log_id(cell)); module->connect(Y, SigSpec(1, GetSize(Y))); } else { SigSpec sig = A[index]; if (verbose) log(" replacing with signal %s.\n", log_signal(sig)); else log("Replacing one-hot $eq(%s, %s) cell %s/%s with signal %s.\n",log_signal(A), log_signal(B), log_id(module), log_id(cell), log_signal(sig)); sig.extend_u0(GetSize(Y)); module->connect(Y, sig); } module->remove(cell); } } } } OnehotPass; PRIVATE_NAMESPACE_END