/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Claire Xenia Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ // [[CITE]] ABC // Berkeley Logic Synthesis and Verification Group, ABC: A System for Sequential Synthesis and Verification // http://www.eecs.berkeley.edu/~alanmi/abc/ // [[CITE]] Berkeley Logic Interchange Format (BLIF) // University of California. Berkeley. July 28, 1992 // http://www.ece.cmu.edu/~ee760/760docs/blif.pdf // [[CITE]] Kahn's Topological sorting algorithm // Kahn, Arthur B. (1962), "Topological sorting of large networks", Communications of the ACM 5 (11): 558-562, doi:10.1145/368996.369025 // http://en.wikipedia.org/wiki/Topological_sorting #define ABC_COMMAND_LIB "strash; &get -n; &fraig -x; &put; scorr; dc2; dretime; strash; &get -n; &dch -f; &nf {D}; &put" #define ABC_COMMAND_CTR "strash; &get -n; &fraig -x; &put; scorr; dc2; dretime; strash; &get -n; &dch -f; &nf {D}; &put; buffer; upsize {D}; dnsize {D}; stime -p" #define ABC_COMMAND_LUT "strash; &get -n; &fraig -x; &put; scorr; dc2; dretime; strash; dch -f; if; mfs2" #define ABC_COMMAND_SOP "strash; &get -n; &fraig -x; &put; scorr; dc2; dretime; strash; dch -f; cover {I} {P}" #define ABC_COMMAND_DFL "strash; &get -n; &fraig -x; &put; scorr; dc2; dretime; strash; &get -n; &dch -f; &nf {D}; &put" #define ABC_FAST_COMMAND_LIB "strash; dretime; map {D}" #define ABC_FAST_COMMAND_CTR "strash; dretime; map {D}; buffer; upsize {D}; dnsize {D}; stime -p" #define ABC_FAST_COMMAND_LUT "strash; dretime; if" #define ABC_FAST_COMMAND_SOP "strash; dretime; cover {I} {P}" #define ABC_FAST_COMMAND_DFL "strash; dretime; map" #include "kernel/register.h" #include "kernel/sigtools.h" #include "kernel/celltypes.h" #include "kernel/ffinit.h" #include "kernel/ff.h" #include "kernel/cost.h" #include "kernel/log.h" #include #include #include #include #include #include #include #include #ifndef _WIN32 # include # include #endif #include "frontends/blif/blifparse.h" #ifdef YOSYS_LINK_ABC namespace abc { int Abc_RealMain(int argc, char *argv[]); } #endif USING_YOSYS_NAMESPACE PRIVATE_NAMESPACE_BEGIN enum class gate_type_t { G_NONE, G_FF, G_FF0, G_FF1, G_BUF, G_NOT, G_AND, G_NAND, G_OR, G_NOR, G_XOR, G_XNOR, G_ANDNOT, G_ORNOT, G_MUX, G_NMUX, G_AOI3, G_OAI3, G_AOI4, G_OAI4 }; #define G(_name) gate_type_t::G_ ## _name struct gate_t { int id; gate_type_t type; int in1, in2, in3, in4; bool is_port; RTLIL::SigBit bit; RTLIL::State init; }; bool map_mux4; bool map_mux8; bool map_mux16; bool markgroups; int map_autoidx; SigMap assign_map; RTLIL::Module *module; std::vector signal_list; dict signal_map; FfInitVals initvals; pool enabled_gates; bool cmos_cost; bool had_init; bool clk_polarity, en_polarity, arst_polarity, srst_polarity; RTLIL::SigSpec clk_sig, en_sig, arst_sig, srst_sig; dict pi_map, po_map; int undef_bits_lost; int map_signal(RTLIL::SigBit bit, gate_type_t gate_type = G(NONE), int in1 = -1, int in2 = -1, int in3 = -1, int in4 = -1) { assign_map.apply(bit); if (bit == State::Sx) undef_bits_lost++; if (signal_map.count(bit) == 0) { gate_t gate; gate.id = signal_list.size(); gate.type = G(NONE); gate.in1 = -1; gate.in2 = -1; gate.in3 = -1; gate.in4 = -1; gate.is_port = false; gate.bit = bit; gate.init = initvals(bit); signal_list.push_back(gate); signal_map[bit] = gate.id; } gate_t &gate = signal_list[signal_map[bit]]; if (gate_type != G(NONE)) gate.type = gate_type; if (in1 >= 0) gate.in1 = in1; if (in2 >= 0) gate.in2 = in2; if (in3 >= 0) gate.in3 = in3; if (in4 >= 0) gate.in4 = in4; return gate.id; } void mark_port(RTLIL::SigSpec sig) { for (auto &bit : assign_map(sig)) if (bit.wire != nullptr && signal_map.count(bit) > 0) signal_list[signal_map[bit]].is_port = true; } void extract_cell(RTLIL::Cell *cell, bool keepff) { if (RTLIL::builtin_ff_cell_types().count(cell->type)) { FfData ff(&initvals, cell); gate_type_t type = G(FF); if (!ff.has_clk) return; if (ff.has_gclk) return; if (ff.has_aload) return; if (ff.has_sr) return; if (!ff.is_fine) return; if (clk_polarity != ff.pol_clk) return; if (clk_sig != assign_map(ff.sig_clk)) return; if (ff.has_ce) { if (en_polarity != ff.pol_ce) return; if (en_sig != assign_map(ff.sig_ce)) return; } else { if (GetSize(en_sig) != 0) return; } if (ff.val_init == State::S1) { type = G(FF1); had_init = true; } else if (ff.val_init == State::S0) { type = G(FF0); had_init = true; } if (ff.has_arst) { if (arst_polarity != ff.pol_arst) return; if (arst_sig != assign_map(ff.sig_arst)) return; if (ff.val_arst == State::S1) { if (type == G(FF0)) return; type = G(FF1); } else if (ff.val_arst == State::S0) { if (type == G(FF1)) return; type = G(FF0); } } else { if (GetSize(arst_sig) != 0) return; } if (ff.has_srst) { if (srst_polarity != ff.pol_srst) return; if (srst_sig != assign_map(ff.sig_srst)) return; if (ff.val_srst == State::S1) { if (type == G(FF0)) return; type = G(FF1); } else if (ff.val_srst == State::S0) { if (type == G(FF1)) return; type = G(FF0); } } else { if (GetSize(srst_sig) != 0) return; } if (keepff) for (auto &c : ff.sig_q.chunks()) if (c.wire != nullptr) c.wire->attributes[ID::keep] = 1; map_signal(ff.sig_q, type, map_signal(ff.sig_d)); ff.remove(); return; } if (cell->type.in(ID($_BUF_), ID($_NOT_))) { RTLIL::SigSpec sig_a = cell->getPort(ID::A); RTLIL::SigSpec sig_y = cell->getPort(ID::Y); assign_map.apply(sig_a); assign_map.apply(sig_y); map_signal(sig_y, cell->type == ID($_BUF_) ? G(BUF) : G(NOT), map_signal(sig_a)); module->remove(cell); return; } if (cell->type.in(ID($_AND_), ID($_NAND_), ID($_OR_), ID($_NOR_), ID($_XOR_), ID($_XNOR_), ID($_ANDNOT_), ID($_ORNOT_))) { RTLIL::SigSpec sig_a = cell->getPort(ID::A); RTLIL::SigSpec sig_b = cell->getPort(ID::B); RTLIL::SigSpec sig_y = cell->getPort(ID::Y); assign_map.apply(sig_a); assign_map.apply(sig_b); assign_map.apply(sig_y); int mapped_a = map_signal(sig_a); int mapped_b = map_signal(sig_b); if (cell->type == ID($_AND_)) map_signal(sig_y, G(AND), mapped_a, mapped_b); else if (cell->type == ID($_NAND_)) map_signal(sig_y, G(NAND), mapped_a, mapped_b); else if (cell->type == ID($_OR_)) map_signal(sig_y, G(OR), mapped_a, mapped_b); else if (cell->type == ID($_NOR_)) map_signal(sig_y, G(NOR), mapped_a, mapped_b); else if (cell->type == ID($_XOR_)) map_signal(sig_y, G(XOR), mapped_a, mapped_b); else if (cell->type == ID($_XNOR_)) map_signal(sig_y, G(XNOR), mapped_a, mapped_b); else if (cell->type == ID($_ANDNOT_)) map_signal(sig_y, G(ANDNOT), mapped_a, mapped_b); else if (cell->type == ID($_ORNOT_)) map_signal(sig_y, G(ORNOT), mapped_a, mapped_b); else log_abort(); module->remove(cell); return; } if (cell->type.in(ID($_MUX_), ID($_NMUX_))) { RTLIL::SigSpec sig_a = cell->getPort(ID::A); RTLIL::SigSpec sig_b = cell->getPort(ID::B); RTLIL::SigSpec sig_s = cell->getPort(ID::S); RTLIL::SigSpec sig_y = cell->getPort(ID::Y); assign_map.apply(sig_a); assign_map.apply(sig_b); assign_map.apply(sig_s); assign_map.apply(sig_y); int mapped_a = map_signal(sig_a); int mapped_b = map_signal(sig_b); int mapped_s = map_signal(sig_s); map_signal(sig_y, cell->type == ID($_MUX_) ? G(MUX) : G(NMUX), mapped_a, mapped_b, mapped_s); module->remove(cell); return; } if (cell->type.in(ID($_AOI3_), ID($_OAI3_))) { RTLIL::SigSpec sig_a = cell->getPort(ID::A); RTLIL::SigSpec sig_b = cell->getPort(ID::B); RTLIL::SigSpec sig_c = cell->getPort(ID::C); RTLIL::SigSpec sig_y = cell->getPort(ID::Y); assign_map.apply(sig_a); assign_map.apply(sig_b); assign_map.apply(sig_c); assign_map.apply(sig_y); int mapped_a = map_signal(sig_a); int mapped_b = map_signal(sig_b); int mapped_c = map_signal(sig_c); map_signal(sig_y, cell->type == ID($_AOI3_) ? G(AOI3) : G(OAI3), mapped_a, mapped_b, mapped_c); module->remove(cell); return; } if (cell->type.in(ID($_AOI4_), ID($_OAI4_))) { RTLIL::SigSpec sig_a = cell->getPort(ID::A); RTLIL::SigSpec sig_b = cell->getPort(ID::B); RTLIL::SigSpec sig_c = cell->getPort(ID::C); RTLIL::SigSpec sig_d = cell->getPort(ID::D); RTLIL::SigSpec sig_y = cell->getPort(ID::Y); assign_map.apply(sig_a); assign_map.apply(sig_b); assign_map.apply(sig_c); assign_map.apply(sig_d); assign_map.apply(sig_y); int mapped_a = map_signal(sig_a); int mapped_b = map_signal(sig_b); int mapped_c = map_signal(sig_c); int mapped_d = map_signal(sig_d); map_signal(sig_y, cell->type == ID($_AOI4_) ? G(AOI4) : G(OAI4), mapped_a, mapped_b, mapped_c, mapped_d); module->remove(cell); return; } } std::string remap_name(RTLIL::IdString abc_name, RTLIL::Wire **orig_wire = nullptr) { std::string abc_sname = abc_name.substr(1); bool isnew = false; if (abc_sname.compare(0, 4, "new_") == 0) { abc_sname.erase(0, 4); isnew = true; } if (abc_sname.compare(0, 5, "ys__n") == 0) { abc_sname.erase(0, 5); if (std::isdigit(abc_sname.at(0))) { int sid = std::atoi(abc_sname.c_str()); size_t postfix_start = abc_sname.find_first_not_of("0123456789"); std::string postfix = postfix_start != std::string::npos ? abc_sname.substr(postfix_start) : ""; if (sid < GetSize(signal_list)) { auto sig = signal_list.at(sid); if (sig.bit.wire != nullptr) { std::string s = stringf("$abc$%d$%s", map_autoidx, sig.bit.wire->name.c_str()+1); if (sig.bit.wire->width != 1) s += stringf("[%d]", sig.bit.offset); if (isnew) s += "_new"; s += postfix; if (orig_wire != nullptr) *orig_wire = sig.bit.wire; return s; } } } } return stringf("$abc$%d$%s", map_autoidx, abc_name.c_str()+1); } void dump_loop_graph(FILE *f, int &nr, dict> &edges, pool &workpool, std::vector &in_counts) { if (f == nullptr) return; log("Dumping loop state graph to slide %d.\n", ++nr); fprintf(f, "digraph \"slide%d\" {\n", nr); fprintf(f, " label=\"slide%d\";\n", nr); fprintf(f, " rankdir=\"TD\";\n"); pool nodes; for (auto &e : edges) { nodes.insert(e.first); for (auto n : e.second) nodes.insert(n); } for (auto n : nodes) fprintf(f, " ys__n%d [label=\"%s\\nid=%d, count=%d\"%s];\n", n, log_signal(signal_list[n].bit), n, in_counts[n], workpool.count(n) ? ", shape=box" : ""); for (auto &e : edges) for (auto n : e.second) fprintf(f, " ys__n%d -> ys__n%d;\n", e.first, n); fprintf(f, "}\n"); } void handle_loops() { // http://en.wikipedia.org/wiki/Topological_sorting // (Kahn, Arthur B. (1962), "Topological sorting of large networks") dict> edges; std::vector in_edges_count(signal_list.size()); pool workpool; FILE *dot_f = nullptr; int dot_nr = 0; // uncomment for troubleshooting the loop detection code // dot_f = fopen("test.dot", "w"); for (auto &g : signal_list) { if (g.type == G(NONE) || g.type == G(FF) || g.type == G(FF0) || g.type == G(FF1)) { workpool.insert(g.id); } else { if (g.in1 >= 0) { edges[g.in1].insert(g.id); in_edges_count[g.id]++; } if (g.in2 >= 0 && g.in2 != g.in1) { edges[g.in2].insert(g.id); in_edges_count[g.id]++; } if (g.in3 >= 0 && g.in3 != g.in2 && g.in3 != g.in1) { edges[g.in3].insert(g.id); in_edges_count[g.id]++; } if (g.in4 >= 0 && g.in4 != g.in3 && g.in4 != g.in2 && g.in4 != g.in1) { edges[g.in4].insert(g.id); in_edges_count[g.id]++; } } } dump_loop_graph(dot_f, dot_nr, edges, workpool, in_edges_count); while (workpool.size() > 0) { int id = *workpool.begin(); workpool.erase(id); // log("Removing non-loop node %d from graph: %s\n", id, log_signal(signal_list[id].bit)); for (int id2 : edges[id]) { log_assert(in_edges_count[id2] > 0); if (--in_edges_count[id2] == 0) workpool.insert(id2); } edges.erase(id); dump_loop_graph(dot_f, dot_nr, edges, workpool, in_edges_count); while (workpool.size() == 0) { if (edges.size() == 0) break; int id1 = edges.begin()->first; for (auto &edge_it : edges) { int id2 = edge_it.first; RTLIL::Wire *w1 = signal_list[id1].bit.wire; RTLIL::Wire *w2 = signal_list[id2].bit.wire; if (w1 == nullptr) id1 = id2; else if (w2 == nullptr) continue; else if (w1->name[0] == '$' && w2->name[0] == '\\') id1 = id2; else if (w1->name[0] == '\\' && w2->name[0] == '$') continue; else if (edges[id1].size() < edges[id2].size()) id1 = id2; else if (edges[id1].size() > edges[id2].size()) continue; else if (w2->name.str() < w1->name.str()) id1 = id2; } if (edges[id1].size() == 0) { edges.erase(id1); continue; } log_assert(signal_list[id1].bit.wire != nullptr); std::stringstream sstr; sstr << "$abcloop$" << (autoidx++); RTLIL::Wire *wire = module->addWire(sstr.str()); bool first_line = true; for (int id2 : edges[id1]) { if (first_line) log("Breaking loop using new signal %s: %s -> %s\n", log_signal(RTLIL::SigSpec(wire)), log_signal(signal_list[id1].bit), log_signal(signal_list[id2].bit)); else log(" %*s %s -> %s\n", int(strlen(log_signal(RTLIL::SigSpec(wire)))), "", log_signal(signal_list[id1].bit), log_signal(signal_list[id2].bit)); first_line = false; } int id3 = map_signal(RTLIL::SigSpec(wire)); signal_list[id1].is_port = true; signal_list[id3].is_port = true; log_assert(id3 == int(in_edges_count.size())); in_edges_count.push_back(0); workpool.insert(id3); for (int id2 : edges[id1]) { if (signal_list[id2].in1 == id1) signal_list[id2].in1 = id3; if (signal_list[id2].in2 == id1) signal_list[id2].in2 = id3; if (signal_list[id2].in3 == id1) signal_list[id2].in3 = id3; if (signal_list[id2].in4 == id1) signal_list[id2].in4 = id3; } edges[id1].swap(edges[id3]); module->connect(RTLIL::SigSig(signal_list[id3].bit, signal_list[id1].bit)); dump_loop_graph(dot_f, dot_nr, edges, workpool, in_edges_count); } } if (dot_f != nullptr) fclose(dot_f); } std::string add_echos_to_abc_cmd(std::string str) { std::string new_str, token; for (size_t i = 0; i < str.size(); i++) { token += str[i]; if (str[i] == ';') { while (i+1 < str.size() && str[i+1] == ' ') i++; new_str += "echo + " + token + " " + token + " "; token.clear(); } } if (!token.empty()) { if (!new_str.empty()) new_str += "echo + " + token + "; "; new_str += token; } return new_str; } std::string fold_abc_cmd(std::string str) { std::string token, new_str = " "; int char_counter = 10; for (size_t i = 0; i <= str.size(); i++) { if (i < str.size()) token += str[i]; if (i == str.size() || str[i] == ';') { if (char_counter + token.size() > 75) new_str += "\n ", char_counter = 14; new_str += token, char_counter += token.size(); token.clear(); } } return new_str; } std::string replace_tempdir(std::string text, std::string tempdir_name, bool show_tempdir) { if (show_tempdir) return text; while (1) { size_t pos = text.find(tempdir_name); if (pos == std::string::npos) break; text = text.substr(0, pos) + "" + text.substr(pos + GetSize(tempdir_name)); } std::string selfdir_name = proc_self_dirname(); if (selfdir_name != "/") { while (1) { size_t pos = text.find(selfdir_name); if (pos == std::string::npos) break; text = text.substr(0, pos) + "/" + text.substr(pos + GetSize(selfdir_name)); } } return text; } struct abc_output_filter { bool got_cr; int escape_seq_state; std::string linebuf; std::string tempdir_name; bool show_tempdir; abc_output_filter(std::string tempdir_name, bool show_tempdir) : tempdir_name(tempdir_name), show_tempdir(show_tempdir) { got_cr = false; escape_seq_state = 0; } void next_char(char ch) { if (escape_seq_state == 0 && ch == '\033') { escape_seq_state = 1; return; } if (escape_seq_state == 1) { escape_seq_state = ch == '[' ? 2 : 0; return; } if (escape_seq_state == 2) { if ((ch < '0' || '9' < ch) && ch != ';') escape_seq_state = 0; return; } escape_seq_state = 0; if (ch == '\r') { got_cr = true; return; } if (ch == '\n') { log("ABC: %s\n", replace_tempdir(linebuf, tempdir_name, show_tempdir).c_str()); got_cr = false, linebuf.clear(); return; } if (got_cr) got_cr = false, linebuf.clear(); linebuf += ch; } void next_line(const std::string &line) { int pi, po; if (sscanf(line.c_str(), "Start-point = pi%d. End-point = po%d.", &pi, &po) == 2) { log("ABC: Start-point = pi%d (%s). End-point = po%d (%s).\n", pi, pi_map.count(pi) ? pi_map.at(pi).c_str() : "???", po, po_map.count(po) ? po_map.at(po).c_str() : "???"); return; } for (char ch : line) next_char(ch); } }; void abc_module(RTLIL::Design *design, RTLIL::Module *current_module, std::string script_file, std::string exe_file, std::vector &liberty_files, std::vector &genlib_files, std::string constr_file, bool cleanup, vector lut_costs, bool dff_mode, std::string clk_str, bool keepff, std::string delay_target, std::string sop_inputs, std::string sop_products, std::string lutin_shared, bool fast_mode, const std::vector &cells, bool show_tempdir, bool sop_mode, bool abc_dress, std::vector &dont_use_cells) { module = current_module; map_autoidx = autoidx++; signal_map.clear(); signal_list.clear(); pi_map.clear(); po_map.clear(); if (clk_str != "$") { clk_polarity = true; clk_sig = RTLIL::SigSpec(); en_polarity = true; en_sig = RTLIL::SigSpec(); arst_polarity = true; arst_sig = RTLIL::SigSpec(); srst_polarity = true; srst_sig = RTLIL::SigSpec(); } if (!clk_str.empty() && clk_str != "$") { std::string en_str; std::string arst_str; std::string srst_str; if (clk_str.find(',') != std::string::npos) { int pos = clk_str.find(','); en_str = clk_str.substr(pos+1); clk_str = clk_str.substr(0, pos); } if (en_str.find(',') != std::string::npos) { int pos = en_str.find(','); arst_str = en_str.substr(pos+1); arst_str = en_str.substr(0, pos); } if (arst_str.find(',') != std::string::npos) { int pos = arst_str.find(','); srst_str = arst_str.substr(pos+1); srst_str = arst_str.substr(0, pos); } if (clk_str[0] == '!') { clk_polarity = false; clk_str = clk_str.substr(1); } if (module->wire(RTLIL::escape_id(clk_str)) != nullptr) clk_sig = assign_map(module->wire(RTLIL::escape_id(clk_str))); if (en_str != "") { if (en_str[0] == '!') { en_polarity = false; en_str = en_str.substr(1); } if (module->wire(RTLIL::escape_id(en_str)) != nullptr) en_sig = assign_map(module->wire(RTLIL::escape_id(en_str))); } if (arst_str != "") { if (arst_str[0] == '!') { arst_polarity = false; arst_str = arst_str.substr(1); } if (module->wire(RTLIL::escape_id(arst_str)) != nullptr) arst_sig = assign_map(module->wire(RTLIL::escape_id(arst_str))); } if (srst_str != "") { if (srst_str[0] == '!') { srst_polarity = false; srst_str = srst_str.substr(1); } if (module->wire(RTLIL::escape_id(srst_str)) != nullptr) srst_sig = assign_map(module->wire(RTLIL::escape_id(srst_str))); } } if (dff_mode && clk_sig.empty()) log_cmd_error("Clock domain %s not found.\n", clk_str.c_str()); std::string tempdir_name; if (cleanup) tempdir_name = get_base_tmpdir() + "/"; else tempdir_name = "_tmp_"; tempdir_name += proc_program_prefix() + "yosys-abc-XXXXXX"; tempdir_name = make_temp_dir(tempdir_name); log_header(design, "Extracting gate netlist of module `%s' to `%s/input.blif'..\n", module->name.c_str(), replace_tempdir(tempdir_name, tempdir_name, show_tempdir).c_str()); std::string abc_script = stringf("read_blif \"%s/input.blif\"; ", tempdir_name.c_str()); if (!liberty_files.empty() || !genlib_files.empty()) { std::string dont_use_args; for (std::string dont_use_cell : dont_use_cells) { dont_use_args += stringf("-X \"%s\" ", dont_use_cell.c_str()); } bool first_lib = true; for (std::string liberty_file : liberty_files) { abc_script += stringf("read_lib %s %s -w \"%s\" ; ", dont_use_args.c_str(), first_lib ? "" : "-m", liberty_file.c_str()); first_lib = false; } for (std::string liberty_file : genlib_files) abc_script += stringf("read_library \"%s\"; ", liberty_file.c_str()); if (!constr_file.empty()) abc_script += stringf("read_constr -v \"%s\"; ", constr_file.c_str()); } else if (!lut_costs.empty()) abc_script += stringf("read_lut %s/lutdefs.txt; ", tempdir_name.c_str()); else abc_script += stringf("read_library %s/stdcells.genlib; ", tempdir_name.c_str()); if (!script_file.empty()) { if (script_file[0] == '+') { for (size_t i = 1; i < script_file.size(); i++) if (script_file[i] == '\'') abc_script += "'\\''"; else if (script_file[i] == ',') abc_script += " "; else abc_script += script_file[i]; } else abc_script += stringf("source %s", script_file.c_str()); } else if (!lut_costs.empty()) { bool all_luts_cost_same = true; for (int this_cost : lut_costs) if (this_cost != lut_costs.front()) all_luts_cost_same = false; abc_script += fast_mode ? ABC_FAST_COMMAND_LUT : ABC_COMMAND_LUT; if (all_luts_cost_same && !fast_mode) abc_script += "; lutpack {S}"; } else if (!liberty_files.empty() || !genlib_files.empty()) abc_script += constr_file.empty() ? (fast_mode ? ABC_FAST_COMMAND_LIB : ABC_COMMAND_LIB) : (fast_mode ? ABC_FAST_COMMAND_CTR : ABC_COMMAND_CTR); else if (sop_mode) abc_script += fast_mode ? ABC_FAST_COMMAND_SOP : ABC_COMMAND_SOP; else abc_script += fast_mode ? ABC_FAST_COMMAND_DFL : ABC_COMMAND_DFL; if (script_file.empty() && !delay_target.empty()) for (size_t pos = abc_script.find("dretime;"); pos != std::string::npos; pos = abc_script.find("dretime;", pos+1)) abc_script = abc_script.substr(0, pos) + "dretime; retime -o {D};" + abc_script.substr(pos+8); for (size_t pos = abc_script.find("{D}"); pos != std::string::npos; pos = abc_script.find("{D}", pos)) abc_script = abc_script.substr(0, pos) + delay_target + abc_script.substr(pos+3); for (size_t pos = abc_script.find("{I}"); pos != std::string::npos; pos = abc_script.find("{I}", pos)) abc_script = abc_script.substr(0, pos) + sop_inputs + abc_script.substr(pos+3); for (size_t pos = abc_script.find("{P}"); pos != std::string::npos; pos = abc_script.find("{P}", pos)) abc_script = abc_script.substr(0, pos) + sop_products + abc_script.substr(pos+3); for (size_t pos = abc_script.find("{S}"); pos != std::string::npos; pos = abc_script.find("{S}", pos)) abc_script = abc_script.substr(0, pos) + lutin_shared + abc_script.substr(pos+3); if (abc_dress) abc_script += stringf("; dress \"%s/input.blif\"", tempdir_name.c_str()); abc_script += stringf("; write_blif %s/output.blif", tempdir_name.c_str()); abc_script = add_echos_to_abc_cmd(abc_script); for (size_t i = 0; i+1 < abc_script.size(); i++) if (abc_script[i] == ';' && abc_script[i+1] == ' ') abc_script[i+1] = '\n'; std::string buffer = stringf("%s/abc.script", tempdir_name.c_str()); FILE *f = fopen(buffer.c_str(), "wt"); if (f == nullptr) log_error("Opening %s for writing failed: %s\n", buffer.c_str(), strerror(errno)); fprintf(f, "%s\n", abc_script.c_str()); fclose(f); if (dff_mode || !clk_str.empty()) { if (clk_sig.size() == 0) log("No%s clock domain found. Not extracting any FF cells.\n", clk_str.empty() ? "" : " matching"); else { log("Found%s %s clock domain: %s", clk_str.empty() ? "" : " matching", clk_polarity ? "posedge" : "negedge", log_signal(clk_sig)); if (en_sig.size() != 0) log(", enabled by %s%s", en_polarity ? "" : "!", log_signal(en_sig)); if (arst_sig.size() != 0) log(", asynchronously reset by %s%s", arst_polarity ? "" : "!", log_signal(arst_sig)); if (srst_sig.size() != 0) log(", synchronously reset by %s%s", srst_polarity ? "" : "!", log_signal(srst_sig)); log("\n"); } } undef_bits_lost = 0; had_init = false; for (auto c : cells) extract_cell(c, keepff); if (undef_bits_lost) log("Replacing %d occurrences of constant undef bits with constant zero bits\n", undef_bits_lost); for (auto wire : module->wires()) { if (wire->port_id > 0 || wire->get_bool_attribute(ID::keep)) mark_port(wire); } for (auto cell : module->cells()) for (auto &port_it : cell->connections()) mark_port(port_it.second); if (clk_sig.size() != 0) mark_port(clk_sig); if (en_sig.size() != 0) mark_port(en_sig); if (arst_sig.size() != 0) mark_port(arst_sig); if (srst_sig.size() != 0) mark_port(srst_sig); handle_loops(); buffer = stringf("%s/input.blif", tempdir_name.c_str()); f = fopen(buffer.c_str(), "wt"); if (f == nullptr) log_error("Opening %s for writing failed: %s\n", buffer.c_str(), strerror(errno)); fprintf(f, ".model netlist\n"); int count_input = 0; fprintf(f, ".inputs"); for (auto &si : signal_list) { if (!si.is_port || si.type != G(NONE)) continue; fprintf(f, " ys__n%d", si.id); pi_map[count_input++] = log_signal(si.bit); } if (count_input == 0) fprintf(f, " dummy_input\n"); fprintf(f, "\n"); int count_output = 0; fprintf(f, ".outputs"); for (auto &si : signal_list) { if (!si.is_port || si.type == G(NONE)) continue; fprintf(f, " ys__n%d", si.id); po_map[count_output++] = log_signal(si.bit); } fprintf(f, "\n"); for (auto &si : signal_list) fprintf(f, "# ys__n%-5d %s\n", si.id, log_signal(si.bit)); for (auto &si : signal_list) { if (si.bit.wire == nullptr) { fprintf(f, ".names ys__n%d\n", si.id); if (si.bit == RTLIL::State::S1) fprintf(f, "1\n"); } } int count_gates = 0; for (auto &si : signal_list) { if (si.type == G(BUF)) { fprintf(f, ".names ys__n%d ys__n%d\n", si.in1, si.id); fprintf(f, "1 1\n"); } else if (si.type == G(NOT)) { fprintf(f, ".names ys__n%d ys__n%d\n", si.in1, si.id); fprintf(f, "0 1\n"); } else if (si.type == G(AND)) { fprintf(f, ".names ys__n%d ys__n%d ys__n%d\n", si.in1, si.in2, si.id); fprintf(f, "11 1\n"); } else if (si.type == G(NAND)) { fprintf(f, ".names ys__n%d ys__n%d ys__n%d\n", si.in1, si.in2, si.id); fprintf(f, "0- 1\n"); fprintf(f, "-0 1\n"); } else if (si.type == G(OR)) { fprintf(f, ".names ys__n%d ys__n%d ys__n%d\n", si.in1, si.in2, si.id); fprintf(f, "-1 1\n"); fprintf(f, "1- 1\n"); } else if (si.type == G(NOR)) { fprintf(f, ".names ys__n%d ys__n%d ys__n%d\n", si.in1, si.in2, si.id); fprintf(f, "00 1\n"); } else if (si.type == G(XOR)) { fprintf(f, ".names ys__n%d ys__n%d ys__n%d\n", si.in1, si.in2, si.id); fprintf(f, "01 1\n"); fprintf(f, "10 1\n"); } else if (si.type == G(XNOR)) { fprintf(f, ".names ys__n%d ys__n%d ys__n%d\n", si.in1, si.in2, si.id); fprintf(f, "00 1\n"); fprintf(f, "11 1\n"); } else if (si.type == G(ANDNOT)) { fprintf(f, ".names ys__n%d ys__n%d ys__n%d\n", si.in1, si.in2, si.id); fprintf(f, "10 1\n"); } else if (si.type == G(ORNOT)) { fprintf(f, ".names ys__n%d ys__n%d ys__n%d\n", si.in1, si.in2, si.id); fprintf(f, "1- 1\n"); fprintf(f, "-0 1\n"); } else if (si.type == G(MUX)) { fprintf(f, ".names ys__n%d ys__n%d ys__n%d ys__n%d\n", si.in1, si.in2, si.in3, si.id); fprintf(f, "1-0 1\n"); fprintf(f, "-11 1\n"); } else if (si.type == G(NMUX)) { fprintf(f, ".names ys__n%d ys__n%d ys__n%d ys__n%d\n", si.in1, si.in2, si.in3, si.id); fprintf(f, "0-0 1\n"); fprintf(f, "-01 1\n"); } else if (si.type == G(AOI3)) { fprintf(f, ".names ys__n%d ys__n%d ys__n%d ys__n%d\n", si.in1, si.in2, si.in3, si.id); fprintf(f, "-00 1\n"); fprintf(f, "0-0 1\n"); } else if (si.type == G(OAI3)) { fprintf(f, ".names ys__n%d ys__n%d ys__n%d ys__n%d\n", si.in1, si.in2, si.in3, si.id); fprintf(f, "00- 1\n"); fprintf(f, "--0 1\n"); } else if (si.type == G(AOI4)) { fprintf(f, ".names ys__n%d ys__n%d ys__n%d ys__n%d ys__n%d\n", si.in1, si.in2, si.in3, si.in4, si.id); fprintf(f, "-0-0 1\n"); fprintf(f, "-00- 1\n"); fprintf(f, "0--0 1\n"); fprintf(f, "0-0- 1\n"); } else if (si.type == G(OAI4)) { fprintf(f, ".names ys__n%d ys__n%d ys__n%d ys__n%d ys__n%d\n", si.in1, si.in2, si.in3, si.in4, si.id); fprintf(f, "00-- 1\n"); fprintf(f, "--00 1\n"); } else if (si.type == G(FF)) { fprintf(f, ".latch ys__n%d ys__n%d 2\n", si.in1, si.id); } else if (si.type == G(FF0)) { fprintf(f, ".latch ys__n%d ys__n%d 0\n", si.in1, si.id); } else if (si.type == G(FF1)) { fprintf(f, ".latch ys__n%d ys__n%d 1\n", si.in1, si.id); } else if (si.type != G(NONE)) log_abort(); if (si.type != G(NONE)) count_gates++; } fprintf(f, ".end\n"); fclose(f); log("Extracted %d gates and %d wires to a netlist network with %d inputs and %d outputs.\n", count_gates, GetSize(signal_list), count_input, count_output); log_push(); if (count_output > 0) { log_header(design, "Executing ABC.\n"); auto &cell_cost = cmos_cost ? CellCosts::cmos_gate_cost() : CellCosts::default_gate_cost(); buffer = stringf("%s/stdcells.genlib", tempdir_name.c_str()); f = fopen(buffer.c_str(), "wt"); if (f == nullptr) log_error("Opening %s for writing failed: %s\n", buffer.c_str(), strerror(errno)); fprintf(f, "GATE ZERO 1 Y=CONST0;\n"); fprintf(f, "GATE ONE 1 Y=CONST1;\n"); fprintf(f, "GATE BUF %d Y=A; PIN * NONINV 1 999 1 0 1 0\n", cell_cost.at(ID($_BUF_))); fprintf(f, "GATE NOT %d Y=!A; PIN * INV 1 999 1 0 1 0\n", cell_cost.at(ID($_NOT_))); if (enabled_gates.count("AND")) fprintf(f, "GATE AND %d Y=A*B; PIN * NONINV 1 999 1 0 1 0\n", cell_cost.at(ID($_AND_))); if (enabled_gates.count("NAND")) fprintf(f, "GATE NAND %d Y=!(A*B); PIN * INV 1 999 1 0 1 0\n", cell_cost.at(ID($_NAND_))); if (enabled_gates.count("OR")) fprintf(f, "GATE OR %d Y=A+B; PIN * NONINV 1 999 1 0 1 0\n", cell_cost.at(ID($_OR_))); if (enabled_gates.count("NOR")) fprintf(f, "GATE NOR %d Y=!(A+B); PIN * INV 1 999 1 0 1 0\n", cell_cost.at(ID($_NOR_))); if (enabled_gates.count("XOR")) fprintf(f, "GATE XOR %d Y=(A*!B)+(!A*B); PIN * UNKNOWN 1 999 1 0 1 0\n", cell_cost.at(ID($_XOR_))); if (enabled_gates.count("XNOR")) fprintf(f, "GATE XNOR %d Y=(A*B)+(!A*!B); PIN * UNKNOWN 1 999 1 0 1 0\n", cell_cost.at(ID($_XNOR_))); if (enabled_gates.count("ANDNOT")) fprintf(f, "GATE ANDNOT %d Y=A*!B; PIN * UNKNOWN 1 999 1 0 1 0\n", cell_cost.at(ID($_ANDNOT_))); if (enabled_gates.count("ORNOT")) fprintf(f, "GATE ORNOT %d Y=A+!B; PIN * UNKNOWN 1 999 1 0 1 0\n", cell_cost.at(ID($_ORNOT_))); if (enabled_gates.count("AOI3")) fprintf(f, "GATE AOI3 %d Y=!((A*B)+C); PIN * INV 1 999 1 0 1 0\n", cell_cost.at(ID($_AOI3_))); if (enabled_gates.count("OAI3")) fprintf(f, "GATE OAI3 %d Y=!((A+B)*C); PIN * INV 1 999 1 0 1 0\n", cell_cost.at(ID($_OAI3_))); if (enabled_gates.count("AOI4")) fprintf(f, "GATE AOI4 %d Y=!((A*B)+(C*D)); PIN * INV 1 999 1 0 1 0\n", cell_cost.at(ID($_AOI4_))); if (enabled_gates.count("OAI4")) fprintf(f, "GATE OAI4 %d Y=!((A+B)*(C+D)); PIN * INV 1 999 1 0 1 0\n", cell_cost.at(ID($_OAI4_))); if (enabled_gates.count("MUX")) fprintf(f, "GATE MUX %d Y=(A*B)+(S*B)+(!S*A); PIN * UNKNOWN 1 999 1 0 1 0\n", cell_cost.at(ID($_MUX_))); if (enabled_gates.count("NMUX")) fprintf(f, "GATE NMUX %d Y=!((A*B)+(S*B)+(!S*A)); PIN * UNKNOWN 1 999 1 0 1 0\n", cell_cost.at(ID($_NMUX_))); if (map_mux4) fprintf(f, "GATE MUX4 %d Y=(!S*!T*A)+(S*!T*B)+(!S*T*C)+(S*T*D); PIN * UNKNOWN 1 999 1 0 1 0\n", 2*cell_cost.at(ID($_MUX_))); if (map_mux8) fprintf(f, "GATE MUX8 %d Y=(!S*!T*!U*A)+(S*!T*!U*B)+(!S*T*!U*C)+(S*T*!U*D)+(!S*!T*U*E)+(S*!T*U*F)+(!S*T*U*G)+(S*T*U*H); PIN * UNKNOWN 1 999 1 0 1 0\n", 4*cell_cost.at(ID($_MUX_))); if (map_mux16) fprintf(f, "GATE MUX16 %d Y=(!S*!T*!U*!V*A)+(S*!T*!U*!V*B)+(!S*T*!U*!V*C)+(S*T*!U*!V*D)+(!S*!T*U*!V*E)+(S*!T*U*!V*F)+(!S*T*U*!V*G)+(S*T*U*!V*H)+(!S*!T*!U*V*I)+(S*!T*!U*V*J)+(!S*T*!U*V*K)+(S*T*!U*V*L)+(!S*!T*U*V*M)+(S*!T*U*V*N)+(!S*T*U*V*O)+(S*T*U*V*P); PIN * UNKNOWN 1 999 1 0 1 0\n", 8*cell_cost.at(ID($_MUX_))); fclose(f); if (!lut_costs.empty()) { buffer = stringf("%s/lutdefs.txt", tempdir_name.c_str()); f = fopen(buffer.c_str(), "wt"); if (f == nullptr) log_error("Opening %s for writing failed: %s\n", buffer.c_str(), strerror(errno)); for (int i = 0; i < GetSize(lut_costs); i++) fprintf(f, "%d %d.00 1.00\n", i+1, lut_costs.at(i)); fclose(f); } buffer = stringf("\"%s\" -s -f %s/abc.script 2>&1", exe_file.c_str(), tempdir_name.c_str()); log("Running ABC command: %s\n", replace_tempdir(buffer, tempdir_name, show_tempdir).c_str()); #ifndef YOSYS_LINK_ABC abc_output_filter filt(tempdir_name, show_tempdir); int ret = run_command(buffer, std::bind(&abc_output_filter::next_line, filt, std::placeholders::_1)); #else string temp_stdouterr_name = stringf("%s/stdouterr.txt", tempdir_name.c_str()); FILE *temp_stdouterr_w = fopen(temp_stdouterr_name.c_str(), "w"); if (temp_stdouterr_w == NULL) log_error("ABC: cannot open a temporary file for output redirection"); fflush(stdout); fflush(stderr); FILE *old_stdout = fopen(temp_stdouterr_name.c_str(), "r"); // need any fd for renumbering FILE *old_stderr = fopen(temp_stdouterr_name.c_str(), "r"); // need any fd for renumbering #if defined(__wasm) #define fd_renumber(from, to) (void)__wasi_fd_renumber(from, to) #else #define fd_renumber(from, to) dup2(from, to) #endif fd_renumber(fileno(stdout), fileno(old_stdout)); fd_renumber(fileno(stderr), fileno(old_stderr)); fd_renumber(fileno(temp_stdouterr_w), fileno(stdout)); fd_renumber(fileno(temp_stdouterr_w), fileno(stderr)); fclose(temp_stdouterr_w); // These needs to be mutable, supposedly due to getopt char *abc_argv[5]; string tmp_script_name = stringf("%s/abc.script", tempdir_name.c_str()); abc_argv[0] = strdup(exe_file.c_str()); abc_argv[1] = strdup("-s"); abc_argv[2] = strdup("-f"); abc_argv[3] = strdup(tmp_script_name.c_str()); abc_argv[4] = 0; int ret = abc::Abc_RealMain(4, abc_argv); free(abc_argv[0]); free(abc_argv[1]); free(abc_argv[2]); free(abc_argv[3]); fflush(stdout); fflush(stderr); fd_renumber(fileno(old_stdout), fileno(stdout)); fd_renumber(fileno(old_stderr), fileno(stderr)); fclose(old_stdout); fclose(old_stderr); std::ifstream temp_stdouterr_r(temp_stdouterr_name); abc_output_filter filt(tempdir_name, show_tempdir); for (std::string line; std::getline(temp_stdouterr_r, line); ) filt.next_line(line + "\n"); temp_stdouterr_r.close(); #endif if (ret != 0) log_error("ABC: execution of command \"%s\" failed: return code %d.\n", buffer.c_str(), ret); buffer = stringf("%s/%s", tempdir_name.c_str(), "output.blif"); std::ifstream ifs; ifs.open(buffer); if (ifs.fail()) log_error("Can't open ABC output file `%s'.\n", buffer.c_str()); bool builtin_lib = liberty_files.empty() && genlib_files.empty(); RTLIL::Design *mapped_design = new RTLIL::Design; parse_blif(mapped_design, ifs, builtin_lib ? ID(DFF) : ID(_dff_), false, sop_mode); ifs.close(); log_header(design, "Re-integrating ABC results.\n"); RTLIL::Module *mapped_mod = mapped_design->module(ID(netlist)); if (mapped_mod == nullptr) log_error("ABC output file does not contain a module `netlist'.\n"); for (auto w : mapped_mod->wires()) { RTLIL::Wire *orig_wire = nullptr; RTLIL::Wire *wire = module->addWire(remap_name(w->name, &orig_wire)); if (orig_wire != nullptr && orig_wire->attributes.count(ID::src)) wire->attributes[ID::src] = orig_wire->attributes[ID::src]; if (markgroups) wire->attributes[ID::abcgroup] = map_autoidx; design->select(module, wire); } SigMap mapped_sigmap(mapped_mod); FfInitVals mapped_initvals(&mapped_sigmap, mapped_mod); dict cell_stats; for (auto c : mapped_mod->cells()) { if (builtin_lib) { cell_stats[RTLIL::unescape_id(c->type)]++; if (c->type.in(ID(ZERO), ID(ONE))) { RTLIL::SigSig conn; RTLIL::IdString name_y = remap_name(c->getPort(ID::Y).as_wire()->name); conn.first = module->wire(name_y); conn.second = RTLIL::SigSpec(c->type == ID(ZERO) ? 0 : 1, 1); module->connect(conn); continue; } if (c->type == ID(BUF)) { RTLIL::SigSig conn; RTLIL::IdString name_y = remap_name(c->getPort(ID::Y).as_wire()->name); RTLIL::IdString name_a = remap_name(c->getPort(ID::A).as_wire()->name); conn.first = module->wire(name_y); conn.second = module->wire(name_a); module->connect(conn); continue; } if (c->type == ID(NOT)) { RTLIL::Cell *cell = module->addCell(remap_name(c->name), ID($_NOT_)); if (markgroups) cell->attributes[ID::abcgroup] = map_autoidx; for (auto name : {ID::A, ID::Y}) { RTLIL::IdString remapped_name = remap_name(c->getPort(name).as_wire()->name); cell->setPort(name, module->wire(remapped_name)); } design->select(module, cell); continue; } if (c->type.in(ID(AND), ID(OR), ID(XOR), ID(NAND), ID(NOR), ID(XNOR), ID(ANDNOT), ID(ORNOT))) { RTLIL::Cell *cell = module->addCell(remap_name(c->name), stringf("$_%s_", c->type.c_str()+1)); if (markgroups) cell->attributes[ID::abcgroup] = map_autoidx; for (auto name : {ID::A, ID::B, ID::Y}) { RTLIL::IdString remapped_name = remap_name(c->getPort(name).as_wire()->name); cell->setPort(name, module->wire(remapped_name)); } design->select(module, cell); continue; } if (c->type.in(ID(MUX), ID(NMUX))) { RTLIL::Cell *cell = module->addCell(remap_name(c->name), stringf("$_%s_", c->type.c_str()+1)); if (markgroups) cell->attributes[ID::abcgroup] = map_autoidx; for (auto name : {ID::A, ID::B, ID::S, ID::Y}) { RTLIL::IdString remapped_name = remap_name(c->getPort(name).as_wire()->name); cell->setPort(name, module->wire(remapped_name)); } design->select(module, cell); continue; } if (c->type == ID(MUX4)) { RTLIL::Cell *cell = module->addCell(remap_name(c->name), ID($_MUX4_)); if (markgroups) cell->attributes[ID::abcgroup] = map_autoidx; for (auto name : {ID::A, ID::B, ID::C, ID::D, ID::S, ID::T, ID::Y}) { RTLIL::IdString remapped_name = remap_name(c->getPort(name).as_wire()->name); cell->setPort(name, module->wire(remapped_name)); } design->select(module, cell); continue; } if (c->type == ID(MUX8)) { RTLIL::Cell *cell = module->addCell(remap_name(c->name), ID($_MUX8_)); if (markgroups) cell->attributes[ID::abcgroup] = map_autoidx; for (auto name : {ID::A, ID::B, ID::C, ID::D, ID::E, ID::F, ID::G, ID::H, ID::S, ID::T, ID::U, ID::Y}) { RTLIL::IdString remapped_name = remap_name(c->getPort(name).as_wire()->name); cell->setPort(name, module->wire(remapped_name)); } design->select(module, cell); continue; } if (c->type == ID(MUX16)) { RTLIL::Cell *cell = module->addCell(remap_name(c->name), ID($_MUX16_)); if (markgroups) cell->attributes[ID::abcgroup] = map_autoidx; for (auto name : {ID::A, ID::B, ID::C, ID::D, ID::E, ID::F, ID::G, ID::H, ID::I, ID::J, ID::K, ID::L, ID::M, ID::N, ID::O, ID::P, ID::S, ID::T, ID::U, ID::V, ID::Y}) { RTLIL::IdString remapped_name = remap_name(c->getPort(name).as_wire()->name); cell->setPort(name, module->wire(remapped_name)); } design->select(module, cell); continue; } if (c->type.in(ID(AOI3), ID(OAI3))) { RTLIL::Cell *cell = module->addCell(remap_name(c->name), stringf("$_%s_", c->type.c_str()+1)); if (markgroups) cell->attributes[ID::abcgroup] = map_autoidx; for (auto name : {ID::A, ID::B, ID::C, ID::Y}) { RTLIL::IdString remapped_name = remap_name(c->getPort(name).as_wire()->name); cell->setPort(name, module->wire(remapped_name)); } design->select(module, cell); continue; } if (c->type.in(ID(AOI4), ID(OAI4))) { RTLIL::Cell *cell = module->addCell(remap_name(c->name), stringf("$_%s_", c->type.c_str()+1)); if (markgroups) cell->attributes[ID::abcgroup] = map_autoidx; for (auto name : {ID::A, ID::B, ID::C, ID::D, ID::Y}) { RTLIL::IdString remapped_name = remap_name(c->getPort(name).as_wire()->name); cell->setPort(name, module->wire(remapped_name)); } design->select(module, cell); continue; } if (c->type == ID(DFF)) { log_assert(clk_sig.size() == 1); FfData ff(module, &initvals, remap_name(c->name)); ff.width = 1; ff.is_fine = true; ff.has_clk = true; ff.pol_clk = clk_polarity; ff.sig_clk = clk_sig; if (en_sig.size() != 0) { log_assert(en_sig.size() == 1); ff.has_ce = true; ff.pol_ce = en_polarity; ff.sig_ce = en_sig; } RTLIL::Const init = mapped_initvals(c->getPort(ID::Q)); if (had_init) ff.val_init = init; else ff.val_init = State::Sx; if (arst_sig.size() != 0) { log_assert(arst_sig.size() == 1); ff.has_arst = true; ff.pol_arst = arst_polarity; ff.sig_arst = arst_sig; ff.val_arst = init; } if (srst_sig.size() != 0) { log_assert(srst_sig.size() == 1); ff.has_srst = true; ff.pol_srst = srst_polarity; ff.sig_srst = srst_sig; ff.val_srst = init; } ff.sig_d = module->wire(remap_name(c->getPort(ID::D).as_wire()->name)); ff.sig_q = module->wire(remap_name(c->getPort(ID::Q).as_wire()->name)); RTLIL::Cell *cell = ff.emit(); if (markgroups) cell->attributes[ID::abcgroup] = map_autoidx; design->select(module, cell); continue; } } else cell_stats[RTLIL::unescape_id(c->type)]++; if (c->type.in(ID(_const0_), ID(_const1_))) { RTLIL::SigSig conn; conn.first = module->wire(remap_name(c->connections().begin()->second.as_wire()->name)); conn.second = RTLIL::SigSpec(c->type == ID(_const0_) ? 0 : 1, 1); module->connect(conn); continue; } if (c->type == ID(_dff_)) { log_assert(clk_sig.size() == 1); FfData ff(module, &initvals, remap_name(c->name)); ff.width = 1; ff.is_fine = true; ff.has_clk = true; ff.pol_clk = clk_polarity; ff.sig_clk = clk_sig; if (en_sig.size() != 0) { log_assert(en_sig.size() == 1); ff.pol_ce = en_polarity; ff.sig_ce = en_sig; } RTLIL::Const init = mapped_initvals(c->getPort(ID::Q)); if (had_init) ff.val_init = init; else ff.val_init = State::Sx; if (arst_sig.size() != 0) { log_assert(arst_sig.size() == 1); ff.pol_arst = arst_polarity; ff.sig_arst = arst_sig; ff.val_arst = init; } if (srst_sig.size() != 0) { log_assert(srst_sig.size() == 1); ff.pol_srst = srst_polarity; ff.sig_srst = srst_sig; ff.val_srst = init; } ff.sig_d = module->wire(remap_name(c->getPort(ID::D).as_wire()->name)); ff.sig_q = module->wire(remap_name(c->getPort(ID::Q).as_wire()->name)); RTLIL::Cell *cell = ff.emit(); if (markgroups) cell->attributes[ID::abcgroup] = map_autoidx; design->select(module, cell); continue; } if (c->type == ID($lut) && GetSize(c->getPort(ID::A)) == 1 && c->getParam(ID::LUT).as_int() == 2) { SigSpec my_a = module->wire(remap_name(c->getPort(ID::A).as_wire()->name)); SigSpec my_y = module->wire(remap_name(c->getPort(ID::Y).as_wire()->name)); module->connect(my_y, my_a); continue; } RTLIL::Cell *cell = module->addCell(remap_name(c->name), c->type); if (markgroups) cell->attributes[ID::abcgroup] = map_autoidx; cell->parameters = c->parameters; for (auto &conn : c->connections()) { RTLIL::SigSpec newsig; for (auto &c : conn.second.chunks()) { if (c.width == 0) continue; log_assert(c.width == 1); newsig.append(module->wire(remap_name(c.wire->name))); } cell->setPort(conn.first, newsig); } design->select(module, cell); } for (auto conn : mapped_mod->connections()) { if (!conn.first.is_fully_const()) conn.first = module->wire(remap_name(conn.first.as_wire()->name)); if (!conn.second.is_fully_const()) conn.second = module->wire(remap_name(conn.second.as_wire()->name)); module->connect(conn); } cell_stats.sort(); for (auto &it : cell_stats) log("ABC RESULTS: %15s cells: %8d\n", it.first.c_str(), it.second); int in_wires = 0, out_wires = 0; for (auto &si : signal_list) if (si.is_port) { char buffer[100]; snprintf(buffer, 100, "\\ys__n%d", si.id); RTLIL::SigSig conn; if (si.type != G(NONE)) { conn.first = si.bit; conn.second = module->wire(remap_name(buffer)); out_wires++; } else { conn.first = module->wire(remap_name(buffer)); conn.second = si.bit; in_wires++; } module->connect(conn); } log("ABC RESULTS: internal signals: %8d\n", int(signal_list.size()) - in_wires - out_wires); log("ABC RESULTS: input signals: %8d\n", in_wires); log("ABC RESULTS: output signals: %8d\n", out_wires); delete mapped_design; } else { log("Don't call ABC as there is nothing to map.\n"); } if (cleanup) { log("Removing temp directory.\n"); remove_directory(tempdir_name); } log_pop(); } struct AbcPass : public Pass { AbcPass() : Pass("abc", "use ABC for technology mapping") { } void help() override { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" abc [options] [selection]\n"); log("\n"); log("This pass uses the ABC tool [1] for technology mapping of yosys's internal gate\n"); log("library to a target architecture.\n"); log("\n"); log(" -exe \n"); #ifdef ABCEXTERNAL log(" use the specified command instead of \"" ABCEXTERNAL "\" to execute ABC.\n"); #else log(" use the specified command instead of \"/%syosys-abc\" to execute ABC.\n", proc_program_prefix().c_str()); #endif log(" This can e.g. be used to call a specific version of ABC or a wrapper.\n"); log("\n"); log(" -script \n"); log(" use the specified ABC script file instead of the default script.\n"); log("\n"); log(" if starts with a plus sign (+), then the rest of the filename\n"); log(" string is interpreted as the command string to be passed to ABC. The\n"); log(" leading plus sign is removed and all commas (,) in the string are\n"); log(" replaced with blanks before the string is passed to ABC.\n"); log("\n"); log(" if no -script parameter is given, the following scripts are used:\n"); log("\n"); log(" for -liberty/-genlib without -constr:\n"); log("%s\n", fold_abc_cmd(ABC_COMMAND_LIB).c_str()); log("\n"); log(" for -liberty/-genlib with -constr:\n"); log("%s\n", fold_abc_cmd(ABC_COMMAND_CTR).c_str()); log("\n"); log(" for -lut/-luts (only one LUT size):\n"); log("%s\n", fold_abc_cmd(ABC_COMMAND_LUT "; lutpack {S}").c_str()); log("\n"); log(" for -lut/-luts (different LUT sizes):\n"); log("%s\n", fold_abc_cmd(ABC_COMMAND_LUT).c_str()); log("\n"); log(" for -sop:\n"); log("%s\n", fold_abc_cmd(ABC_COMMAND_SOP).c_str()); log("\n"); log(" otherwise:\n"); log("%s\n", fold_abc_cmd(ABC_COMMAND_DFL).c_str()); log("\n"); log(" -fast\n"); log(" use different default scripts that are slightly faster (at the cost\n"); log(" of output quality):\n"); log("\n"); log(" for -liberty/-genlib without -constr:\n"); log("%s\n", fold_abc_cmd(ABC_FAST_COMMAND_LIB).c_str()); log("\n"); log(" for -liberty/-genlib with -constr:\n"); log("%s\n", fold_abc_cmd(ABC_FAST_COMMAND_CTR).c_str()); log("\n"); log(" for -lut/-luts:\n"); log("%s\n", fold_abc_cmd(ABC_FAST_COMMAND_LUT).c_str()); log("\n"); log(" for -sop:\n"); log("%s\n", fold_abc_cmd(ABC_FAST_COMMAND_SOP).c_str()); log("\n"); log(" otherwise:\n"); log("%s\n", fold_abc_cmd(ABC_FAST_COMMAND_DFL).c_str()); log("\n"); log(" -liberty \n"); log(" generate netlists for the specified cell library (using the liberty\n"); log(" file format).\n"); log("\n"); log(" -dont_use \n"); log(" generate netlists for the specified cell library (using the liberty\n"); log(" file format).\n"); log("\n"); log(" -genlib \n"); log(" generate netlists for the specified cell library (using the SIS Genlib\n"); log(" file format).\n"); log("\n"); log(" -constr \n"); log(" pass this file with timing constraints to ABC.\n"); log(" use with -liberty/-genlib.\n"); log("\n"); log(" a constr file contains two lines:\n"); log(" set_driving_cell \n"); log(" set_load \n"); log("\n"); log(" the set_driving_cell statement defines which cell type is assumed to\n"); log(" drive the primary inputs and the set_load statement sets the load in\n"); log(" femtofarads for each primary output.\n"); log("\n"); log(" -D \n"); log(" set delay target. the string {D} in the default scripts above is\n"); log(" replaced by this option when used, and an empty string otherwise.\n"); log(" this also replaces 'dretime' with 'dretime; retime -o {D}' in the\n"); log(" default scripts above.\n"); log("\n"); log(" -I \n"); log(" maximum number of SOP inputs.\n"); log(" (replaces {I} in the default scripts above)\n"); log("\n"); log(" -P \n"); log(" maximum number of SOP products.\n"); log(" (replaces {P} in the default scripts above)\n"); log("\n"); log(" -S \n"); log(" maximum number of LUT inputs shared.\n"); log(" (replaces {S} in the default scripts above, default: -S 1)\n"); log("\n"); log(" -lut \n"); log(" generate netlist using luts of (max) the specified width.\n"); log("\n"); log(" -lut :\n"); log(" generate netlist using luts of (max) the specified width . All\n"); log(" luts with width <= have constant cost. for luts larger than \n"); log(" the area cost doubles with each additional input bit. the delay cost\n"); log(" is still constant for all lut widths.\n"); log("\n"); log(" -luts ,,,:,..\n"); log(" generate netlist using luts. Use the specified costs for luts with 1,\n"); log(" 2, 3, .. inputs.\n"); log("\n"); log(" -sop\n"); log(" map to sum-of-product cells and inverters\n"); log("\n"); // log(" -mux4, -mux8, -mux16\n"); // log(" try to extract 4-input, 8-input, and/or 16-input muxes\n"); // log(" (ignored when used with -liberty/-genlib or -lut)\n"); // log("\n"); log(" -g type1,type2,...\n"); log(" Map to the specified list of gate types. Supported gates types are:\n"); // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log(" AND, NAND, OR, NOR, XOR, XNOR, ANDNOT, ORNOT, MUX,\n"); log(" NMUX, AOI3, OAI3, AOI4, OAI4.\n"); log(" (The NOT gate is always added to this list automatically.)\n"); log("\n"); log(" The following aliases can be used to reference common sets of gate\n"); log(" types:\n"); log(" simple: AND OR XOR MUX\n"); log(" cmos2: NAND NOR\n"); log(" cmos3: NAND NOR AOI3 OAI3\n"); log(" cmos4: NAND NOR AOI3 OAI3 AOI4 OAI4\n"); log(" cmos: NAND NOR AOI3 OAI3 AOI4 OAI4 NMUX MUX XOR XNOR\n"); log(" gates: AND NAND OR NOR XOR XNOR ANDNOT ORNOT\n"); log(" aig: AND NAND OR NOR ANDNOT ORNOT\n"); log("\n"); log(" The alias 'all' represent the full set of all gate types.\n"); log("\n"); log(" Prefix a gate type with a '-' to remove it from the list. For example\n"); log(" the arguments 'AND,OR,XOR' and 'simple,-MUX' are equivalent.\n"); log("\n"); log(" The default is 'all,-NMUX,-AOI3,-OAI3,-AOI4,-OAI4'.\n"); log("\n"); log(" -dff\n"); log(" also pass $_DFF_?_ and $_DFFE_??_ cells through ABC. modules with many\n"); log(" clock domains are automatically partitioned in clock domains and each\n"); log(" domain is passed through ABC independently.\n"); log("\n"); log(" -clk [!][,[!]]\n"); log(" use only the specified clock domain. this is like -dff, but only FF\n"); log(" cells that belong to the specified clock domain are used.\n"); log("\n"); log(" -keepff\n"); log(" set the \"keep\" attribute on flip-flop output wires. (and thus preserve\n"); log(" them, for example for equivalence checking.)\n"); log("\n"); log(" -nocleanup\n"); log(" when this option is used, the temporary files created by this pass\n"); log(" are not removed. this is useful for debugging.\n"); log("\n"); log(" -showtmp\n"); log(" print the temp dir name in log. usually this is suppressed so that the\n"); log(" command output is identical across runs.\n"); log("\n"); log(" -markgroups\n"); log(" set a 'abcgroup' attribute on all objects created by ABC. The value of\n"); log(" this attribute is a unique integer for each ABC process started. This\n"); log(" is useful for debugging the partitioning of clock domains.\n"); log("\n"); log(" -dress\n"); log(" run the 'dress' command after all other ABC commands. This aims to\n"); log(" preserve naming by an equivalence check between the original and\n"); log(" post-ABC netlists (experimental).\n"); log("\n"); log("When no target cell library is specified the Yosys standard cell library is\n"); log("loaded into ABC before the ABC script is executed.\n"); log("\n"); log("Note that this is a logic optimization pass within Yosys that is calling ABC\n"); log("internally. This is not going to \"run ABC on your design\". It will instead run\n"); log("ABC on logic snippets extracted from your design. You will not get any useful\n"); log("output when passing an ABC script that writes a file. Instead write your full\n"); log("design as BLIF file with write_blif and then load that into ABC externally if\n"); log("you want to use ABC to convert your design into another format.\n"); log("\n"); log("[1] http://www.eecs.berkeley.edu/~alanmi/abc/\n"); log("\n"); } void execute(std::vector args, RTLIL::Design *design) override { log_header(design, "Executing ABC pass (technology mapping using ABC).\n"); log_push(); assign_map.clear(); signal_list.clear(); signal_map.clear(); initvals.clear(); pi_map.clear(); po_map.clear(); std::string exe_file = yosys_abc_executable; std::string script_file, default_liberty_file, constr_file, clk_str; std::vector liberty_files, genlib_files, dont_use_cells; std::string delay_target, sop_inputs, sop_products, lutin_shared = "-S 1"; bool fast_mode = false, dff_mode = false, keepff = false, cleanup = true; bool show_tempdir = false, sop_mode = false; bool abc_dress = false; vector lut_costs; markgroups = false; map_mux4 = false; map_mux8 = false; map_mux16 = false; enabled_gates.clear(); cmos_cost = false; // get arguments from scratchpad first, then override by command arguments std::string lut_arg, luts_arg, g_arg; exe_file = design->scratchpad_get_string("abc.exe", exe_file /* inherit default value if not set */); script_file = design->scratchpad_get_string("abc.script", script_file); default_liberty_file = design->scratchpad_get_string("abc.liberty", default_liberty_file); constr_file = design->scratchpad_get_string("abc.constr", constr_file); if (design->scratchpad.count("abc.D")) { delay_target = "-D " + design->scratchpad_get_string("abc.D"); } if (design->scratchpad.count("abc.I")) { sop_inputs = "-I " + design->scratchpad_get_string("abc.I"); } if (design->scratchpad.count("abc.P")) { sop_products = "-P " + design->scratchpad_get_string("abc.P"); } if (design->scratchpad.count("abc.S")) { lutin_shared = "-S " + design->scratchpad_get_string("abc.S"); } lut_arg = design->scratchpad_get_string("abc.lut", lut_arg); luts_arg = design->scratchpad_get_string("abc.luts", luts_arg); sop_mode = design->scratchpad_get_bool("abc.sop", sop_mode); map_mux4 = design->scratchpad_get_bool("abc.mux4", map_mux4); map_mux8 = design->scratchpad_get_bool("abc.mux8", map_mux8); map_mux16 = design->scratchpad_get_bool("abc.mux16", map_mux16); abc_dress = design->scratchpad_get_bool("abc.dress", abc_dress); g_arg = design->scratchpad_get_string("abc.g", g_arg); fast_mode = design->scratchpad_get_bool("abc.fast", fast_mode); dff_mode = design->scratchpad_get_bool("abc.dff", dff_mode); if (design->scratchpad.count("abc.clk")) { clk_str = design->scratchpad_get_string("abc.clk"); dff_mode = true; } keepff = design->scratchpad_get_bool("abc.keepff", keepff); cleanup = !design->scratchpad_get_bool("abc.nocleanup", !cleanup); keepff = design->scratchpad_get_bool("abc.keepff", keepff); show_tempdir = design->scratchpad_get_bool("abc.showtmp", show_tempdir); markgroups = design->scratchpad_get_bool("abc.markgroups", markgroups); if (design->scratchpad_get_bool("abc.debug")) { cleanup = false; show_tempdir = true; } size_t argidx, g_argidx = -1; bool g_arg_from_cmd = false; #if defined(__wasm) const char *pwd = "."; #else char pwd [PATH_MAX]; if (!getcwd(pwd, sizeof(pwd))) { log_cmd_error("getcwd failed: %s\n", strerror(errno)); log_abort(); } #endif for (argidx = 1; argidx < args.size(); argidx++) { std::string arg = args[argidx]; if (arg == "-exe" && argidx+1 < args.size()) { exe_file = args[++argidx]; continue; } if (arg == "-script" && argidx+1 < args.size()) { script_file = args[++argidx]; continue; } if (arg == "-liberty" && argidx+1 < args.size()) { liberty_files.push_back(args[++argidx]); continue; } if (arg == "-dont_use" && argidx+1 < args.size()) { dont_use_cells.push_back(args[++argidx]); continue; } if (arg == "-genlib" && argidx+1 < args.size()) { genlib_files.push_back(args[++argidx]); continue; } if (arg == "-constr" && argidx+1 < args.size()) { constr_file = args[++argidx]; continue; } if (arg == "-D" && argidx+1 < args.size()) { delay_target = "-D " + args[++argidx]; continue; } if (arg == "-I" && argidx+1 < args.size()) { sop_inputs = "-I " + args[++argidx]; continue; } if (arg == "-P" && argidx+1 < args.size()) { sop_products = "-P " + args[++argidx]; continue; } if (arg == "-S" && argidx+1 < args.size()) { lutin_shared = "-S " + args[++argidx]; continue; } if (arg == "-lut" && argidx+1 < args.size()) { lut_arg = args[++argidx]; continue; } if (arg == "-luts" && argidx+1 < args.size()) { luts_arg = args[++argidx]; continue; } if (arg == "-sop") { sop_mode = true; continue; } if (arg == "-mux4") { map_mux4 = true; continue; } if (arg == "-mux8") { map_mux8 = true; continue; } if (arg == "-mux16") { map_mux16 = true; continue; } if (arg == "-dress") { abc_dress = true; continue; } if (arg == "-g" && argidx+1 < args.size()) { if (g_arg_from_cmd) log_cmd_error("Can only use -g once. Please combine."); g_arg = args[++argidx]; g_argidx = argidx; g_arg_from_cmd = true; continue; } if (arg == "-fast") { fast_mode = true; continue; } if (arg == "-dff") { dff_mode = true; continue; } if (arg == "-clk" && argidx+1 < args.size()) { clk_str = args[++argidx]; dff_mode = true; continue; } if (arg == "-keepff") { keepff = true; continue; } if (arg == "-nocleanup") { cleanup = false; continue; } if (arg == "-showtmp") { show_tempdir = true; continue; } if (arg == "-markgroups") { markgroups = true; continue; } break; } extra_args(args, argidx, design); if (genlib_files.empty() && liberty_files.empty() && !default_liberty_file.empty()) liberty_files.push_back(default_liberty_file); rewrite_filename(script_file); if (!script_file.empty() && !is_absolute_path(script_file) && script_file[0] != '+') script_file = std::string(pwd) + "/" + script_file; for (int i = 0; i < GetSize(liberty_files); i++) { rewrite_filename(liberty_files[i]); if (!liberty_files[i].empty() && !is_absolute_path(liberty_files[i])) liberty_files[i] = std::string(pwd) + "/" + liberty_files[i]; } for (int i = 0; i < GetSize(genlib_files); i++) { rewrite_filename(genlib_files[i]); if (!genlib_files[i].empty() && !is_absolute_path(genlib_files[i])) genlib_files[i] = std::string(pwd) + "/" + genlib_files[i]; } rewrite_filename(constr_file); if (!constr_file.empty() && !is_absolute_path(constr_file)) constr_file = std::string(pwd) + "/" + constr_file; // handle -lut argument if (!lut_arg.empty()) { size_t pos = lut_arg.find_first_of(':'); int lut_mode = 0, lut_mode2 = 0; if (pos != string::npos) { lut_mode = atoi(lut_arg.substr(0, pos).c_str()); lut_mode2 = atoi(lut_arg.substr(pos+1).c_str()); } else { lut_mode = atoi(lut_arg.c_str()); lut_mode2 = lut_mode; } lut_costs.clear(); for (int i = 0; i < lut_mode; i++) lut_costs.push_back(1); for (int i = lut_mode; i < lut_mode2; i++) lut_costs.push_back(2 << (i - lut_mode)); } //handle -luts argument if (!luts_arg.empty()){ lut_costs.clear(); for (auto &tok : split_tokens(luts_arg, ",")) { auto parts = split_tokens(tok, ":"); if (GetSize(parts) == 0 && !lut_costs.empty()) lut_costs.push_back(lut_costs.back()); else if (GetSize(parts) == 1) lut_costs.push_back(atoi(parts.at(0).c_str())); else if (GetSize(parts) == 2) while (GetSize(lut_costs) < std::atoi(parts.at(0).c_str())) lut_costs.push_back(atoi(parts.at(1).c_str())); else log_cmd_error("Invalid -luts syntax.\n"); } } // handle -g argument if (!g_arg.empty()){ for (auto g : split_tokens(g_arg, ",")) { vector gate_list; bool remove_gates = false; if (GetSize(g) > 0 && g[0] == '-') { remove_gates = true; g = g.substr(1); } if (g == "AND") goto ok_gate; if (g == "NAND") goto ok_gate; if (g == "OR") goto ok_gate; if (g == "NOR") goto ok_gate; if (g == "XOR") goto ok_gate; if (g == "XNOR") goto ok_gate; if (g == "ANDNOT") goto ok_gate; if (g == "ORNOT") goto ok_gate; if (g == "MUX") goto ok_gate; if (g == "NMUX") goto ok_gate; if (g == "AOI3") goto ok_gate; if (g == "OAI3") goto ok_gate; if (g == "AOI4") goto ok_gate; if (g == "OAI4") goto ok_gate; if (g == "simple") { gate_list.push_back("AND"); gate_list.push_back("OR"); gate_list.push_back("XOR"); gate_list.push_back("MUX"); goto ok_alias; } if (g == "cmos2") { if (!remove_gates) cmos_cost = true; gate_list.push_back("NAND"); gate_list.push_back("NOR"); goto ok_alias; } if (g == "cmos3") { if (!remove_gates) cmos_cost = true; gate_list.push_back("NAND"); gate_list.push_back("NOR"); gate_list.push_back("AOI3"); gate_list.push_back("OAI3"); goto ok_alias; } if (g == "cmos4") { if (!remove_gates) cmos_cost = true; gate_list.push_back("NAND"); gate_list.push_back("NOR"); gate_list.push_back("AOI3"); gate_list.push_back("OAI3"); gate_list.push_back("AOI4"); gate_list.push_back("OAI4"); goto ok_alias; } if (g == "cmos") { if (!remove_gates) cmos_cost = true; gate_list.push_back("NAND"); gate_list.push_back("NOR"); gate_list.push_back("AOI3"); gate_list.push_back("OAI3"); gate_list.push_back("AOI4"); gate_list.push_back("OAI4"); gate_list.push_back("NMUX"); gate_list.push_back("MUX"); gate_list.push_back("XOR"); gate_list.push_back("XNOR"); goto ok_alias; } if (g == "gates") { gate_list.push_back("AND"); gate_list.push_back("NAND"); gate_list.push_back("OR"); gate_list.push_back("NOR"); gate_list.push_back("XOR"); gate_list.push_back("XNOR"); gate_list.push_back("ANDNOT"); gate_list.push_back("ORNOT"); goto ok_alias; } if (g == "aig") { gate_list.push_back("AND"); gate_list.push_back("NAND"); gate_list.push_back("OR"); gate_list.push_back("NOR"); gate_list.push_back("ANDNOT"); gate_list.push_back("ORNOT"); goto ok_alias; } if (g == "all") { gate_list.push_back("AND"); gate_list.push_back("NAND"); gate_list.push_back("OR"); gate_list.push_back("NOR"); gate_list.push_back("XOR"); gate_list.push_back("XNOR"); gate_list.push_back("ANDNOT"); gate_list.push_back("ORNOT"); gate_list.push_back("AOI3"); gate_list.push_back("OAI3"); gate_list.push_back("AOI4"); gate_list.push_back("OAI4"); gate_list.push_back("MUX"); gate_list.push_back("NMUX"); goto ok_alias; } if (g_arg_from_cmd) cmd_error(args, g_argidx, stringf("Unsupported gate type: %s", g.c_str())); else log_cmd_error("Unsupported gate type: %s", g.c_str()); ok_gate: gate_list.push_back(g); ok_alias: for (auto gate : gate_list) { if (remove_gates) enabled_gates.erase(gate); else enabled_gates.insert(gate); } } } if (!lut_costs.empty() && !(liberty_files.empty() && genlib_files.empty())) log_cmd_error("Got -lut and -liberty/-genlib! These two options are exclusive.\n"); if (!constr_file.empty() && (liberty_files.empty() && genlib_files.empty())) log_cmd_error("Got -constr but no -liberty/-genlib!\n"); if (enabled_gates.empty()) { enabled_gates.insert("AND"); enabled_gates.insert("NAND"); enabled_gates.insert("OR"); enabled_gates.insert("NOR"); enabled_gates.insert("XOR"); enabled_gates.insert("XNOR"); enabled_gates.insert("ANDNOT"); enabled_gates.insert("ORNOT"); // enabled_gates.insert("AOI3"); // enabled_gates.insert("OAI3"); // enabled_gates.insert("AOI4"); // enabled_gates.insert("OAI4"); enabled_gates.insert("MUX"); // enabled_gates.insert("NMUX"); } for (auto mod : design->selected_modules()) { if (mod->processes.size() > 0) { log("Skipping module %s as it contains processes.\n", log_id(mod)); continue; } assign_map.set(mod); initvals.set(&assign_map, mod); if (!dff_mode || !clk_str.empty()) { abc_module(design, mod, script_file, exe_file, liberty_files, genlib_files, constr_file, cleanup, lut_costs, dff_mode, clk_str, keepff, delay_target, sop_inputs, sop_products, lutin_shared, fast_mode, mod->selected_cells(), show_tempdir, sop_mode, abc_dress, dont_use_cells); continue; } CellTypes ct(design); std::vector all_cells = mod->selected_cells(); pool unassigned_cells(all_cells.begin(), all_cells.end()); pool expand_queue, next_expand_queue; pool expand_queue_up, next_expand_queue_up; pool expand_queue_down, next_expand_queue_down; typedef tuple clkdomain_t; dict> assigned_cells; dict assigned_cells_reverse; dict> cell_to_bit, cell_to_bit_up, cell_to_bit_down; dict> bit_to_cell, bit_to_cell_up, bit_to_cell_down; for (auto cell : all_cells) { clkdomain_t key; for (auto &conn : cell->connections()) for (auto bit : conn.second) { bit = assign_map(bit); if (bit.wire != nullptr) { cell_to_bit[cell].insert(bit); bit_to_cell[bit].insert(cell); if (ct.cell_input(cell->type, conn.first)) { cell_to_bit_up[cell].insert(bit); bit_to_cell_down[bit].insert(cell); } if (ct.cell_output(cell->type, conn.first)) { cell_to_bit_down[cell].insert(bit); bit_to_cell_up[bit].insert(cell); } } } if (!RTLIL::builtin_ff_cell_types().count(cell->type)) continue; FfData ff(&initvals, cell); if (!ff.has_clk) continue; if (ff.has_gclk) continue; if (ff.has_aload) continue; if (ff.has_sr) continue; if (!ff.is_fine) continue; key = clkdomain_t( ff.pol_clk, ff.sig_clk, ff.has_ce ? ff.pol_ce : true, ff.has_ce ? assign_map(ff.sig_ce) : RTLIL::SigSpec(), ff.has_arst ? ff.pol_arst : true, ff.has_arst ? assign_map(ff.sig_arst) : RTLIL::SigSpec(), ff.has_srst ? ff.pol_srst : true, ff.has_srst ? assign_map(ff.sig_srst) : RTLIL::SigSpec() ); unassigned_cells.erase(cell); expand_queue.insert(cell); expand_queue_up.insert(cell); expand_queue_down.insert(cell); assigned_cells[key].push_back(cell); assigned_cells_reverse[cell] = key; } while (!expand_queue_up.empty() || !expand_queue_down.empty()) { if (!expand_queue_up.empty()) { RTLIL::Cell *cell = *expand_queue_up.begin(); clkdomain_t key = assigned_cells_reverse.at(cell); expand_queue_up.erase(cell); for (auto bit : cell_to_bit_up[cell]) for (auto c : bit_to_cell_up[bit]) if (unassigned_cells.count(c)) { unassigned_cells.erase(c); next_expand_queue_up.insert(c); assigned_cells[key].push_back(c); assigned_cells_reverse[c] = key; expand_queue.insert(c); } } if (!expand_queue_down.empty()) { RTLIL::Cell *cell = *expand_queue_down.begin(); clkdomain_t key = assigned_cells_reverse.at(cell); expand_queue_down.erase(cell); for (auto bit : cell_to_bit_down[cell]) for (auto c : bit_to_cell_down[bit]) if (unassigned_cells.count(c)) { unassigned_cells.erase(c); next_expand_queue_up.insert(c); assigned_cells[key].push_back(c); assigned_cells_reverse[c] = key; expand_queue.insert(c); } } if (expand_queue_up.empty() && expand_queue_down.empty()) { expand_queue_up.swap(next_expand_queue_up); expand_queue_down.swap(next_expand_queue_down); } } while (!expand_queue.empty()) { RTLIL::Cell *cell = *expand_queue.begin(); clkdomain_t key = assigned_cells_reverse.at(cell); expand_queue.erase(cell); for (auto bit : cell_to_bit.at(cell)) { for (auto c : bit_to_cell[bit]) if (unassigned_cells.count(c)) { unassigned_cells.erase(c); next_expand_queue.insert(c); assigned_cells[key].push_back(c); assigned_cells_reverse[c] = key; } bit_to_cell[bit].clear(); } if (expand_queue.empty()) expand_queue.swap(next_expand_queue); } clkdomain_t key(true, RTLIL::SigSpec(), true, RTLIL::SigSpec(), true, RTLIL::SigSpec(), true, RTLIL::SigSpec()); for (auto cell : unassigned_cells) { assigned_cells[key].push_back(cell); assigned_cells_reverse[cell] = key; } log_header(design, "Summary of detected clock domains:\n"); for (auto &it : assigned_cells) log(" %d cells in clk=%s%s, en=%s%s, arst=%s%s, srst=%s%s\n", GetSize(it.second), std::get<0>(it.first) ? "" : "!", log_signal(std::get<1>(it.first)), std::get<2>(it.first) ? "" : "!", log_signal(std::get<3>(it.first)), std::get<4>(it.first) ? "" : "!", log_signal(std::get<5>(it.first)), std::get<6>(it.first) ? "" : "!", log_signal(std::get<7>(it.first))); for (auto &it : assigned_cells) { clk_polarity = std::get<0>(it.first); clk_sig = assign_map(std::get<1>(it.first)); en_polarity = std::get<2>(it.first); en_sig = assign_map(std::get<3>(it.first)); arst_polarity = std::get<4>(it.first); arst_sig = assign_map(std::get<5>(it.first)); srst_polarity = std::get<6>(it.first); srst_sig = assign_map(std::get<7>(it.first)); abc_module(design, mod, script_file, exe_file, liberty_files, genlib_files, constr_file, cleanup, lut_costs, !clk_sig.empty(), "$", keepff, delay_target, sop_inputs, sop_products, lutin_shared, fast_mode, it.second, show_tempdir, sop_mode, abc_dress, dont_use_cells); assign_map.set(mod); } } assign_map.clear(); signal_list.clear(); signal_map.clear(); initvals.clear(); pi_map.clear(); po_map.clear(); log_pop(); } } AbcPass; PRIVATE_NAMESPACE_END