/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Clifford Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * * --- * * This is the AST frontend library. * * The AST frontend library is not a frontend on it's own but provides a * generic abstract syntax tree (AST) abstraction for HDL code and can be * used by HDL frontends. See "ast.h" for an overview of the API and the * Verilog frontend for an usage example. * */ #include "kernel/log.h" #include "kernel/utils.h" #include "libs/sha1/sha1.h" #include "ast.h" #include #include #include YOSYS_NAMESPACE_BEGIN using namespace AST; using namespace AST_INTERNAL; // helper function for creating RTLIL code for unary operations static RTLIL::SigSpec uniop2rtlil(AstNode *that, std::string type, int result_width, const RTLIL::SigSpec &arg, bool gen_attributes = true) { std::stringstream sstr; sstr << type << "$" << that->filename << ":" << that->linenum << "$" << (autoidx++); RTLIL::Cell *cell = current_module->addCell(sstr.str(), type); cell->attributes["\\src"] = stringf("%s:%d", that->filename.c_str(), that->linenum); RTLIL::Wire *wire = current_module->addWire(cell->name.str() + "_Y", result_width); wire->attributes["\\src"] = stringf("%s:%d", that->filename.c_str(), that->linenum); if (gen_attributes) for (auto &attr : that->attributes) { if (attr.second->type != AST_CONSTANT) log_error("Attribute `%s' with non-constant value at %s:%d!\n", attr.first.c_str(), that->filename.c_str(), that->linenum); cell->attributes[attr.first] = attr.second->asAttrConst(); } cell->parameters["\\A_SIGNED"] = RTLIL::Const(that->children[0]->is_signed); cell->parameters["\\A_WIDTH"] = RTLIL::Const(arg.size()); cell->setPort("\\A", arg); cell->parameters["\\Y_WIDTH"] = result_width; cell->setPort("\\Y", wire); return wire; } // helper function for extending bit width (preferred over SigSpec::extend() because of correct undef propagation in ConstEval) static void widthExtend(AstNode *that, RTLIL::SigSpec &sig, int width, bool is_signed) { if (width <= sig.size()) { sig.extend_u0(width, is_signed); return; } std::stringstream sstr; sstr << "$extend" << "$" << that->filename << ":" << that->linenum << "$" << (autoidx++); RTLIL::Cell *cell = current_module->addCell(sstr.str(), "$pos"); cell->attributes["\\src"] = stringf("%s:%d", that->filename.c_str(), that->linenum); RTLIL::Wire *wire = current_module->addWire(cell->name.str() + "_Y", width); wire->attributes["\\src"] = stringf("%s:%d", that->filename.c_str(), that->linenum); if (that != NULL) for (auto &attr : that->attributes) { if (attr.second->type != AST_CONSTANT) log_error("Attribute `%s' with non-constant value at %s:%d!\n", attr.first.c_str(), that->filename.c_str(), that->linenum); cell->attributes[attr.first] = attr.second->asAttrConst(); } cell->parameters["\\A_SIGNED"] = RTLIL::Const(is_signed); cell->parameters["\\A_WIDTH"] = RTLIL::Const(sig.size()); cell->setPort("\\A", sig); cell->parameters["\\Y_WIDTH"] = width; cell->setPort("\\Y", wire); sig = wire; } // helper function for creating RTLIL code for binary operations static RTLIL::SigSpec binop2rtlil(AstNode *that, std::string type, int result_width, const RTLIL::SigSpec &left, const RTLIL::SigSpec &right) { std::stringstream sstr; sstr << type << "$" << that->filename << ":" << that->linenum << "$" << (autoidx++); RTLIL::Cell *cell = current_module->addCell(sstr.str(), type); cell->attributes["\\src"] = stringf("%s:%d", that->filename.c_str(), that->linenum); RTLIL::Wire *wire = current_module->addWire(cell->name.str() + "_Y", result_width); wire->attributes["\\src"] = stringf("%s:%d", that->filename.c_str(), that->linenum); for (auto &attr : that->attributes) { if (attr.second->type != AST_CONSTANT) log_error("Attribute `%s' with non-constant value at %s:%d!\n", attr.first.c_str(), that->filename.c_str(), that->linenum); cell->attributes[attr.first] = attr.second->asAttrConst(); } cell->parameters["\\A_SIGNED"] = RTLIL::Const(that->children[0]->is_signed); cell->parameters["\\B_SIGNED"] = RTLIL::Const(that->children[1]->is_signed); cell->parameters["\\A_WIDTH"] = RTLIL::Const(left.size()); cell->parameters["\\B_WIDTH"] = RTLIL::Const(right.size()); cell->setPort("\\A", left); cell->setPort("\\B", right); cell->parameters["\\Y_WIDTH"] = result_width; cell->setPort("\\Y", wire); return wire; } // helper function for creating RTLIL code for multiplexers static RTLIL::SigSpec mux2rtlil(AstNode *that, const RTLIL::SigSpec &cond, const RTLIL::SigSpec &left, const RTLIL::SigSpec &right) { log_assert(cond.size() == 1); std::stringstream sstr; sstr << "$ternary$" << that->filename << ":" << that->linenum << "$" << (autoidx++); RTLIL::Cell *cell = current_module->addCell(sstr.str(), "$mux"); cell->attributes["\\src"] = stringf("%s:%d", that->filename.c_str(), that->linenum); RTLIL::Wire *wire = current_module->addWire(cell->name.str() + "_Y", left.size()); wire->attributes["\\src"] = stringf("%s:%d", that->filename.c_str(), that->linenum); for (auto &attr : that->attributes) { if (attr.second->type != AST_CONSTANT) log_error("Attribute `%s' with non-constant value at %s:%d!\n", attr.first.c_str(), that->filename.c_str(), that->linenum); cell->attributes[attr.first] = attr.second->asAttrConst(); } cell->parameters["\\WIDTH"] = RTLIL::Const(left.size()); cell->setPort("\\A", right); cell->setPort("\\B", left); cell->setPort("\\S", cond); cell->setPort("\\Y", wire); return wire; } // helper class for converting AST always nodes to RTLIL processes struct AST_INTERNAL::ProcessGenerator { // input and output structures AstNode *always; RTLIL::SigSpec initSyncSignals; RTLIL::Process *proc; RTLIL::SigSpec outputSignals; // This always points to the RTLIL::CaseRule beeing filled at the moment RTLIL::CaseRule *current_case; // This map contains the replacement pattern to be used in the right hand side // of an assignment. E.g. in the code "foo = bar; foo = func(foo);" the foo in the right // hand side of the 2nd assignment needs to be replace with the temporary signal holding // the value assigned in the first assignment. So when the first assignement is processed // the according information is appended to subst_rvalue_from and subst_rvalue_to. stackmap subst_rvalue_map; // This map contains the replacement pattern to be used in the left hand side // of an assignment. E.g. in the code "always @(posedge clk) foo <= bar" the signal bar // should not be connected to the signal foo. Instead it must be connected to the temporary // signal that is used as input for the register that drives the signal foo. stackmap subst_lvalue_map; // The code here generates a number of temprorary signal for each output register. This // map helps generating nice numbered names for all this temporary signals. std::map new_temp_count; // Buffer for generating the init action RTLIL::SigSpec init_lvalue, init_rvalue; ProcessGenerator(AstNode *always, RTLIL::SigSpec initSyncSignalsArg = RTLIL::SigSpec()) : always(always), initSyncSignals(initSyncSignalsArg) { // generate process and simple root case proc = new RTLIL::Process; proc->attributes["\\src"] = stringf("%s:%d", always->filename.c_str(), always->linenum); proc->name = stringf("$proc$%s:%d$%d", always->filename.c_str(), always->linenum, autoidx++); for (auto &attr : always->attributes) { if (attr.second->type != AST_CONSTANT) log_error("Attribute `%s' with non-constant value at %s:%d!\n", attr.first.c_str(), always->filename.c_str(), always->linenum); proc->attributes[attr.first] = attr.second->asAttrConst(); } current_module->processes[proc->name] = proc; current_case = &proc->root_case; // create initial temporary signal for all output registers RTLIL::SigSpec subst_lvalue_from, subst_lvalue_to; collect_lvalues(subst_lvalue_from, always, true, true); subst_lvalue_to = new_temp_signal(subst_lvalue_from); subst_lvalue_map = subst_lvalue_from.to_sigbit_map(subst_lvalue_to); bool found_anyedge_syncs = false; for (auto child : always->children) if (child->type == AST_EDGE) found_anyedge_syncs = true; if (found_anyedge_syncs) { log("Note: Assuming pure combinatorial block at %s:%d in\n", always->filename.c_str(), always->linenum); log("compliance with IEC 62142(E):2005 / IEEE Std. 1364.1(E):2002. Recommending\n"); log("use of @* instead of @(...) for better match of synthesis and simulation.\n"); } // create syncs for the process bool found_clocked_sync = false; for (auto child : always->children) if (child->type == AST_POSEDGE || child->type == AST_NEGEDGE) { found_clocked_sync = true; if (found_anyedge_syncs) log_error("Found non-synthesizable event list at %s:%d!\n", always->filename.c_str(), always->linenum); RTLIL::SyncRule *syncrule = new RTLIL::SyncRule; syncrule->type = child->type == AST_POSEDGE ? RTLIL::STp : RTLIL::STn; syncrule->signal = child->children[0]->genRTLIL(); addChunkActions(syncrule->actions, subst_lvalue_from, subst_lvalue_to, true); proc->syncs.push_back(syncrule); } if (proc->syncs.empty()) { RTLIL::SyncRule *syncrule = new RTLIL::SyncRule; syncrule->type = RTLIL::STa; syncrule->signal = RTLIL::SigSpec(); addChunkActions(syncrule->actions, subst_lvalue_from, subst_lvalue_to, true); proc->syncs.push_back(syncrule); } // create initial assignments for the temporary signals if ((flag_nolatches || always->get_bool_attribute("\\nolatches") || current_module->get_bool_attribute("\\nolatches")) && !found_clocked_sync) { subst_rvalue_map = subst_lvalue_from.to_sigbit_dict(RTLIL::SigSpec(RTLIL::State::Sx, GetSize(subst_lvalue_from))); } else { addChunkActions(current_case->actions, subst_lvalue_to, subst_lvalue_from); } // process the AST for (auto child : always->children) if (child->type == AST_BLOCK) processAst(child); if (initSyncSignals.size() > 0) { RTLIL::SyncRule *sync = new RTLIL::SyncRule; sync->type = RTLIL::SyncType::STi; proc->syncs.push_back(sync); log_assert(init_lvalue.size() == init_rvalue.size()); int offset = 0; for (auto &init_lvalue_c : init_lvalue.chunks()) { RTLIL::SigSpec lhs = init_lvalue_c; RTLIL::SigSpec rhs = init_rvalue.extract(offset, init_lvalue_c.width); remove_unwanted_lvalue_bits(lhs, rhs); sync->actions.push_back(RTLIL::SigSig(lhs, rhs)); offset += lhs.size(); } } outputSignals = RTLIL::SigSpec(subst_lvalue_from); } void remove_unwanted_lvalue_bits(RTLIL::SigSpec &lhs, RTLIL::SigSpec &rhs) { RTLIL::SigSpec new_lhs, new_rhs; log_assert(GetSize(lhs) == GetSize(rhs)); for (int i = 0; i < GetSize(lhs); i++) { if (lhs[i].wire == nullptr) continue; new_lhs.append(lhs[i]); new_rhs.append(rhs[i]); } lhs = new_lhs; rhs = new_rhs; } // create new temporary signals RTLIL::SigSpec new_temp_signal(RTLIL::SigSpec sig) { std::vector chunks = sig.chunks(); for (int i = 0; i < GetSize(chunks); i++) { RTLIL::SigChunk &chunk = chunks[i]; if (chunk.wire == NULL) continue; std::string wire_name; do { wire_name = stringf("$%d%s[%d:%d]", new_temp_count[chunk.wire]++, chunk.wire->name.c_str(), chunk.width+chunk.offset-1, chunk.offset);; if (chunk.wire->name.str().find('$') != std::string::npos) wire_name += stringf("$%d", autoidx++); } while (current_module->wires_.count(wire_name) > 0); RTLIL::Wire *wire = current_module->addWire(wire_name, chunk.width); wire->attributes["\\src"] = stringf("%s:%d", always->filename.c_str(), always->linenum); chunk.wire = wire; chunk.offset = 0; } return chunks; } // recursively traverse the AST an collect all assigned signals void collect_lvalues(RTLIL::SigSpec ®, AstNode *ast, bool type_eq, bool type_le, bool run_sort_and_unify = true) { switch (ast->type) { case AST_CASE: for (auto child : ast->children) if (child != ast->children[0]) { log_assert(child->type == AST_COND); collect_lvalues(reg, child, type_eq, type_le, false); } break; case AST_COND: case AST_ALWAYS: case AST_INITIAL: for (auto child : ast->children) if (child->type == AST_BLOCK) collect_lvalues(reg, child, type_eq, type_le, false); break; case AST_BLOCK: for (auto child : ast->children) { if (child->type == AST_ASSIGN_EQ && type_eq) reg.append(child->children[0]->genRTLIL()); if (child->type == AST_ASSIGN_LE && type_le) reg.append(child->children[0]->genRTLIL()); if (child->type == AST_CASE || child->type == AST_BLOCK) collect_lvalues(reg, child, type_eq, type_le, false); } break; default: log_abort(); } if (run_sort_and_unify) { std::set sorted_reg; for (auto bit : reg) if (bit.wire) sorted_reg.insert(bit); reg = RTLIL::SigSpec(sorted_reg); } } // remove all assignments to the given signal pattern in a case and all its children. // e.g. when the last statement in the code "a = 23; if (b) a = 42; a = 0;" is processed this // function is called to clean up the first two assignments as they are overwritten by // the third assignment. void removeSignalFromCaseTree(const std::set &pattern, RTLIL::CaseRule *cs) { for (auto it = cs->actions.begin(); it != cs->actions.end(); it++) it->first.remove2(pattern, &it->second); for (auto it = cs->switches.begin(); it != cs->switches.end(); it++) for (auto it2 = (*it)->cases.begin(); it2 != (*it)->cases.end(); it2++) removeSignalFromCaseTree(pattern, *it2); } // add an assignment (aka "action") but split it up in chunks. this way huge assignments // are avoided and the generated $mux cells have a more "natural" size. void addChunkActions(std::vector &actions, RTLIL::SigSpec lvalue, RTLIL::SigSpec rvalue, bool inSyncRule = false) { if (inSyncRule && initSyncSignals.size() > 0) { init_lvalue.append(lvalue.extract(initSyncSignals)); init_rvalue.append(lvalue.extract(initSyncSignals, &rvalue)); lvalue.remove2(initSyncSignals, &rvalue); } log_assert(lvalue.size() == rvalue.size()); int offset = 0; for (auto &lvalue_c : lvalue.chunks()) { RTLIL::SigSpec lhs = lvalue_c; RTLIL::SigSpec rhs = rvalue.extract(offset, lvalue_c.width); if (inSyncRule && lvalue_c.wire && lvalue_c.wire->get_bool_attribute("\\nosync")) rhs = RTLIL::SigSpec(RTLIL::State::Sx, rhs.size()); remove_unwanted_lvalue_bits(lhs, rhs); actions.push_back(RTLIL::SigSig(lhs, rhs)); offset += lhs.size(); } } // recursively process the AST and fill the RTLIL::Process void processAst(AstNode *ast) { switch (ast->type) { case AST_BLOCK: for (auto child : ast->children) processAst(child); break; case AST_ASSIGN_EQ: case AST_ASSIGN_LE: { RTLIL::SigSpec unmapped_lvalue = ast->children[0]->genRTLIL(), lvalue = unmapped_lvalue; RTLIL::SigSpec rvalue = ast->children[1]->genWidthRTLIL(lvalue.size(), &subst_rvalue_map.stdmap()); lvalue.replace(subst_lvalue_map.stdmap()); if (ast->type == AST_ASSIGN_EQ) { for (int i = 0; i < GetSize(unmapped_lvalue); i++) subst_rvalue_map.set(unmapped_lvalue[i], rvalue[i]); } removeSignalFromCaseTree(lvalue.to_sigbit_set(), current_case); remove_unwanted_lvalue_bits(lvalue, rvalue); current_case->actions.push_back(RTLIL::SigSig(lvalue, rvalue)); } break; case AST_CASE: { RTLIL::SwitchRule *sw = new RTLIL::SwitchRule; sw->signal = ast->children[0]->genWidthRTLIL(-1, &subst_rvalue_map.stdmap()); current_case->switches.push_back(sw); for (auto &attr : ast->attributes) { if (attr.second->type != AST_CONSTANT) log_error("Attribute `%s' with non-constant value at %s:%d!\n", attr.first.c_str(), ast->filename.c_str(), ast->linenum); sw->attributes[attr.first] = attr.second->asAttrConst(); } RTLIL::SigSpec this_case_eq_lvalue; collect_lvalues(this_case_eq_lvalue, ast, true, false); RTLIL::SigSpec this_case_eq_ltemp = new_temp_signal(this_case_eq_lvalue); RTLIL::SigSpec this_case_eq_rvalue = this_case_eq_lvalue; this_case_eq_rvalue.replace(subst_rvalue_map.stdmap()); RTLIL::CaseRule *default_case = NULL; RTLIL::CaseRule *last_generated_case = NULL; for (auto child : ast->children) { if (child == ast->children[0]) continue; log_assert(child->type == AST_COND); subst_lvalue_map.save(); subst_rvalue_map.save(); for (int i = 0; i < GetSize(this_case_eq_lvalue); i++) subst_lvalue_map.set(this_case_eq_lvalue[i], this_case_eq_ltemp[i]); RTLIL::CaseRule *backup_case = current_case; current_case = new RTLIL::CaseRule; last_generated_case = current_case; addChunkActions(current_case->actions, this_case_eq_ltemp, this_case_eq_rvalue); for (auto node : child->children) { if (node->type == AST_DEFAULT) default_case = current_case; else if (node->type == AST_BLOCK) processAst(node); else current_case->compare.push_back(node->genWidthRTLIL(sw->signal.size(), &subst_rvalue_map.stdmap())); } if (default_case != current_case) sw->cases.push_back(current_case); else log_assert(current_case->compare.size() == 0); current_case = backup_case; subst_lvalue_map.restore(); subst_rvalue_map.restore(); } if (last_generated_case != NULL && ast->get_bool_attribute("\\full_case") && default_case == NULL) { last_generated_case->compare.clear(); } else { if (default_case == NULL) { default_case = new RTLIL::CaseRule; addChunkActions(default_case->actions, this_case_eq_ltemp, this_case_eq_rvalue); } sw->cases.push_back(default_case); } for (int i = 0; i < GetSize(this_case_eq_lvalue); i++) subst_rvalue_map.set(this_case_eq_lvalue[i], this_case_eq_ltemp[i]); this_case_eq_lvalue.replace(subst_lvalue_map.stdmap()); removeSignalFromCaseTree(this_case_eq_lvalue.to_sigbit_set(), current_case); addChunkActions(current_case->actions, this_case_eq_lvalue, this_case_eq_ltemp); } break; case AST_WIRE: log_error("Found wire declaration in block without label at at %s:%d!\n", ast->filename.c_str(), ast->linenum); break; case AST_TCALL: case AST_FOR: break; default: log_abort(); } } }; // detect sign and width of an expression void AstNode::detectSignWidthWorker(int &width_hint, bool &sign_hint, bool *found_real) { std::string type_name; bool sub_sign_hint = true; int sub_width_hint = -1; int this_width = 0; AstNode *range = NULL; AstNode *id_ast = NULL; bool local_found_real = false; if (found_real == NULL) found_real = &local_found_real; switch (type) { case AST_CONSTANT: width_hint = std::max(width_hint, int(bits.size())); if (!is_signed) sign_hint = false; break; case AST_REALVALUE: *found_real = true; width_hint = std::max(width_hint, 32); break; case AST_IDENTIFIER: id_ast = id2ast; if (id_ast == NULL && current_scope.count(str)) id_ast = current_scope.at(str); if (!id_ast) log_error("Failed to resolve identifier %s for width detection at %s:%d!\n", str.c_str(), filename.c_str(), linenum); if (id_ast->type == AST_PARAMETER || id_ast->type == AST_LOCALPARAM) { if (id_ast->children.size() > 1 && id_ast->children[1]->range_valid) { this_width = id_ast->children[1]->range_left - id_ast->children[1]->range_right + 1; } else if (id_ast->children[0]->type == AST_CONSTANT) { this_width = id_ast->children[0]->bits.size(); } else log_error("Failed to detect width for parameter %s at %s:%d!\n", str.c_str(), filename.c_str(), linenum); if (children.size() != 0) range = children[0]; } else if (id_ast->type == AST_WIRE || id_ast->type == AST_AUTOWIRE) { if (!id_ast->range_valid) { if (id_ast->type == AST_AUTOWIRE) this_width = 1; else { // current_ast_mod->dumpAst(NULL, "mod> "); // log("---\n"); // id_ast->dumpAst(NULL, "decl> "); // dumpAst(NULL, "ref> "); log_error("Failed to detect with of signal access `%s' at %s:%d!\n", str.c_str(), filename.c_str(), linenum); } } else { this_width = id_ast->range_left - id_ast->range_right + 1; if (children.size() != 0) range = children[0]; } } else if (id_ast->type == AST_GENVAR) { this_width = 32; } else if (id_ast->type == AST_MEMORY) { if (!id_ast->children[0]->range_valid) log_error("Failed to detect with of memory access `%s' at %s:%d!\n", str.c_str(), filename.c_str(), linenum); this_width = id_ast->children[0]->range_left - id_ast->children[0]->range_right + 1; } else log_error("Failed to detect width for identifier %s at %s:%d!\n", str.c_str(), filename.c_str(), linenum); if (range) { if (range->children.size() == 1) this_width = 1; else if (!range->range_valid) { AstNode *left_at_zero_ast = children[0]->children[0]->clone(); AstNode *right_at_zero_ast = children[0]->children.size() >= 2 ? children[0]->children[1]->clone() : left_at_zero_ast->clone(); while (left_at_zero_ast->simplify(true, true, false, 1, -1, false, false)) { } while (right_at_zero_ast->simplify(true, true, false, 1, -1, false, false)) { } if (left_at_zero_ast->type != AST_CONSTANT || right_at_zero_ast->type != AST_CONSTANT) log_error("Unsupported expression on dynamic range select on signal `%s' at %s:%d!\n", str.c_str(), filename.c_str(), linenum); this_width = left_at_zero_ast->integer - right_at_zero_ast->integer + 1; delete left_at_zero_ast; delete right_at_zero_ast; } else this_width = range->range_left - range->range_right + 1; sign_hint = false; } width_hint = std::max(width_hint, this_width); if (!id_ast->is_signed) sign_hint = false; break; case AST_TO_BITS: while (children[0]->simplify(true, false, false, 1, -1, false, false) == true) { } if (children[0]->type != AST_CONSTANT) log_error("Left operand of tobits expression is not constant at %s:%d!\n", filename.c_str(), linenum); children[1]->detectSignWidthWorker(sub_width_hint, sign_hint); width_hint = std::max(width_hint, children[0]->bitsAsConst().as_int()); break; case AST_TO_SIGNED: children.at(0)->detectSignWidthWorker(width_hint, sub_sign_hint); break; case AST_TO_UNSIGNED: children.at(0)->detectSignWidthWorker(width_hint, sub_sign_hint); sign_hint = false; break; case AST_CONCAT: for (auto child : children) { sub_width_hint = 0; sub_sign_hint = true; child->detectSignWidthWorker(sub_width_hint, sub_sign_hint); this_width += sub_width_hint; } width_hint = std::max(width_hint, this_width); sign_hint = false; break; case AST_REPLICATE: while (children[0]->simplify(true, false, false, 1, -1, false, true) == true) { } if (children[0]->type != AST_CONSTANT) log_error("Left operand of replicate expression is not constant at %s:%d!\n", filename.c_str(), linenum); children[1]->detectSignWidthWorker(sub_width_hint, sub_sign_hint); width_hint = std::max(width_hint, children[0]->bitsAsConst().as_int() * sub_width_hint); sign_hint = false; break; case AST_NEG: case AST_BIT_NOT: case AST_POS: children[0]->detectSignWidthWorker(width_hint, sign_hint, found_real); break; case AST_BIT_AND: case AST_BIT_OR: case AST_BIT_XOR: case AST_BIT_XNOR: for (auto child : children) child->detectSignWidthWorker(width_hint, sign_hint, found_real); break; case AST_REDUCE_AND: case AST_REDUCE_OR: case AST_REDUCE_XOR: case AST_REDUCE_XNOR: case AST_REDUCE_BOOL: width_hint = std::max(width_hint, 1); sign_hint = false; break; case AST_SHIFT_LEFT: case AST_SHIFT_RIGHT: case AST_SHIFT_SLEFT: case AST_SHIFT_SRIGHT: case AST_POW: children[0]->detectSignWidthWorker(width_hint, sign_hint, found_real); break; case AST_LT: case AST_LE: case AST_EQ: case AST_NE: case AST_EQX: case AST_NEX: case AST_GE: case AST_GT: width_hint = std::max(width_hint, 1); sign_hint = false; break; case AST_ADD: case AST_SUB: case AST_MUL: case AST_DIV: case AST_MOD: for (auto child : children) child->detectSignWidthWorker(width_hint, sign_hint, found_real); break; case AST_LOGIC_AND: case AST_LOGIC_OR: case AST_LOGIC_NOT: width_hint = std::max(width_hint, 1); sign_hint = false; break; case AST_TERNARY: children.at(1)->detectSignWidthWorker(width_hint, sign_hint, found_real); children.at(2)->detectSignWidthWorker(width_hint, sign_hint, found_real); break; case AST_MEMRD: if (!id2ast->is_signed) sign_hint = false; if (!id2ast->children[0]->range_valid) log_error("Failed to detect with of memory access `%s' at %s:%d!\n", str.c_str(), filename.c_str(), linenum); this_width = id2ast->children[0]->range_left - id2ast->children[0]->range_right + 1; width_hint = std::max(width_hint, this_width); break; // everything should have been handled above -> print error if not. default: for (auto f : log_files) current_ast->dumpAst(f, "verilog-ast> "); log_error("Don't know how to detect sign and width for %s node at %s:%d!\n", type2str(type).c_str(), filename.c_str(), linenum); } if (*found_real) sign_hint = true; } // detect sign and width of an expression void AstNode::detectSignWidth(int &width_hint, bool &sign_hint, bool *found_real) { width_hint = -1; sign_hint = true; if (found_real) *found_real = false; detectSignWidthWorker(width_hint, sign_hint, found_real); } // create RTLIL from an AST node // all generated cells, wires and processes are added to the module pointed to by 'current_module' // when the AST node is an expression (AST_ADD, AST_BIT_XOR, etc.), the result signal is returned. // // note that this function is influenced by a number of global variables that might be set when // called from genWidthRTLIL(). also note that this function recursively calls itself to transform // larger expressions into a netlist of cells. RTLIL::SigSpec AstNode::genRTLIL(int width_hint, bool sign_hint) { // in the following big switch() statement there are some uses of // Clifford's Device (http://www.clifford.at/cfun/cliffdev/). In this // cases this variable is used to hold the type of the cell that should // be instanciated for this type of AST node. std::string type_name; current_filename = filename; set_line_num(linenum); switch (type) { // simply ignore this nodes. // they are eighter leftovers from simplify() or are referenced by other nodes // and are only accessed here thru this references case AST_TASK: case AST_FUNCTION: case AST_DPI_FUNCTION: case AST_AUTOWIRE: case AST_LOCALPARAM: case AST_DEFPARAM: case AST_GENVAR: case AST_GENFOR: case AST_GENBLOCK: case AST_GENIF: case AST_GENCASE: break; // remember the parameter, needed for example in techmap case AST_PARAMETER: current_module->avail_parameters.insert(str); break; // create an RTLIL::Wire for an AST_WIRE node case AST_WIRE: { if (current_module->wires_.count(str) != 0) log_error("Re-definition of signal `%s' at %s:%d!\n", str.c_str(), filename.c_str(), linenum); if (!range_valid) log_error("Signal `%s' with non-constant width at %s:%d!\n", str.c_str(), filename.c_str(), linenum); log_assert(range_left >= range_right || (range_left == -1 && range_right == 0)); RTLIL::Wire *wire = current_module->addWire(str, range_left - range_right + 1); wire->attributes["\\src"] = stringf("%s:%d", filename.c_str(), linenum); wire->start_offset = range_right; wire->port_id = port_id; wire->port_input = is_input; wire->port_output = is_output; wire->upto = range_swapped; for (auto &attr : attributes) { if (attr.second->type != AST_CONSTANT) log_error("Attribute `%s' with non-constant value at %s:%d!\n", attr.first.c_str(), filename.c_str(), linenum); wire->attributes[attr.first] = attr.second->asAttrConst(); } } break; // create an RTLIL::Memory for an AST_MEMORY node case AST_MEMORY: { if (current_module->memories.count(str) != 0) log_error("Re-definition of memory `%s' at %s:%d!\n", str.c_str(), filename.c_str(), linenum); log_assert(children.size() >= 2); log_assert(children[0]->type == AST_RANGE); log_assert(children[1]->type == AST_RANGE); if (!children[0]->range_valid || !children[1]->range_valid) log_error("Memory `%s' with non-constant width or size at %s:%d!\n", str.c_str(), filename.c_str(), linenum); RTLIL::Memory *memory = new RTLIL::Memory; memory->attributes["\\src"] = stringf("%s:%d", filename.c_str(), linenum); memory->name = str; memory->width = children[0]->range_left - children[0]->range_right + 1; if (children[1]->range_right < children[1]->range_left) { memory->start_offset = children[1]->range_right; memory->size = children[1]->range_left - children[1]->range_right + 1; } else { memory->start_offset = children[1]->range_left; memory->size = children[1]->range_right - children[1]->range_left + 1; } current_module->memories[memory->name] = memory; for (auto &attr : attributes) { if (attr.second->type != AST_CONSTANT) log_error("Attribute `%s' with non-constant value at %s:%d!\n", attr.first.c_str(), filename.c_str(), linenum); memory->attributes[attr.first] = attr.second->asAttrConst(); } } break; // simply return the corresponding RTLIL::SigSpec for an AST_CONSTANT node case AST_CONSTANT: { if (width_hint < 0) detectSignWidth(width_hint, sign_hint); is_signed = sign_hint; return RTLIL::SigSpec(bitsAsConst()); } case AST_REALVALUE: { RTLIL::SigSpec sig = realAsConst(width_hint); log_warning("converting real value %e to binary %s at %s:%d.\n", realvalue, log_signal(sig), filename.c_str(), linenum); return sig; } // simply return the corresponding RTLIL::SigSpec for an AST_IDENTIFIER node // for identifiers with dynamic bit ranges (e.g. "foo[bar]" or "foo[bar+3:bar]") a // shifter cell is created and the output signal of this cell is returned case AST_IDENTIFIER: { RTLIL::Wire *wire = NULL; RTLIL::SigChunk chunk; int add_undef_bits_msb = 0; int add_undef_bits_lsb = 0; if (id2ast && id2ast->type == AST_AUTOWIRE && current_module->wires_.count(str) == 0) { RTLIL::Wire *wire = current_module->addWire(str); wire->attributes["\\src"] = stringf("%s:%d", filename.c_str(), linenum); wire->name = str; if (flag_autowire) log_warning("Identifier `%s' is implicitly declared at %s:%d.\n", str.c_str(), filename.c_str(), linenum); else log_error("Identifier `%s' is implicitly declared at %s:%d and `default_nettype is set to none.\n", str.c_str(), filename.c_str(), linenum); } else if (id2ast->type == AST_PARAMETER || id2ast->type == AST_LOCALPARAM) { if (id2ast->children[0]->type != AST_CONSTANT) log_error("Parameter %s does not evaluate to constant value at %s:%d!\n", str.c_str(), filename.c_str(), linenum); chunk = RTLIL::Const(id2ast->children[0]->bits); goto use_const_chunk; } else if (!id2ast || (id2ast->type != AST_WIRE && id2ast->type != AST_AUTOWIRE && id2ast->type != AST_MEMORY) || current_module->wires_.count(str) == 0) log_error("Identifier `%s' doesn't map to any signal at %s:%d!\n", str.c_str(), filename.c_str(), linenum); if (id2ast->type == AST_MEMORY) log_error("Identifier `%s' does map to an unexpanded memory at %s:%d!\n", str.c_str(), filename.c_str(), linenum); wire = current_module->wires_[str]; chunk.wire = wire; chunk.width = wire->width; chunk.offset = 0; use_const_chunk: if (children.size() != 0) { log_assert(children[0]->type == AST_RANGE); int source_width = id2ast->range_left - id2ast->range_right + 1; int source_offset = id2ast->range_right; if (!children[0]->range_valid) { AstNode *left_at_zero_ast = children[0]->children[0]->clone(); AstNode *right_at_zero_ast = children[0]->children.size() >= 2 ? children[0]->children[1]->clone() : left_at_zero_ast->clone(); while (left_at_zero_ast->simplify(true, true, false, 1, -1, false, false)) { } while (right_at_zero_ast->simplify(true, true, false, 1, -1, false, false)) { } if (left_at_zero_ast->type != AST_CONSTANT || right_at_zero_ast->type != AST_CONSTANT) log_error("Unsupported expression on dynamic range select on signal `%s' at %s:%d!\n", str.c_str(), filename.c_str(), linenum); int width = left_at_zero_ast->integer - right_at_zero_ast->integer + 1; AstNode *fake_ast = new AstNode(AST_NONE, clone(), children[0]->children.size() >= 2 ? children[0]->children[1]->clone() : children[0]->children[0]->clone()); fake_ast->children[0]->delete_children(); RTLIL::SigSpec shift_val = fake_ast->children[1]->genRTLIL(); if (id2ast->range_right != 0) { shift_val = current_module->Sub(NEW_ID, shift_val, id2ast->range_right, fake_ast->children[1]->is_signed); fake_ast->children[1]->is_signed = true; } if (id2ast->range_swapped) { shift_val = current_module->Sub(NEW_ID, RTLIL::SigSpec(source_width - width), shift_val, fake_ast->children[1]->is_signed); fake_ast->children[1]->is_signed = true; } if (GetSize(shift_val) >= 32) fake_ast->children[1]->is_signed = true; RTLIL::SigSpec sig = binop2rtlil(fake_ast, "$shiftx", width, fake_ast->children[0]->genRTLIL(), shift_val); delete left_at_zero_ast; delete right_at_zero_ast; delete fake_ast; return sig; } else { chunk.width = children[0]->range_left - children[0]->range_right + 1; chunk.offset = children[0]->range_right - source_offset; if (id2ast->range_swapped) chunk.offset = (id2ast->range_left - id2ast->range_right + 1) - (chunk.offset + chunk.width); if (chunk.offset >= source_width || chunk.offset + chunk.width < 0) { if (chunk.width == 1) log_warning("Range select out of bounds on signal `%s' at %s:%d: Setting result bit to undef.\n", str.c_str(), filename.c_str(), linenum); else log_warning("Range select out of bounds on signal `%s' at %s:%d: Setting all %d result bits to undef.\n", str.c_str(), filename.c_str(), linenum, chunk.width); chunk = RTLIL::SigChunk(RTLIL::State::Sx, chunk.width); } else { if (chunk.width + chunk.offset > source_width) { add_undef_bits_msb = (chunk.width + chunk.offset) - source_width; chunk.width -= add_undef_bits_msb; } if (chunk.offset < 0) { add_undef_bits_lsb = -chunk.offset; chunk.width -= add_undef_bits_lsb; chunk.offset += add_undef_bits_lsb; } if (add_undef_bits_lsb) log_warning("Range select out of bounds on signal `%s' at %s:%d: Setting %d LSB bits to undef.\n", str.c_str(), filename.c_str(), linenum, add_undef_bits_lsb); if (add_undef_bits_msb) log_warning("Range select out of bounds on signal `%s' at %s:%d: Setting %d MSB bits to undef.\n", str.c_str(), filename.c_str(), linenum, add_undef_bits_msb); } } } RTLIL::SigSpec sig = { RTLIL::SigSpec(RTLIL::State::Sx, add_undef_bits_msb), chunk, RTLIL::SigSpec(RTLIL::State::Sx, add_undef_bits_lsb) }; if (genRTLIL_subst_ptr) sig.replace(*genRTLIL_subst_ptr); is_signed = children.size() > 0 ? false : id2ast->is_signed && sign_hint; return sig; } // just pass thru the signal. the parent will evaluate the is_signed property and interpret the SigSpec accordingly case AST_TO_SIGNED: case AST_TO_UNSIGNED: { RTLIL::SigSpec sig = children[0]->genRTLIL(); if (sig.size() < width_hint) sig.extend_u0(width_hint, sign_hint); is_signed = sign_hint; return sig; } // concatenation of signals can be done directly using RTLIL::SigSpec case AST_CONCAT: { RTLIL::SigSpec sig; for (auto it = children.begin(); it != children.end(); it++) sig.append((*it)->genRTLIL()); if (sig.size() < width_hint) sig.extend_u0(width_hint, false); return sig; } // replication of signals can be done directly using RTLIL::SigSpec case AST_REPLICATE: { RTLIL::SigSpec left = children[0]->genRTLIL(); RTLIL::SigSpec right = children[1]->genRTLIL(); if (!left.is_fully_const()) log_error("Left operand of replicate expression is not constant at %s:%d!\n", filename.c_str(), linenum); int count = left.as_int(); RTLIL::SigSpec sig; for (int i = 0; i < count; i++) sig.append(right); if (sig.size() < width_hint) sig.extend_u0(width_hint, false); is_signed = false; return sig; } // generate cells for unary operations: $not, $pos, $neg if (0) { case AST_BIT_NOT: type_name = "$not"; } if (0) { case AST_POS: type_name = "$pos"; } if (0) { case AST_NEG: type_name = "$neg"; } { RTLIL::SigSpec arg = children[0]->genRTLIL(width_hint, sign_hint); is_signed = children[0]->is_signed; int width = arg.size(); if (width_hint > 0) { width = width_hint; widthExtend(this, arg, width, is_signed); } return uniop2rtlil(this, type_name, width, arg); } // generate cells for binary operations: $and, $or, $xor, $xnor if (0) { case AST_BIT_AND: type_name = "$and"; } if (0) { case AST_BIT_OR: type_name = "$or"; } if (0) { case AST_BIT_XOR: type_name = "$xor"; } if (0) { case AST_BIT_XNOR: type_name = "$xnor"; } { if (width_hint < 0) detectSignWidth(width_hint, sign_hint); RTLIL::SigSpec left = children[0]->genRTLIL(width_hint, sign_hint); RTLIL::SigSpec right = children[1]->genRTLIL(width_hint, sign_hint); int width = std::max(left.size(), right.size()); if (width_hint > 0) width = width_hint; is_signed = children[0]->is_signed && children[1]->is_signed; return binop2rtlil(this, type_name, width, left, right); } // generate cells for unary operations: $reduce_and, $reduce_or, $reduce_xor, $reduce_xnor if (0) { case AST_REDUCE_AND: type_name = "$reduce_and"; } if (0) { case AST_REDUCE_OR: type_name = "$reduce_or"; } if (0) { case AST_REDUCE_XOR: type_name = "$reduce_xor"; } if (0) { case AST_REDUCE_XNOR: type_name = "$reduce_xnor"; } { RTLIL::SigSpec arg = children[0]->genRTLIL(); RTLIL::SigSpec sig = uniop2rtlil(this, type_name, std::max(width_hint, 1), arg); return sig; } // generate cells for unary operations: $reduce_bool // (this is actually just an $reduce_or, but for clearity a different cell type is used) if (0) { case AST_REDUCE_BOOL: type_name = "$reduce_bool"; } { RTLIL::SigSpec arg = children[0]->genRTLIL(); RTLIL::SigSpec sig = arg.size() > 1 ? uniop2rtlil(this, type_name, std::max(width_hint, 1), arg) : arg; return sig; } // generate cells for binary operations: $shl, $shr, $sshl, $sshr if (0) { case AST_SHIFT_LEFT: type_name = "$shl"; } if (0) { case AST_SHIFT_RIGHT: type_name = "$shr"; } if (0) { case AST_SHIFT_SLEFT: type_name = "$sshl"; } if (0) { case AST_SHIFT_SRIGHT: type_name = "$sshr"; } { if (width_hint < 0) detectSignWidth(width_hint, sign_hint); RTLIL::SigSpec left = children[0]->genRTLIL(width_hint, sign_hint); RTLIL::SigSpec right = children[1]->genRTLIL(); int width = width_hint > 0 ? width_hint : left.size(); is_signed = children[0]->is_signed; return binop2rtlil(this, type_name, width, left, right); } // generate cells for binary operations: $pow case AST_POW: { int right_width; bool right_signed; children[1]->detectSignWidth(right_width, right_signed); if (width_hint < 0) detectSignWidth(width_hint, sign_hint); RTLIL::SigSpec left = children[0]->genRTLIL(width_hint, sign_hint); RTLIL::SigSpec right = children[1]->genRTLIL(right_width, right_signed); int width = width_hint > 0 ? width_hint : left.size(); is_signed = children[0]->is_signed; if (!flag_noopt && left.is_fully_const() && left.as_int() == 2 && !right_signed) return binop2rtlil(this, "$shl", width, RTLIL::SigSpec(1, left.size()), right); return binop2rtlil(this, "$pow", width, left, right); } // generate cells for binary operations: $lt, $le, $eq, $ne, $ge, $gt if (0) { case AST_LT: type_name = "$lt"; } if (0) { case AST_LE: type_name = "$le"; } if (0) { case AST_EQ: type_name = "$eq"; } if (0) { case AST_NE: type_name = "$ne"; } if (0) { case AST_EQX: type_name = "$eqx"; } if (0) { case AST_NEX: type_name = "$nex"; } if (0) { case AST_GE: type_name = "$ge"; } if (0) { case AST_GT: type_name = "$gt"; } { int width = std::max(width_hint, 1); width_hint = -1, sign_hint = true; children[0]->detectSignWidthWorker(width_hint, sign_hint); children[1]->detectSignWidthWorker(width_hint, sign_hint); RTLIL::SigSpec left = children[0]->genRTLIL(width_hint, sign_hint); RTLIL::SigSpec right = children[1]->genRTLIL(width_hint, sign_hint); RTLIL::SigSpec sig = binop2rtlil(this, type_name, width, left, right); return sig; } // generate cells for binary operations: $add, $sub, $mul, $div, $mod if (0) { case AST_ADD: type_name = "$add"; } if (0) { case AST_SUB: type_name = "$sub"; } if (0) { case AST_MUL: type_name = "$mul"; } if (0) { case AST_DIV: type_name = "$div"; } if (0) { case AST_MOD: type_name = "$mod"; } { if (width_hint < 0) detectSignWidth(width_hint, sign_hint); RTLIL::SigSpec left = children[0]->genRTLIL(width_hint, sign_hint); RTLIL::SigSpec right = children[1]->genRTLIL(width_hint, sign_hint); #if 0 int width = std::max(left.size(), right.size()); if (width > width_hint && width_hint > 0) width = width_hint; if (width < width_hint) { if (type == AST_ADD || type == AST_SUB || type == AST_DIV) width++; if (type == AST_SUB && (!children[0]->is_signed || !children[1]->is_signed)) width = width_hint; if (type == AST_MUL) width = std::min(left.size() + right.size(), width_hint); } #else int width = std::max(std::max(left.size(), right.size()), width_hint); #endif is_signed = children[0]->is_signed && children[1]->is_signed; return binop2rtlil(this, type_name, width, left, right); } // generate cells for binary operations: $logic_and, $logic_or if (0) { case AST_LOGIC_AND: type_name = "$logic_and"; } if (0) { case AST_LOGIC_OR: type_name = "$logic_or"; } { RTLIL::SigSpec left = children[0]->genRTLIL(); RTLIL::SigSpec right = children[1]->genRTLIL(); return binop2rtlil(this, type_name, std::max(width_hint, 1), left, right); } // generate cells for unary operations: $logic_not case AST_LOGIC_NOT: { RTLIL::SigSpec arg = children[0]->genRTLIL(); return uniop2rtlil(this, "$logic_not", std::max(width_hint, 1), arg); } // generate multiplexer for ternary operator (aka ?:-operator) case AST_TERNARY: { if (width_hint < 0) detectSignWidth(width_hint, sign_hint); RTLIL::SigSpec cond = children[0]->genRTLIL(); RTLIL::SigSpec val1 = children[1]->genRTLIL(width_hint, sign_hint); RTLIL::SigSpec val2 = children[2]->genRTLIL(width_hint, sign_hint); if (cond.size() > 1) cond = uniop2rtlil(this, "$reduce_bool", 1, cond, false); int width = std::max(val1.size(), val2.size()); is_signed = children[1]->is_signed && children[2]->is_signed; widthExtend(this, val1, width, is_signed); widthExtend(this, val2, width, is_signed); RTLIL::SigSpec sig = mux2rtlil(this, cond, val1, val2); if (sig.size() < width_hint) sig.extend_u0(width_hint, sign_hint); return sig; } // generate $memrd cells for memory read ports case AST_MEMRD: { std::stringstream sstr; sstr << "$memrd$" << str << "$" << filename << ":" << linenum << "$" << (autoidx++); RTLIL::Cell *cell = current_module->addCell(sstr.str(), "$memrd"); cell->attributes["\\src"] = stringf("%s:%d", filename.c_str(), linenum); RTLIL::Wire *wire = current_module->addWire(cell->name.str() + "_DATA", current_module->memories[str]->width); wire->attributes["\\src"] = stringf("%s:%d", filename.c_str(), linenum); int mem_width, mem_size, addr_bits; id2ast->meminfo(mem_width, mem_size, addr_bits); cell->setPort("\\CLK", RTLIL::SigSpec(RTLIL::State::Sx, 1)); cell->setPort("\\ADDR", children[0]->genWidthRTLIL(addr_bits)); cell->setPort("\\DATA", RTLIL::SigSpec(wire)); cell->parameters["\\MEMID"] = RTLIL::Const(str); cell->parameters["\\ABITS"] = RTLIL::Const(addr_bits); cell->parameters["\\WIDTH"] = RTLIL::Const(wire->width); cell->parameters["\\CLK_ENABLE"] = RTLIL::Const(0); cell->parameters["\\CLK_POLARITY"] = RTLIL::Const(0); cell->parameters["\\TRANSPARENT"] = RTLIL::Const(0); return RTLIL::SigSpec(wire); } // generate $memwr cells for memory write ports case AST_MEMWR: case AST_MEMINIT: { std::stringstream sstr; sstr << (type == AST_MEMWR ? "$memwr$" : "$meminit$") << str << "$" << filename << ":" << linenum << "$" << (autoidx++); RTLIL::Cell *cell = current_module->addCell(sstr.str(), type == AST_MEMWR ? "$memwr" : "$meminit"); cell->attributes["\\src"] = stringf("%s:%d", filename.c_str(), linenum); int mem_width, mem_size, addr_bits; id2ast->meminfo(mem_width, mem_size, addr_bits); cell->setPort("\\ADDR", children[0]->genWidthRTLIL(addr_bits)); cell->setPort("\\DATA", children[1]->genWidthRTLIL(current_module->memories[str]->width)); cell->parameters["\\MEMID"] = RTLIL::Const(str); cell->parameters["\\ABITS"] = RTLIL::Const(addr_bits); cell->parameters["\\WIDTH"] = RTLIL::Const(current_module->memories[str]->width); if (type == AST_MEMWR) { cell->setPort("\\CLK", RTLIL::SigSpec(RTLIL::State::Sx, 1)); cell->setPort("\\EN", children[2]->genRTLIL()); cell->parameters["\\CLK_ENABLE"] = RTLIL::Const(0); cell->parameters["\\CLK_POLARITY"] = RTLIL::Const(0); } cell->parameters["\\PRIORITY"] = RTLIL::Const(autoidx-1); } break; // generate $assert cells case AST_ASSERT: { log_assert(children.size() == 2); RTLIL::SigSpec check = children[0]->genRTLIL(); log_assert(check.size() == 1); RTLIL::SigSpec en = children[1]->genRTLIL(); log_assert(en.size() == 1); std::stringstream sstr; sstr << "$assert$" << filename << ":" << linenum << "$" << (autoidx++); RTLIL::Cell *cell = current_module->addCell(sstr.str(), "$assert"); cell->attributes["\\src"] = stringf("%s:%d", filename.c_str(), linenum); for (auto &attr : attributes) { if (attr.second->type != AST_CONSTANT) log_error("Attribute `%s' with non-constant value at %s:%d!\n", attr.first.c_str(), filename.c_str(), linenum); cell->attributes[attr.first] = attr.second->asAttrConst(); } cell->setPort("\\A", check); cell->setPort("\\EN", en); } break; // add entries to current_module->connections for assignments (outside of always blocks) case AST_ASSIGN: { RTLIL::SigSpec left = children[0]->genRTLIL(); RTLIL::SigSpec right = children[1]->genWidthRTLIL(left.size()); if (left.has_const()) { RTLIL::SigSpec new_left, new_right; for (int i = 0; i < GetSize(left); i++) if (left[i].wire) { new_left.append(left[i]); new_right.append(right[i]); } log_warning("Ignoring assignment to constant bits at %s:%d:\n" " old assignment: %s = %s\n new assignment: %s = %s.\n", filename.c_str(), linenum, log_signal(left), log_signal(right), log_signal(new_left), log_signal(new_right)); left = new_left; right = new_right; } current_module->connect(RTLIL::SigSig(left, right)); } break; // create an RTLIL::Cell for an AST_CELL case AST_CELL: { int port_counter = 0, para_counter = 0; if (current_module->count_id(str) != 0) log_error("Re-definition of cell `%s' at %s:%d!\n", str.c_str(), filename.c_str(), linenum); RTLIL::Cell *cell = current_module->addCell(str, ""); cell->attributes["\\src"] = stringf("%s:%d", filename.c_str(), linenum); for (auto it = children.begin(); it != children.end(); it++) { AstNode *child = *it; if (child->type == AST_CELLTYPE) { cell->type = child->str; if (flag_icells && cell->type.substr(0, 2) == "\\$") cell->type = cell->type.substr(1); continue; } if (child->type == AST_PARASET) { if (child->children[0]->type != AST_CONSTANT) log_error("Parameter `%s' with non-constant value at %s:%d!\n", child->str.c_str(), filename.c_str(), linenum); if (child->str.size() == 0) { char buf[100]; snprintf(buf, 100, "$%d", ++para_counter); cell->parameters[buf] = child->children[0]->asParaConst(); } else { cell->parameters[child->str] = child->children[0]->asParaConst(); } continue; } if (child->type == AST_ARGUMENT) { RTLIL::SigSpec sig; if (child->children.size() > 0) sig = child->children[0]->genRTLIL(); if (child->str.size() == 0) { char buf[100]; snprintf(buf, 100, "$%d", ++port_counter); cell->setPort(buf, sig); } else { cell->setPort(child->str, sig); } continue; } log_abort(); } for (auto &attr : attributes) { if (attr.second->type != AST_CONSTANT) log_error("Attribute `%s' with non-constant value at %s:%d!\n", attr.first.c_str(), filename.c_str(), linenum); cell->attributes[attr.first] = attr.second->asAttrConst(); } } break; // use ProcessGenerator for always blocks case AST_ALWAYS: { AstNode *always = this->clone(); ProcessGenerator generator(always); ignoreThisSignalsInInitial.append(generator.outputSignals); delete always; } break; case AST_INITIAL: { AstNode *always = this->clone(); ProcessGenerator generator(always, ignoreThisSignalsInInitial); delete always; } break; // everything should have been handled above -> print error if not. default: for (auto f : log_files) current_ast->dumpAst(f, "verilog-ast> "); type_name = type2str(type); log_error("Don't know how to generate RTLIL code for %s node at %s:%d!\n", type_name.c_str(), filename.c_str(), linenum); } return RTLIL::SigSpec(); } // this is a wrapper for AstNode::genRTLIL() when a specific signal width is requested and/or // signals must be substituted before beeing used as input values (used by ProcessGenerator) // note that this is using some global variables to communicate this special settings to AstNode::genRTLIL(). RTLIL::SigSpec AstNode::genWidthRTLIL(int width, const dict *new_subst_ptr) { const dict *backup_subst_ptr = genRTLIL_subst_ptr; if (new_subst_ptr) genRTLIL_subst_ptr = new_subst_ptr; bool sign_hint = true; int width_hint = width; detectSignWidthWorker(width_hint, sign_hint); RTLIL::SigSpec sig = genRTLIL(width_hint, sign_hint); genRTLIL_subst_ptr = backup_subst_ptr; if (width >= 0) sig.extend_u0(width, is_signed); return sig; } YOSYS_NAMESPACE_END