/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Claire Xenia Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ // [[CITE]] // Yiqiong Shi; Chan Wai Ting; Bah-Hwee Gwee; Ye Ren, "A highly efficient method for extracting FSMs from flattened gate-level netlist," // Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on , vol., no., pp.2610,2613, May 30 2010-June 2 2010 // doi: 10.1109/ISCAS.2010.5537093 #include "kernel/log.h" #include "kernel/register.h" #include "kernel/sigtools.h" #include "kernel/consteval.h" #include "kernel/celltypes.h" #include "fsmdata.h" USING_YOSYS_NAMESPACE PRIVATE_NAMESPACE_BEGIN static RTLIL::Module *module; static SigMap assign_map; typedef std::pair sig2driver_entry_t; static SigSet sig2driver, sig2trigger; static std::map> exclusive_ctrls; static bool find_states(RTLIL::SigSpec sig, const RTLIL::SigSpec &dff_out, RTLIL::SigSpec &ctrl, std::map &states, RTLIL::Const *reset_state = NULL) { sig.extend_u0(dff_out.size(), false); if (sig == dff_out) return true; assign_map.apply(sig); if (sig.is_fully_const()) { if (sig.is_fully_def() && states.count(sig.as_const()) == 0) { log(" found state code: %s\n", log_signal(sig)); states[sig.as_const()] = -1; } return true; } std::set cellport_list; sig2driver.find(sig, cellport_list); if (GetSize(cellport_list) > 1) { log(" found %d combined drivers for state signal %s.\n", GetSize(cellport_list), log_signal(sig)); return false; } if (GetSize(cellport_list) < 1) { log(" found no driver for state signal %s.\n", log_signal(sig)); return false; } for (auto &cellport : cellport_list) { RTLIL::Cell *cell = module->cells_.at(cellport.first); if ((cell->type != ID($mux) && cell->type != ID($pmux)) || cellport.second != ID::Y) { log(" unexpected cell type %s (%s) found in state selection tree.\n", cell->type.c_str(), cell->name.c_str()); return false; } RTLIL::SigSpec sig_a = assign_map(cell->getPort(ID::A)); RTLIL::SigSpec sig_b = assign_map(cell->getPort(ID::B)); RTLIL::SigSpec sig_s = assign_map(cell->getPort(ID::S)); RTLIL::SigSpec sig_y = assign_map(cell->getPort(ID::Y)); RTLIL::SigSpec sig_aa = sig; sig_aa.replace(sig_y, sig_a); RTLIL::SigSpec sig_bb; for (int i = 0; i < GetSize(sig_b)/GetSize(sig_a); i++) { RTLIL::SigSpec s = sig; s.replace(sig_y, sig_b.extract(i*GetSize(sig_a), GetSize(sig_a))); sig_bb.append(s); } if (reset_state && RTLIL::SigSpec(*reset_state).is_fully_undef()) do { SigSpec new_reset_state; if (sig_aa.is_fully_def()) new_reset_state = sig_aa.as_const(); else if (sig_bb.is_fully_def()) new_reset_state = sig_bb.as_const(); else break; new_reset_state.extend_u0(GetSize(*reset_state)); *reset_state = new_reset_state.as_const(); log(" found reset state: %s (guessed from mux tree)\n", log_signal(*reset_state)); } while (0); for (auto sig_s_bit : sig_s) { if (ctrl.extract(sig_s_bit).empty()) { log(" found ctrl input: %s\n", log_signal(sig_s_bit)); ctrl.append(sig_s_bit); } } if (!find_states(sig_aa, dff_out, ctrl, states)) return false; for (int i = 0; i < GetSize(sig_bb)/GetSize(sig_aa); i++) { if (!find_states(sig_bb.extract(i*GetSize(sig_aa), GetSize(sig_aa)), dff_out, ctrl, states)) return false; } } return true; } static RTLIL::Const sig2const(ConstEval &ce, RTLIL::SigSpec sig, RTLIL::State noconst_state, RTLIL::SigSpec dont_care = RTLIL::SigSpec()) { if (dont_care.size() > 0) { for (int i = 0; i < GetSize(sig); i++) if (dont_care.extract(sig[i]).size() > 0) sig[i] = noconst_state; } ce.assign_map.apply(sig); ce.values_map.apply(sig); for (int i = 0; i < GetSize(sig); i++) if (sig[i].wire != NULL) sig[i] = noconst_state; return sig.as_const(); } static void find_transitions(ConstEval &ce, ConstEval &ce_nostop, FsmData &fsm_data, std::map &states, int state_in, RTLIL::SigSpec ctrl_in, RTLIL::SigSpec ctrl_out, RTLIL::SigSpec dff_in, RTLIL::SigSpec dont_care) { bool undef_bit_in_next_state_mode = false; RTLIL::SigSpec undef, constval; if (ce.eval(ctrl_out, undef) && ce.eval(dff_in, undef)) { if (0) { undef_bit_in_next_state: for (auto &bit : dff_in) if (bit.wire != nullptr) bit = RTLIL::Sm; for (auto &bit : ctrl_out) if (bit.wire != nullptr) bit = RTLIL::Sm; undef_bit_in_next_state_mode = true; } log_assert(ctrl_out.is_fully_const() && dff_in.is_fully_const()); FsmData::transition_t tr; tr.ctrl_in = sig2const(ce, ctrl_in, RTLIL::State::Sa, dont_care); tr.ctrl_out = sig2const(ce, ctrl_out, RTLIL::State::Sx); std::map ctrl_in_bit_indices; for (int i = 0; i < GetSize(ctrl_in); i++) ctrl_in_bit_indices[ctrl_in[i]] = i; for (auto &it : ctrl_in_bit_indices) if (tr.ctrl_in.at(it.second) == State::S1 && exclusive_ctrls.count(it.first) != 0) for (auto &dc_bit : exclusive_ctrls.at(it.first)) if (ctrl_in_bit_indices.count(dc_bit)) tr.ctrl_in.bits().at(ctrl_in_bit_indices.at(dc_bit)) = RTLIL::State::Sa; RTLIL::Const log_state_in = RTLIL::Const(RTLIL::State::Sx, fsm_data.state_bits); if (state_in >= 0) log_state_in = fsm_data.state_table.at(state_in); if (states.count(ce.values_map(ce.assign_map(dff_in)).as_const()) == 0) { log(" transition: %10s %s -> INVALID_STATE(%s) %s %s\n", log_signal(log_state_in), log_signal(tr.ctrl_in), log_signal(ce.values_map(ce.assign_map(dff_in))), log_signal(tr.ctrl_out), undef_bit_in_next_state_mode ? " SHORTENED" : ""); return; } tr.state_in = state_in; tr.state_out = states.at(ce.values_map(ce.assign_map(dff_in)).as_const()); if (dff_in.is_fully_def()) { fsm_data.transition_table.push_back(tr); log(" transition: %10s %s -> %10s %s\n", log_signal(log_state_in), log_signal(tr.ctrl_in), log_signal(fsm_data.state_table[tr.state_out]), log_signal(tr.ctrl_out)); } else { log(" transition: %10s %s -> %10s %s \n", log_signal(log_state_in), log_signal(tr.ctrl_in), log_signal(fsm_data.state_table[tr.state_out]), log_signal(tr.ctrl_out)); } return; } for (auto &bit : dff_in) if (bit == RTLIL::Sx) goto undef_bit_in_next_state; log_assert(undef.size() > 0); log_assert(ce.stop_signals.check_all(undef)); undef = undef.extract(0, 1); constval = undef; if (ce_nostop.eval(constval)) { ce.push(); dont_care.append(undef); ce.set(undef, constval.as_const()); if (exclusive_ctrls.count(undef) && constval == State::S1) for (auto &bit : exclusive_ctrls.at(undef)) { RTLIL::SigSpec bitval = bit; if (ce.eval(bitval) && bitval != State::S0) goto found_contradiction_1; else ce.set(bit, State::S0); } find_transitions(ce, ce_nostop, fsm_data, states, state_in, ctrl_in, ctrl_out, dff_in, dont_care); found_contradiction_1: ce.pop(); } else { ce.push(), ce_nostop.push(); ce.set(undef, State::S0); ce_nostop.set(undef, State::S0); find_transitions(ce, ce_nostop, fsm_data, states, state_in, ctrl_in, ctrl_out, dff_in, dont_care); ce.pop(), ce_nostop.pop(); ce.push(), ce_nostop.push(); ce.set(undef, State::S1); ce_nostop.set(undef, State::S1); if (exclusive_ctrls.count(undef)) for (auto &bit : exclusive_ctrls.at(undef)) { RTLIL::SigSpec bitval = bit; if ((ce.eval(bitval) || ce_nostop.eval(bitval)) && bitval != State::S0) goto found_contradiction_2; else ce.set(bit, State::S0), ce_nostop.set(bit, RTLIL::S0); } find_transitions(ce, ce_nostop, fsm_data, states, state_in, ctrl_in, ctrl_out, dff_in, dont_care); found_contradiction_2: ce.pop(), ce_nostop.pop(); } } static void extract_fsm(RTLIL::Wire *wire) { log("Extracting FSM `%s' from module `%s'.\n", wire->name.c_str(), module->name.c_str()); // get input and output signals for state ff RTLIL::SigSpec dff_out = assign_map(RTLIL::SigSpec(wire)); RTLIL::SigSpec dff_in(RTLIL::State::Sm, wire->width); RTLIL::Const reset_state(RTLIL::State::Sx, wire->width); RTLIL::SigSpec clk = State::S0; RTLIL::SigSpec arst = State::S0; bool clk_polarity = true; bool arst_polarity = true; std::set cellport_list; sig2driver.find(dff_out, cellport_list); for (auto &cellport : cellport_list) { RTLIL::Cell *cell = module->cells_.at(cellport.first); if ((cell->type != ID($dff) && cell->type != ID($adff)) || cellport.second != ID::Q) continue; log(" found %s cell for state register: %s\n", cell->type.c_str(), cell->name.c_str()); RTLIL::SigSpec sig_q = assign_map(cell->getPort(ID::Q)); RTLIL::SigSpec sig_d = assign_map(cell->getPort(ID::D)); clk = cell->getPort(ID::CLK); clk_polarity = cell->parameters[ID::CLK_POLARITY].as_bool(); if (cell->type == ID($adff)) { arst = cell->getPort(ID::ARST); arst_polarity = cell->parameters[ID::ARST_POLARITY].as_bool(); reset_state = cell->parameters[ID::ARST_VALUE]; } sig_q.replace(dff_out, sig_d, &dff_in); break; } log(" root of input selection tree: %s\n", log_signal(dff_in)); if (dff_in.has_marked_bits()) { log(" fsm extraction failed: incomplete input selection tree root.\n"); return; } // find states and control inputs RTLIL::SigSpec ctrl_in; std::map states; if (!arst.is_fully_const()) { log(" found reset state: %s (from async reset)\n", log_signal(reset_state)); states[reset_state] = -1; } if (!find_states(dff_in, dff_out, ctrl_in, states, &reset_state)) { log(" fsm extraction failed: state selection tree is not closed.\n"); return; } if (GetSize(states) <= 1) { log(" fsm extraction failed: at least two states are required.\n"); return; } // find control outputs // (add the state signals to the list of control outputs. if everything goes right, this signals // become unused and can then be removed from the fsm control output) RTLIL::SigSpec ctrl_out = dff_in; cellport_list.clear(); sig2trigger.find(dff_out, cellport_list); for (auto &cellport : cellport_list) { RTLIL::Cell *cell = module->cells_.at(cellport.first); RTLIL::SigSpec sig_a = assign_map(cell->getPort(ID::A)); RTLIL::SigSpec sig_b; if (cell->hasPort(ID::B)) sig_b = assign_map(cell->getPort(ID::B)); RTLIL::SigSpec sig_y = assign_map(cell->getPort(ID::Y)); if (cellport.second == ID::A && !sig_b.is_fully_const()) continue; if (cellport.second == ID::B && !sig_a.is_fully_const()) continue; log(" found ctrl output: %s\n", log_signal(sig_y)); ctrl_out.append(sig_y); } ctrl_in.remove(ctrl_out); ctrl_in.sort_and_unify(); ctrl_out.sort_and_unify(); log(" ctrl inputs: %s\n", log_signal(ctrl_in)); log(" ctrl outputs: %s\n", log_signal(ctrl_out)); // Initialize fsm data struct FsmData fsm_data; fsm_data.num_inputs = ctrl_in.size(); fsm_data.num_outputs = ctrl_out.size(); fsm_data.state_bits = wire->width; fsm_data.reset_state = -1; for (auto &it : states) { it.second = fsm_data.state_table.size(); fsm_data.state_table.push_back(it.first); } if (!arst.is_fully_const() || RTLIL::SigSpec(reset_state).is_fully_def()) fsm_data.reset_state = states[reset_state]; // Create transition table ConstEval ce(module), ce_nostop(module); ce.stop(ctrl_in); for (int state_idx = 0; state_idx < int(fsm_data.state_table.size()); state_idx++) { ce.push(), ce_nostop.push(); ce.set(dff_out, fsm_data.state_table[state_idx]); ce_nostop.set(dff_out, fsm_data.state_table[state_idx]); find_transitions(ce, ce_nostop, fsm_data, states, state_idx, ctrl_in, ctrl_out, dff_in, RTLIL::SigSpec()); ce.pop(), ce_nostop.pop(); } // create fsm cell RTLIL::Cell *fsm_cell = module->addCell(stringf("$fsm$%s$%d", wire->name.c_str(), autoidx++), ID($fsm)); fsm_cell->setPort(ID::CLK, clk); fsm_cell->setPort(ID::ARST, arst); fsm_cell->parameters[ID::CLK_POLARITY] = clk_polarity ? State::S1 : State::S0; fsm_cell->parameters[ID::ARST_POLARITY] = arst_polarity ? State::S1 : State::S0; fsm_cell->setPort(ID::CTRL_IN, ctrl_in); fsm_cell->setPort(ID::CTRL_OUT, ctrl_out); fsm_cell->parameters[ID::NAME] = RTLIL::Const(wire->name.str()); fsm_cell->attributes = wire->attributes; if(fsm_cell->attributes.count(ID::hdlname)) { fsm_cell->attributes[ID(scopename)] = fsm_cell->attributes[ID::hdlname]; fsm_cell->attributes.erase(ID::hdlname); } fsm_data.copy_to_cell(fsm_cell); // rename original state wire module->wires_.erase(wire->name); wire->attributes.erase(ID::fsm_encoding); wire->name = stringf("$fsm$oldstate%s", wire->name.c_str()); module->wires_[wire->name] = wire; if(wire->attributes.count(ID::hdlname)) { wire->attributes[ID(scopename)] = wire->attributes[ID::hdlname]; wire->attributes.erase(ID::hdlname); } // unconnect control outputs from old drivers cellport_list.clear(); sig2driver.find(ctrl_out, cellport_list); for (auto &cellport : cellport_list) { RTLIL::Cell *cell = module->cells_.at(cellport.first); RTLIL::SigSpec port_sig = assign_map(cell->getPort(cellport.second)); RTLIL::SigSpec unconn_sig = port_sig.extract(ctrl_out); RTLIL::Wire *unconn_wire = module->addWire(stringf("$fsm_unconnect$%d", autoidx++), unconn_sig.size()); port_sig.replace(unconn_sig, RTLIL::SigSpec(unconn_wire), &cell->connections_[cellport.second]); } } struct FsmExtractPass : public Pass { FsmExtractPass() : Pass("fsm_extract", "extracting FSMs in design") { } void help() override { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" fsm_extract [selection]\n"); log("\n"); log("This pass operates on all signals marked as FSM state signals using the\n"); log("'fsm_encoding' attribute. It consumes the logic that creates the state signal\n"); log("and uses the state signal to generate control signal and replaces it with an\n"); log("FSM cell.\n"); log("\n"); log("The generated FSM cell still generates the original state signal with its\n"); log("original encoding. The 'fsm_opt' pass can be used in combination with the\n"); log("'opt_clean' pass to eliminate this signal.\n"); log("\n"); } void execute(std::vector args, RTLIL::Design *design) override { log_header(design, "Executing FSM_EXTRACT pass (extracting FSM from design).\n"); extra_args(args, 1, design); CellTypes ct(design); for (auto mod : design->selected_modules()) { module = mod; assign_map.set(module); sig2driver.clear(); sig2trigger.clear(); exclusive_ctrls.clear(); for (auto cell : module->cells()) { for (auto &conn_it : cell->connections()) { if (ct.cell_output(cell->type, conn_it.first) || !ct.cell_known(cell->type)) { RTLIL::SigSpec sig = conn_it.second; assign_map.apply(sig); sig2driver.insert(sig, sig2driver_entry_t(cell->name, conn_it.first)); } if (ct.cell_input(cell->type, conn_it.first) && cell->hasPort(ID::Y) && cell->getPort(ID::Y).size() == 1 && (conn_it.first == ID::A || conn_it.first == ID::B)) { RTLIL::SigSpec sig = conn_it.second; assign_map.apply(sig); sig2trigger.insert(sig, sig2driver_entry_t(cell->name, conn_it.first)); } } if (cell->type == ID($pmux)) { RTLIL::SigSpec sel_sig = assign_map(cell->getPort(ID::S)); for (auto &bit1 : sel_sig) for (auto &bit2 : sel_sig) if (bit1 != bit2) exclusive_ctrls[bit1].insert(bit2); } } std::vector wire_list; for (auto wire : module->selected_wires()) if (wire->attributes.count(ID::fsm_encoding) > 0 && wire->attributes[ID::fsm_encoding].decode_string() != "none") wire_list.push_back(wire); for (auto wire : wire_list) extract_fsm(wire); } assign_map.clear(); sig2driver.clear(); sig2trigger.clear(); } } FsmExtractPass; PRIVATE_NAMESPACE_END