/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Claire Xenia Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "kernel/yosys.h" #include "kernel/qcsat.h" #include "kernel/sigtools.h" #include "kernel/modtools.h" #include "kernel/utils.h" #include "kernel/macc.h" USING_YOSYS_NAMESPACE PRIVATE_NAMESPACE_BEGIN typedef RTLIL::IdString::compare_ptr_by_name cell_ptr_cmp; typedef std::pair ssc_pair_t; struct ShareWorkerConfig { int limit; bool opt_force; bool opt_aggressive; bool opt_fast; pool generic_uni_ops, generic_bin_ops, generic_cbin_ops, generic_other_ops; }; struct ShareWorker { const ShareWorkerConfig config; int limit; pool generic_ops; RTLIL::Design *design; RTLIL::Module *module; CellTypes fwd_ct, cone_ct; ModWalker modwalker; pool cells_to_remove; pool recursion_state; SigMap topo_sigmap; std::map, cell_ptr_cmp> topo_cell_drivers; std::map> topo_bit_drivers; // ------------------------------------------------------------------------------ // Find terminal bits -- i.e. bits that do not (exclusively) feed into a mux tree // ------------------------------------------------------------------------------ pool terminal_bits; void find_terminal_bits() { pool queue_bits; pool visited_cells; queue_bits.insert(modwalker.signal_outputs.begin(), modwalker.signal_outputs.end()); for (auto &it : module->cells_) if (!fwd_ct.cell_known(it.second->type)) { pool &bits = modwalker.cell_inputs[it.second]; queue_bits.insert(bits.begin(), bits.end()); } terminal_bits.insert(queue_bits.begin(), queue_bits.end()); while (!queue_bits.empty()) { pool portbits; modwalker.get_drivers(portbits, queue_bits); queue_bits.clear(); for (auto &pbit : portbits) { if (pbit.cell->type == ID($mux) || pbit.cell->type == ID($pmux)) { pool bits = modwalker.sigmap(pbit.cell->getPort(ID::S)).to_sigbit_pool(); terminal_bits.insert(bits.begin(), bits.end()); queue_bits.insert(bits.begin(), bits.end()); visited_cells.insert(pbit.cell); } if (fwd_ct.cell_known(pbit.cell->type) && visited_cells.count(pbit.cell) == 0) { pool &bits = modwalker.cell_inputs[pbit.cell]; terminal_bits.insert(bits.begin(), bits.end()); queue_bits.insert(bits.begin(), bits.end()); visited_cells.insert(pbit.cell); } } } } // --------------------------------------------------- // Code for sharing and comparing MACC cells // --------------------------------------------------- static int bits_macc_port(const Macc::port_t &p, int width) { if (GetSize(p.in_a) == 0 || GetSize(p.in_b) == 0) return min(max(GetSize(p.in_a), GetSize(p.in_b)), width); return min(GetSize(p.in_a), width) * min(GetSize(p.in_b), width) / 2; } static int bits_macc(const Macc &m, int width) { int bits = 0; for (auto &p : m.ports) bits += bits_macc_port(p, width); return bits; } static int bits_macc(RTLIL::Cell *c) { Macc m(c); int width = GetSize(c->getPort(ID::Y)); return bits_macc(m, width); } static bool cmp_macc_ports(const Macc::port_t &p1, const Macc::port_t &p2) { bool mul1 = GetSize(p1.in_a) && GetSize(p1.in_b); bool mul2 = GetSize(p2.in_a) && GetSize(p2.in_b); int w1 = mul1 ? GetSize(p1.in_a) * GetSize(p1.in_b) : GetSize(p1.in_a) + GetSize(p1.in_b); int w2 = mul2 ? GetSize(p2.in_a) * GetSize(p2.in_b) : GetSize(p2.in_a) + GetSize(p2.in_b); if (mul1 != mul2) return mul1; if (w1 != w2) return w1 > w2; if (p1.is_signed != p2.is_signed) return p1.is_signed < p2.is_signed; if (p1.do_subtract != p2.do_subtract) return p1.do_subtract < p2.do_subtract; if (p1.in_a != p2.in_a) return p1.in_a < p2.in_a; if (p1.in_b != p2.in_b) return p1.in_b < p2.in_b; return false; } int share_macc_ports(Macc::port_t &p1, Macc::port_t &p2, int w1, int w2, RTLIL::SigSpec act = RTLIL::SigSpec(), Macc *supermacc = nullptr, pool *supercell_aux = nullptr) { if (p1.do_subtract != p2.do_subtract) return -1; bool mul1 = GetSize(p1.in_a) && GetSize(p1.in_b); bool mul2 = GetSize(p2.in_a) && GetSize(p2.in_b); if (mul1 != mul2) return -1; bool force_signed = false, force_not_signed = false; if ((GetSize(p1.in_a) && GetSize(p1.in_a) < w1) || (GetSize(p1.in_b) && GetSize(p1.in_b) < w1)) { if (p1.is_signed) force_signed = true; else force_not_signed = true; } if ((GetSize(p2.in_a) && GetSize(p2.in_a) < w2) || (GetSize(p2.in_b) && GetSize(p2.in_b) < w2)) { if (p2.is_signed) force_signed = true; else force_not_signed = true; } if (force_signed && force_not_signed) return -1; if (supermacc) { RTLIL::SigSpec sig_a1 = p1.in_a, sig_b1 = p1.in_b; RTLIL::SigSpec sig_a2 = p2.in_a, sig_b2 = p2.in_b; RTLIL::SigSpec sig_a = GetSize(sig_a1) > GetSize(sig_a2) ? sig_a1 : sig_a2; RTLIL::SigSpec sig_b = GetSize(sig_b1) > GetSize(sig_b2) ? sig_b1 : sig_b2; sig_a1.extend_u0(GetSize(sig_a), p1.is_signed); sig_b1.extend_u0(GetSize(sig_b), p1.is_signed); sig_a2.extend_u0(GetSize(sig_a), p2.is_signed); sig_b2.extend_u0(GetSize(sig_b), p2.is_signed); if (supercell_aux && GetSize(sig_a)) { sig_a = module->addWire(NEW_ID, GetSize(sig_a)); supercell_aux->insert(module->addMux(NEW_ID, sig_a2, sig_a1, act, sig_a)); } if (supercell_aux && GetSize(sig_b)) { sig_b = module->addWire(NEW_ID, GetSize(sig_b)); supercell_aux->insert(module->addMux(NEW_ID, sig_b2, sig_b1, act, sig_b)); } Macc::port_t p; p.in_a = sig_a; p.in_b = sig_b; p.is_signed = force_signed; p.do_subtract = p1.do_subtract; supermacc->ports.push_back(p); } int score = 1000 + abs(GetSize(p1.in_a) - GetSize(p2.in_a)) * max(abs(GetSize(p1.in_b) - GetSize(p2.in_b)), 1); for (int i = 0; i < min(GetSize(p1.in_a), GetSize(p2.in_a)); i++) if (p1.in_a[i] == p2.in_a[i] && score > 0) score--; for (int i = 0; i < min(GetSize(p1.in_b), GetSize(p2.in_b)); i++) if (p1.in_b[i] == p2.in_b[i] && score > 0) score--; return score; } int share_macc(RTLIL::Cell *c1, RTLIL::Cell *c2, RTLIL::SigSpec act = RTLIL::SigSpec(), RTLIL::Cell *supercell = nullptr, pool *supercell_aux = nullptr) { Macc m1(c1), m2(c2), supermacc; int w1 = GetSize(c1->getPort(ID::Y)), w2 = GetSize(c2->getPort(ID::Y)); int width = max(w1, w2); m1.optimize(w1); m2.optimize(w2); std::sort(m1.ports.begin(), m1.ports.end(), cmp_macc_ports); std::sort(m2.ports.begin(), m2.ports.end(), cmp_macc_ports); std::set m1_unmapped, m2_unmapped; for (int i = 0; i < GetSize(m1.ports); i++) m1_unmapped.insert(i); for (int i = 0; i < GetSize(m2.ports); i++) m2_unmapped.insert(i); while (1) { int best_i = -1, best_j = -1, best_score = 0; for (int i : m1_unmapped) for (int j : m2_unmapped) { int score = share_macc_ports(m1.ports[i], m2.ports[j], w1, w2); if (score >= 0 && (best_i < 0 || best_score > score)) best_i = i, best_j = j, best_score = score; } if (best_i >= 0) { m1_unmapped.erase(best_i); m2_unmapped.erase(best_j); share_macc_ports(m1.ports[best_i], m2.ports[best_j], w1, w2, act, &supermacc, supercell_aux); } else break; } for (int i : m1_unmapped) { RTLIL::SigSpec sig_a = m1.ports[i].in_a; RTLIL::SigSpec sig_b = m1.ports[i].in_b; if (supercell_aux && GetSize(sig_a)) { sig_a = module->addWire(NEW_ID, GetSize(sig_a)); supercell_aux->insert(module->addMux(NEW_ID, RTLIL::SigSpec(0, GetSize(sig_a)), m1.ports[i].in_a, act, sig_a)); } if (supercell_aux && GetSize(sig_b)) { sig_b = module->addWire(NEW_ID, GetSize(sig_b)); supercell_aux->insert(module->addMux(NEW_ID, RTLIL::SigSpec(0, GetSize(sig_b)), m1.ports[i].in_b, act, sig_b)); } Macc::port_t p; p.in_a = sig_a; p.in_b = sig_b; p.is_signed = m1.ports[i].is_signed; p.do_subtract = m1.ports[i].do_subtract; supermacc.ports.push_back(p); } for (int i : m2_unmapped) { RTLIL::SigSpec sig_a = m2.ports[i].in_a; RTLIL::SigSpec sig_b = m2.ports[i].in_b; if (supercell_aux && GetSize(sig_a)) { sig_a = module->addWire(NEW_ID, GetSize(sig_a)); supercell_aux->insert(module->addMux(NEW_ID, m2.ports[i].in_a, RTLIL::SigSpec(0, GetSize(sig_a)), act, sig_a)); } if (supercell_aux && GetSize(sig_b)) { sig_b = module->addWire(NEW_ID, GetSize(sig_b)); supercell_aux->insert(module->addMux(NEW_ID, m2.ports[i].in_b, RTLIL::SigSpec(0, GetSize(sig_b)), act, sig_b)); } Macc::port_t p; p.in_a = sig_a; p.in_b = sig_b; p.is_signed = m2.ports[i].is_signed; p.do_subtract = m2.ports[i].do_subtract; supermacc.ports.push_back(p); } if (supercell) { RTLIL::SigSpec sig_y = module->addWire(NEW_ID, width); supercell_aux->insert(module->addPos(NEW_ID, sig_y, c1->getPort(ID::Y))); supercell_aux->insert(module->addPos(NEW_ID, sig_y, c2->getPort(ID::Y))); supercell->setParam(ID::Y_WIDTH, width); supercell->setPort(ID::Y, sig_y); supermacc.optimize(width); supermacc.to_cell(supercell); } return bits_macc(supermacc, width); } // --------------------------------------------------- // Find shareable cells and compatible groups of cells // --------------------------------------------------- pool shareable_cells; void find_shareable_cells() { for (auto cell : module->cells()) { if (!design->selected(module, cell) || !modwalker.ct.cell_known(cell->type)) continue; for (auto &bit : modwalker.cell_outputs[cell]) if (terminal_bits.count(bit)) goto not_a_muxed_cell; if (0) not_a_muxed_cell: continue; if (config.opt_force) { shareable_cells.insert(cell); continue; } if (cell->type.in(ID($memrd), ID($memrd_v2))) { if (cell->parameters.at(ID::CLK_ENABLE).as_bool()) continue; if (config.opt_aggressive || !modwalker.sigmap(cell->getPort(ID::ADDR)).is_fully_const()) shareable_cells.insert(cell); continue; } if (cell->type.in(ID($mul), ID($div), ID($mod), ID($divfloor), ID($modfloor))) { if (config.opt_aggressive || cell->parameters.at(ID::Y_WIDTH).as_int() >= 4) shareable_cells.insert(cell); continue; } if (cell->type.in(ID($shl), ID($shr), ID($sshl), ID($sshr))) { if (config.opt_aggressive || cell->parameters.at(ID::Y_WIDTH).as_int() >= 8) shareable_cells.insert(cell); continue; } if (generic_ops.count(cell->type)) { if (config.opt_aggressive) shareable_cells.insert(cell); continue; } } } bool is_shareable_pair(RTLIL::Cell *c1, RTLIL::Cell *c2) { if (c1->type != c2->type) return false; if (c1->type.in(ID($memrd), ID($memrd_v2))) { if (c1->parameters.at(ID::MEMID).decode_string() != c2->parameters.at(ID::MEMID).decode_string()) return false; if (c1->parameters.at(ID::WIDTH) != c2->parameters.at(ID::WIDTH)) return false; return true; } if (config.generic_uni_ops.count(c1->type)) { if (!config.opt_aggressive) { int a1_width = c1->parameters.at(ID::A_WIDTH).as_int(); int y1_width = c1->parameters.at(ID::Y_WIDTH).as_int(); int a2_width = c2->parameters.at(ID::A_WIDTH).as_int(); int y2_width = c2->parameters.at(ID::Y_WIDTH).as_int(); if (max(a1_width, a2_width) > 2 * min(a1_width, a2_width)) return false; if (max(y1_width, y2_width) > 2 * min(y1_width, y2_width)) return false; } return true; } if (config.generic_bin_ops.count(c1->type) || c1->type == ID($alu)) { if (!config.opt_aggressive) { int a1_width = c1->parameters.at(ID::A_WIDTH).as_int(); int b1_width = c1->parameters.at(ID::B_WIDTH).as_int(); int y1_width = c1->parameters.at(ID::Y_WIDTH).as_int(); int a2_width = c2->parameters.at(ID::A_WIDTH).as_int(); int b2_width = c2->parameters.at(ID::B_WIDTH).as_int(); int y2_width = c2->parameters.at(ID::Y_WIDTH).as_int(); if (max(a1_width, a2_width) > 2 * min(a1_width, a2_width)) return false; if (max(b1_width, b2_width) > 2 * min(b1_width, b2_width)) return false; if (max(y1_width, y2_width) > 2 * min(y1_width, y2_width)) return false; } return true; } if (config.generic_cbin_ops.count(c1->type)) { if (!config.opt_aggressive) { int a1_width = c1->parameters.at(ID::A_WIDTH).as_int(); int b1_width = c1->parameters.at(ID::B_WIDTH).as_int(); int y1_width = c1->parameters.at(ID::Y_WIDTH).as_int(); int a2_width = c2->parameters.at(ID::A_WIDTH).as_int(); int b2_width = c2->parameters.at(ID::B_WIDTH).as_int(); int y2_width = c2->parameters.at(ID::Y_WIDTH).as_int(); int min1_width = min(a1_width, b1_width); int max1_width = max(a1_width, b1_width); int min2_width = min(a2_width, b2_width); int max2_width = max(a2_width, b2_width); if (max(min1_width, min2_width) > 2 * min(min1_width, min2_width)) return false; if (max(max1_width, max2_width) > 2 * min(max1_width, max2_width)) return false; if (max(y1_width, y2_width) > 2 * min(y1_width, y2_width)) return false; } return true; } if (c1->type == ID($macc)) { if (!config.opt_aggressive) if (share_macc(c1, c2) > 2 * min(bits_macc(c1), bits_macc(c2))) return false; return true; } for (auto &it : c1->parameters) if (c2->parameters.count(it.first) == 0 || c2->parameters.at(it.first) != it.second) return false; for (auto &it : c2->parameters) if (c1->parameters.count(it.first) == 0 || c1->parameters.at(it.first) != it.second) return false; return true; } void find_shareable_partners(std::vector &results, RTLIL::Cell *cell) { results.clear(); for (auto c : shareable_cells) if (c != cell && is_shareable_pair(c, cell)) results.push_back(c); } // ----------------------- // Create replacement cell // ----------------------- RTLIL::Cell *make_supercell(RTLIL::Cell *c1, RTLIL::Cell *c2, RTLIL::SigSpec act, pool &supercell_aux) { log_assert(c1->type == c2->type); if (config.generic_uni_ops.count(c1->type)) { if (c1->parameters.at(ID::A_SIGNED).as_bool() != c2->parameters.at(ID::A_SIGNED).as_bool()) { RTLIL::Cell *unsigned_cell = c1->parameters.at(ID::A_SIGNED).as_bool() ? c2 : c1; if (unsigned_cell->getPort(ID::A).to_sigbit_vector().back() != RTLIL::State::S0) { unsigned_cell->parameters.at(ID::A_WIDTH) = unsigned_cell->parameters.at(ID::A_WIDTH).as_int() + 1; RTLIL::SigSpec new_a = unsigned_cell->getPort(ID::A); new_a.append(RTLIL::State::S0); unsigned_cell->setPort(ID::A, new_a); } unsigned_cell->parameters.at(ID::A_SIGNED) = true; unsigned_cell->check(); } bool a_signed = c1->parameters.at(ID::A_SIGNED).as_bool(); log_assert(a_signed == c2->parameters.at(ID::A_SIGNED).as_bool()); RTLIL::SigSpec a1 = c1->getPort(ID::A); RTLIL::SigSpec y1 = c1->getPort(ID::Y); RTLIL::SigSpec a2 = c2->getPort(ID::A); RTLIL::SigSpec y2 = c2->getPort(ID::Y); int a_width = max(a1.size(), a2.size()); int y_width = max(y1.size(), y2.size()); a1.extend_u0(a_width, a_signed); a2.extend_u0(a_width, a_signed); RTLIL::SigSpec a = module->addWire(NEW_ID, a_width); supercell_aux.insert(module->addMux(NEW_ID, a2, a1, act, a)); RTLIL::Wire *y = module->addWire(NEW_ID, y_width); RTLIL::Cell *supercell = module->addCell(NEW_ID, c1->type); supercell->parameters[ID::A_SIGNED] = a_signed; supercell->parameters[ID::A_WIDTH] = a_width; supercell->parameters[ID::Y_WIDTH] = y_width; supercell->setPort(ID::A, a); supercell->setPort(ID::Y, y); supercell_aux.insert(module->addPos(NEW_ID, y, y1)); supercell_aux.insert(module->addPos(NEW_ID, y, y2)); supercell_aux.insert(supercell); return supercell; } if (config.generic_bin_ops.count(c1->type) || config.generic_cbin_ops.count(c1->type) || c1->type == ID($alu)) { bool modified_src_cells = false; if (config.generic_cbin_ops.count(c1->type)) { int score_unflipped = max(c1->parameters.at(ID::A_WIDTH).as_int(), c2->parameters.at(ID::A_WIDTH).as_int()) + max(c1->parameters.at(ID::B_WIDTH).as_int(), c2->parameters.at(ID::B_WIDTH).as_int()); int score_flipped = max(c1->parameters.at(ID::A_WIDTH).as_int(), c2->parameters.at(ID::B_WIDTH).as_int()) + max(c1->parameters.at(ID::B_WIDTH).as_int(), c2->parameters.at(ID::A_WIDTH).as_int()); if (score_flipped < score_unflipped) { RTLIL::SigSpec tmp = c2->getPort(ID::A); c2->setPort(ID::A, c2->getPort(ID::B)); c2->setPort(ID::B, tmp); std::swap(c2->parameters.at(ID::A_WIDTH), c2->parameters.at(ID::B_WIDTH)); std::swap(c2->parameters.at(ID::A_SIGNED), c2->parameters.at(ID::B_SIGNED)); modified_src_cells = true; } } if (c1->parameters.at(ID::A_SIGNED).as_bool() != c2->parameters.at(ID::A_SIGNED).as_bool()) { RTLIL::Cell *unsigned_cell = c1->parameters.at(ID::A_SIGNED).as_bool() ? c2 : c1; if (unsigned_cell->getPort(ID::A).to_sigbit_vector().back() != RTLIL::State::S0) { unsigned_cell->parameters.at(ID::A_WIDTH) = unsigned_cell->parameters.at(ID::A_WIDTH).as_int() + 1; RTLIL::SigSpec new_a = unsigned_cell->getPort(ID::A); new_a.append(RTLIL::State::S0); unsigned_cell->setPort(ID::A, new_a); } unsigned_cell->parameters.at(ID::A_SIGNED) = true; modified_src_cells = true; } if (c1->parameters.at(ID::B_SIGNED).as_bool() != c2->parameters.at(ID::B_SIGNED).as_bool()) { RTLIL::Cell *unsigned_cell = c1->parameters.at(ID::B_SIGNED).as_bool() ? c2 : c1; if (unsigned_cell->getPort(ID::B).to_sigbit_vector().back() != RTLIL::State::S0) { unsigned_cell->parameters.at(ID::B_WIDTH) = unsigned_cell->parameters.at(ID::B_WIDTH).as_int() + 1; RTLIL::SigSpec new_b = unsigned_cell->getPort(ID::B); new_b.append(RTLIL::State::S0); unsigned_cell->setPort(ID::B, new_b); } unsigned_cell->parameters.at(ID::B_SIGNED) = true; modified_src_cells = true; } if (modified_src_cells) { c1->check(); c2->check(); } bool a_signed = c1->parameters.at(ID::A_SIGNED).as_bool(); bool b_signed = c1->parameters.at(ID::B_SIGNED).as_bool(); log_assert(a_signed == c2->parameters.at(ID::A_SIGNED).as_bool()); log_assert(b_signed == c2->parameters.at(ID::B_SIGNED).as_bool()); if (c1->type == ID($shl) || c1->type == ID($shr) || c1->type == ID($sshl) || c1->type == ID($sshr)) b_signed = false; RTLIL::SigSpec a1 = c1->getPort(ID::A); RTLIL::SigSpec b1 = c1->getPort(ID::B); RTLIL::SigSpec y1 = c1->getPort(ID::Y); RTLIL::SigSpec a2 = c2->getPort(ID::A); RTLIL::SigSpec b2 = c2->getPort(ID::B); RTLIL::SigSpec y2 = c2->getPort(ID::Y); int a_width = max(a1.size(), a2.size()); int b_width = max(b1.size(), b2.size()); int y_width = max(y1.size(), y2.size()); if (c1->type == ID($shr) && a_signed) { a_width = max(y_width, a_width); if (a1.size() < y1.size()) a1.extend_u0(y1.size(), true); if (a2.size() < y2.size()) a2.extend_u0(y2.size(), true); a1.extend_u0(a_width, false); a2.extend_u0(a_width, false); } else { a1.extend_u0(a_width, a_signed); a2.extend_u0(a_width, a_signed); } b1.extend_u0(b_width, b_signed); b2.extend_u0(b_width, b_signed); RTLIL::SigSpec a = module->addWire(NEW_ID, a_width); RTLIL::SigSpec b = module->addWire(NEW_ID, b_width); supercell_aux.insert(module->addMux(NEW_ID, a2, a1, act, a)); supercell_aux.insert(module->addMux(NEW_ID, b2, b1, act, b)); RTLIL::Wire *y = module->addWire(NEW_ID, y_width); RTLIL::Wire *x = c1->type == ID($alu) ? module->addWire(NEW_ID, y_width) : nullptr; RTLIL::Wire *co = c1->type == ID($alu) ? module->addWire(NEW_ID, y_width) : nullptr; RTLIL::Cell *supercell = module->addCell(NEW_ID, c1->type); supercell->parameters[ID::A_SIGNED] = a_signed; supercell->parameters[ID::B_SIGNED] = b_signed; supercell->parameters[ID::A_WIDTH] = a_width; supercell->parameters[ID::B_WIDTH] = b_width; supercell->parameters[ID::Y_WIDTH] = y_width; supercell->setPort(ID::A, a); supercell->setPort(ID::B, b); supercell->setPort(ID::Y, y); if (c1->type == ID($alu)) { RTLIL::Wire *ci = module->addWire(NEW_ID), *bi = module->addWire(NEW_ID); supercell_aux.insert(module->addMux(NEW_ID, c2->getPort(ID::CI), c1->getPort(ID::CI), act, ci)); supercell_aux.insert(module->addMux(NEW_ID, c2->getPort(ID::BI), c1->getPort(ID::BI), act, bi)); supercell->setPort(ID::CI, ci); supercell->setPort(ID::BI, bi); supercell->setPort(ID::CO, co); supercell->setPort(ID::X, x); } supercell->check(); supercell_aux.insert(module->addPos(NEW_ID, y, y1)); supercell_aux.insert(module->addPos(NEW_ID, y, y2)); if (c1->type == ID($alu)) { supercell_aux.insert(module->addPos(NEW_ID, co, c1->getPort(ID::CO))); supercell_aux.insert(module->addPos(NEW_ID, co, c2->getPort(ID::CO))); supercell_aux.insert(module->addPos(NEW_ID, x, c1->getPort(ID::X))); supercell_aux.insert(module->addPos(NEW_ID, x, c2->getPort(ID::X))); } supercell_aux.insert(supercell); return supercell; } if (c1->type == ID($macc)) { RTLIL::Cell *supercell = module->addCell(NEW_ID, c1->type); supercell_aux.insert(supercell); share_macc(c1, c2, act, supercell, &supercell_aux); supercell->check(); return supercell; } if (c1->type.in(ID($memrd), ID($memrd_v2))) { RTLIL::Cell *supercell = module->addCell(NEW_ID, c1); RTLIL::SigSpec addr1 = c1->getPort(ID::ADDR); RTLIL::SigSpec addr2 = c2->getPort(ID::ADDR); if (GetSize(addr1) < GetSize(addr2)) addr1.extend_u0(GetSize(addr2)); else addr2.extend_u0(GetSize(addr1)); supercell->setPort(ID::ADDR, addr1 != addr2 ? module->Mux(NEW_ID, addr2, addr1, act) : addr1); supercell->parameters[ID::ABITS] = RTLIL::Const(GetSize(addr1)); supercell_aux.insert(module->addPos(NEW_ID, supercell->getPort(ID::DATA), c2->getPort(ID::DATA))); supercell_aux.insert(supercell); return supercell; } log_abort(); } // ------------------------------------------- // Finding forbidden control inputs for a cell // ------------------------------------------- std::map, cell_ptr_cmp> forbidden_controls_cache; const pool &find_forbidden_controls(RTLIL::Cell *cell) { if (recursion_state.count(cell)) { static pool empty_controls_set; return empty_controls_set; } if (forbidden_controls_cache.count(cell)) return forbidden_controls_cache.at(cell); pool pbits; pool consumer_cells; modwalker.get_consumers(pbits, modwalker.cell_outputs[cell]); for (auto &bit : pbits) { if ((bit.cell->type == ID($mux) || bit.cell->type == ID($pmux)) && bit.port == ID::S) forbidden_controls_cache[cell].insert(bit.cell->getPort(ID::S).extract(bit.offset, 1)); consumer_cells.insert(bit.cell); } recursion_state.insert(cell); for (auto c : consumer_cells) if (fwd_ct.cell_known(c->type)) { const pool &bits = find_forbidden_controls(c); forbidden_controls_cache[cell].insert(bits.begin(), bits.end()); } log_assert(recursion_state.count(cell) != 0); recursion_state.erase(cell); return forbidden_controls_cache[cell]; } // -------------------------------------------------------- // Finding control inputs and activation pattern for a cell // -------------------------------------------------------- std::map, cell_ptr_cmp> activation_patterns_cache; bool sort_check_activation_pattern(ssc_pair_t &p) { std::map p_bits; std::vector p_first_bits = p.first; for (int i = 0; i < GetSize(p_first_bits); i++) { RTLIL::SigBit b = p_first_bits[i]; RTLIL::State v = p.second[i]; if (p_bits.count(b) && p_bits.at(b) != v) return false; p_bits[b] = v; } p.first = RTLIL::SigSpec(); p.second.bits().clear(); for (auto &it : p_bits) { p.first.append(it.first); p.second.bits().push_back(it.second); } return true; } void optimize_activation_patterns(pool &patterns) { // TODO: Remove patterns that are contained in other patterns dict> db; bool did_something = false; for (auto const &p : patterns) { auto &sig = p.first; auto &val = p.second; int len = GetSize(sig); for (int i = 0; i < len; i++) { auto otherval = val; if (otherval[i] == State::S0) otherval.bits()[i] = State::S1; else if (otherval[i] == State::S1) otherval.bits()[i] = State::S0; else continue; if (db[sig].count(otherval)) { auto newsig = sig; newsig.remove(i); auto newval = val; newval.bits().erase(newval.bits().begin() + i); db[newsig].insert(newval); db[sig].erase(otherval); did_something = true; goto next_pattern; } } db[sig].insert(val); next_pattern:; } if (!did_something) return; patterns.clear(); for (auto &it : db) for (auto &val : it.second) patterns.insert(make_pair(it.first, val)); optimize_activation_patterns(patterns); } const pool &find_cell_activation_patterns(RTLIL::Cell *cell, const char *indent) { if (recursion_state.count(cell)) { static pool empty_patterns_set; return empty_patterns_set; } if (activation_patterns_cache.count(cell)) return activation_patterns_cache.at(cell); const pool &cell_out_bits = modwalker.cell_outputs[cell]; pool driven_cells, driven_data_muxes; for (auto &bit : cell_out_bits) { if (terminal_bits.count(bit)) { // Terminal cells are always active: unconditional activation pattern activation_patterns_cache[cell].insert(ssc_pair_t()); return activation_patterns_cache.at(cell); } for (auto &pbit : modwalker.signal_consumers[bit]) { log_assert(fwd_ct.cell_known(pbit.cell->type)); if ((pbit.cell->type == ID($mux) || pbit.cell->type == ID($pmux)) && (pbit.port == ID::A || pbit.port == ID::B)) driven_data_muxes.insert(pbit.cell); else driven_cells.insert(pbit.cell); } } recursion_state.insert(cell); for (auto c : driven_data_muxes) { const pool &c_patterns = find_cell_activation_patterns(c, indent); bool used_in_a = false; std::set used_in_b_parts; int width = c->parameters.at(ID::WIDTH).as_int(); std::vector sig_a = modwalker.sigmap(c->getPort(ID::A)); std::vector sig_b = modwalker.sigmap(c->getPort(ID::B)); std::vector sig_s = modwalker.sigmap(c->getPort(ID::S)); for (auto &bit : sig_a) if (cell_out_bits.count(bit)) used_in_a = true; for (int i = 0; i < GetSize(sig_b); i++) if (cell_out_bits.count(sig_b[i])) used_in_b_parts.insert(i / width); if (used_in_a) for (auto p : c_patterns) { for (int i = 0; i < GetSize(sig_s); i++) p.first.append(sig_s[i]), p.second.bits().push_back(RTLIL::State::S0); if (sort_check_activation_pattern(p)) activation_patterns_cache[cell].insert(p); } for (int idx : used_in_b_parts) for (auto p : c_patterns) { p.first.append(sig_s[idx]), p.second.bits().push_back(RTLIL::State::S1); if (sort_check_activation_pattern(p)) activation_patterns_cache[cell].insert(p); } } for (auto c : driven_cells) { const pool &c_patterns = find_cell_activation_patterns(c, indent); activation_patterns_cache[cell].insert(c_patterns.begin(), c_patterns.end()); } log_assert(recursion_state.count(cell) != 0); recursion_state.erase(cell); optimize_activation_patterns(activation_patterns_cache[cell]); if (activation_patterns_cache[cell].empty()) { log("%sFound cell that is never activated: %s\n", indent, log_id(cell)); RTLIL::SigSpec cell_outputs = modwalker.cell_outputs[cell]; module->connect(RTLIL::SigSig(cell_outputs, RTLIL::SigSpec(RTLIL::State::Sx, cell_outputs.size()))); cells_to_remove.insert(cell); } return activation_patterns_cache[cell]; } RTLIL::SigSpec bits_from_activation_patterns(const pool &activation_patterns) { std::set all_bits; for (auto &it : activation_patterns) { std::vector bits = it.first; all_bits.insert(bits.begin(), bits.end()); } RTLIL::SigSpec signal; for (auto &bit : all_bits) signal.append(bit); return signal; } void filter_activation_patterns(pool &out, const pool &in, const std::set &filter_bits) { for (auto &p : in) { std::vector p_first = p.first; ssc_pair_t new_p; for (int i = 0; i < GetSize(p_first); i++) if (filter_bits.count(p_first[i]) == 0) { new_p.first.append(p_first[i]); new_p.second.bits().push_back(p.second.at(i)); } out.insert(new_p); } } RTLIL::SigSpec make_cell_activation_logic(const pool &activation_patterns, pool &supercell_aux) { RTLIL::Wire *all_cases_wire = module->addWire(NEW_ID, 0); for (auto &p : activation_patterns) { all_cases_wire->width++; supercell_aux.insert(module->addEq(NEW_ID, p.first, p.second, RTLIL::SigSpec(all_cases_wire, all_cases_wire->width - 1))); } if (all_cases_wire->width == 1) return all_cases_wire; RTLIL::Wire *result_wire = module->addWire(NEW_ID); supercell_aux.insert(module->addReduceOr(NEW_ID, all_cases_wire, result_wire)); return result_wire; } // ------------------------------------------------------------------------------------- // Helper functions used to make sure that this pass does not introduce new logic loops. // ------------------------------------------------------------------------------------- bool module_has_scc() { CellTypes ct; ct.setup_internals(); ct.setup_stdcells(); TopoSort toposort; toposort.analyze_loops = false; topo_sigmap.set(module); topo_bit_drivers.clear(); dict> cell_to_bits; dict> bit_to_cells; for (auto cell : module->cells()) if (ct.cell_known(cell->type)) for (auto &conn : cell->connections()) { if (ct.cell_output(cell->type, conn.first)) for (auto bit : topo_sigmap(conn.second)) { cell_to_bits[cell].insert(bit); topo_bit_drivers[bit].insert(cell); } else for (auto bit : topo_sigmap(conn.second)) bit_to_cells[bit].insert(cell); } for (auto &it : cell_to_bits) { RTLIL::Cell *c1 = it.first; for (auto bit : it.second) for (auto c2 : bit_to_cells[bit]) toposort.edge(c1, c2); } bool found_scc = !toposort.sort(); topo_cell_drivers = toposort.get_database(); if (found_scc && toposort.analyze_loops) for (auto &loop : toposort.loops) { log("### loop ###\n"); for (auto &c : loop) log("%s (%s)\n", log_id(c), log_id(c->type)); } return found_scc; } bool find_in_input_cone_worker(RTLIL::Cell *root, RTLIL::Cell *needle, pool &stop) { if (root == needle) return true; if (stop.count(root)) return false; stop.insert(root); for (auto c : topo_cell_drivers[root]) if (find_in_input_cone_worker(c, needle, stop)) return true; return false; } bool find_in_input_cone(RTLIL::Cell *root, RTLIL::Cell *needle) { pool stop; return find_in_input_cone_worker(root, needle, stop); } bool is_part_of_scc(RTLIL::Cell *cell) { CellTypes ct; ct.setup_internals(); ct.setup_stdcells(); ModIndex mi(module); pool queue, covered; queue.insert(cell); while (!queue.empty()) { pool new_queue; for (auto c : queue) { if (!ct.cell_known(c->type)) continue; for (auto &conn : c->connections()) if (ct.cell_input(c->type, conn.first)) for (auto bit : conn.second) for (auto &pi : mi.query_ports(bit)) if (ct.cell_known(pi.cell->type) && ct.cell_output(pi.cell->type, pi.port)) new_queue.insert(pi.cell); covered.insert(c); } queue.clear(); for (auto c : new_queue) { if (cells_to_remove.count(c)) continue; if (c == cell) return true; if (!covered.count(c)) queue.insert(c); } } return false; } // ------------- // Setup and run // ------------- void remove_cell(Cell *cell) { shareable_cells.erase(cell); forbidden_controls_cache.erase(cell); activation_patterns_cache.erase(cell); module->remove(cell); } ShareWorker(ShareWorkerConfig config, RTLIL::Design* design) : config(config), design(design), modwalker(design) { generic_ops.insert(config.generic_uni_ops.begin(), config.generic_uni_ops.end()); generic_ops.insert(config.generic_bin_ops.begin(), config.generic_bin_ops.end()); generic_ops.insert(config.generic_cbin_ops.begin(), config.generic_cbin_ops.end()); generic_ops.insert(config.generic_other_ops.begin(), config.generic_other_ops.end()); fwd_ct.setup_internals(); cone_ct.setup_internals(); cone_ct.cell_types.erase(ID($mul)); cone_ct.cell_types.erase(ID($mod)); cone_ct.cell_types.erase(ID($div)); cone_ct.cell_types.erase(ID($modfloor)); cone_ct.cell_types.erase(ID($divfloor)); cone_ct.cell_types.erase(ID($pow)); cone_ct.cell_types.erase(ID($shl)); cone_ct.cell_types.erase(ID($shr)); cone_ct.cell_types.erase(ID($sshl)); cone_ct.cell_types.erase(ID($sshr)); } void operator()(RTLIL::Module *module) { this->module = module; #ifndef NDEBUG bool before_scc = module_has_scc(); #endif limit = config.limit; modwalker.setup(module); cells_to_remove.clear(); recursion_state.clear(); topo_cell_drivers.clear(); topo_bit_drivers.clear(); terminal_bits.clear(); shareable_cells.clear(); forbidden_controls_cache.clear(); activation_patterns_cache.clear(); find_terminal_bits(); find_shareable_cells(); if (shareable_cells.size() < 2) return; log("Found %d cells in module %s that may be considered for resource sharing.\n", GetSize(shareable_cells), log_id(module)); while (!shareable_cells.empty() && config.limit != 0) { RTLIL::Cell *cell = *shareable_cells.begin(); shareable_cells.erase(cell); log(" Analyzing resource sharing options for %s (%s):\n", log_id(cell), log_id(cell->type)); const pool &cell_activation_patterns = find_cell_activation_patterns(cell, " "); RTLIL::SigSpec cell_activation_signals = bits_from_activation_patterns(cell_activation_patterns); if (cell_activation_patterns.empty()) { log(" Cell is never active. Sharing is pointless, we simply remove it.\n"); cells_to_remove.insert(cell); continue; } if (cell_activation_patterns.count(ssc_pair_t())) { log(" Cell is always active. Therefore no sharing is possible.\n"); continue; } log(" Found %d activation_patterns using ctrl signal %s.\n", GetSize(cell_activation_patterns), log_signal(cell_activation_signals)); std::vector candidates; find_shareable_partners(candidates, cell); if (candidates.empty()) { log(" No candidates found.\n"); continue; } log(" Found %d candidates:", GetSize(candidates)); for (auto c : candidates) log(" %s", log_id(c)); log("\n"); for (auto other_cell : candidates) { log(" Analyzing resource sharing with %s (%s):\n", log_id(other_cell), log_id(other_cell->type)); const pool &other_cell_activation_patterns = find_cell_activation_patterns(other_cell, " "); RTLIL::SigSpec other_cell_activation_signals = bits_from_activation_patterns(other_cell_activation_patterns); if (other_cell_activation_patterns.empty()) { log(" Cell is never active. Sharing is pointless, we simply remove it.\n"); shareable_cells.erase(other_cell); cells_to_remove.insert(other_cell); continue; } if (other_cell_activation_patterns.count(ssc_pair_t())) { log(" Cell is always active. Therefore no sharing is possible.\n"); shareable_cells.erase(other_cell); continue; } log(" Found %d activation_patterns using ctrl signal %s.\n", GetSize(other_cell_activation_patterns), log_signal(other_cell_activation_signals)); const pool &cell_forbidden_controls = find_forbidden_controls(cell); const pool &other_cell_forbidden_controls = find_forbidden_controls(other_cell); std::set union_forbidden_controls; union_forbidden_controls.insert(cell_forbidden_controls.begin(), cell_forbidden_controls.end()); union_forbidden_controls.insert(other_cell_forbidden_controls.begin(), other_cell_forbidden_controls.end()); if (!union_forbidden_controls.empty()) log(" Forbidden control signals for this pair of cells: %s\n", log_signal(union_forbidden_controls)); pool filtered_cell_activation_patterns; pool filtered_other_cell_activation_patterns; filter_activation_patterns(filtered_cell_activation_patterns, cell_activation_patterns, union_forbidden_controls); filter_activation_patterns(filtered_other_cell_activation_patterns, other_cell_activation_patterns, union_forbidden_controls); optimize_activation_patterns(filtered_cell_activation_patterns); optimize_activation_patterns(filtered_other_cell_activation_patterns); QuickConeSat qcsat(modwalker); if (config.opt_fast) { qcsat.max_cell_outs = 3; qcsat.max_cell_count = 100; } std::set bits_queue; std::vector cell_active, other_cell_active; RTLIL::SigSpec all_ctrl_signals; for (auto &p : filtered_cell_activation_patterns) { log(" Activation pattern for cell %s: %s = %s\n", log_id(cell), log_signal(p.first), log_signal(p.second)); cell_active.push_back(qcsat.ez->vec_eq(qcsat.importSig(p.first), qcsat.importSig(p.second))); all_ctrl_signals.append(p.first); } for (auto &p : filtered_other_cell_activation_patterns) { log(" Activation pattern for cell %s: %s = %s\n", log_id(other_cell), log_signal(p.first), log_signal(p.second)); other_cell_active.push_back(qcsat.ez->vec_eq(qcsat.importSig(p.first), qcsat.importSig(p.second))); all_ctrl_signals.append(p.first); } qcsat.prepare(); int sub1 = qcsat.ez->expression(qcsat.ez->OpOr, cell_active); if (!qcsat.ez->solve(sub1)) { log(" According to the SAT solver the cell %s is never active. Sharing is pointless, we simply remove it.\n", log_id(cell)); cells_to_remove.insert(cell); break; } int sub2 = qcsat.ez->expression(qcsat.ez->OpOr, other_cell_active); if (!qcsat.ez->solve(sub2)) { log(" According to the SAT solver the cell %s is never active. Sharing is pointless, we simply remove it.\n", log_id(other_cell)); cells_to_remove.insert(other_cell); shareable_cells.erase(other_cell); continue; } qcsat.ez->non_incremental(); all_ctrl_signals.sort_and_unify(); std::vector sat_model = qcsat.importSig(all_ctrl_signals); std::vector sat_model_values; qcsat.ez->assume(qcsat.ez->AND(sub1, sub2)); log(" Size of SAT problem: %d variables, %d clauses\n", qcsat.ez->numCnfVariables(), qcsat.ez->numCnfClauses()); if (qcsat.ez->solve(sat_model, sat_model_values)) { log(" According to the SAT solver this pair of cells can not be shared.\n"); log(" Model from SAT solver: %s = %d'", log_signal(all_ctrl_signals), GetSize(sat_model_values)); for (int i = GetSize(sat_model_values)-1; i >= 0; i--) log("%c", sat_model_values[i] ? '1' : '0'); log("\n"); continue; } log(" According to the SAT solver this pair of cells can be shared.\n"); if (find_in_input_cone(cell, other_cell)) { log(" Sharing not possible: %s is in input cone of %s.\n", log_id(other_cell), log_id(cell)); continue; } if (find_in_input_cone(other_cell, cell)) { log(" Sharing not possible: %s is in input cone of %s.\n", log_id(cell), log_id(other_cell)); continue; } shareable_cells.erase(other_cell); int cell_select_score = 0; int other_cell_select_score = 0; for (auto &p : filtered_cell_activation_patterns) cell_select_score += p.first.size(); for (auto &p : filtered_other_cell_activation_patterns) other_cell_select_score += p.first.size(); RTLIL::Cell *supercell; pool supercell_aux; if (cell_select_score <= other_cell_select_score) { RTLIL::SigSpec act = make_cell_activation_logic(filtered_cell_activation_patterns, supercell_aux); supercell = make_supercell(cell, other_cell, act, supercell_aux); log(" Activation signal for %s: %s\n", log_id(cell), log_signal(act)); } else { RTLIL::SigSpec act = make_cell_activation_logic(filtered_other_cell_activation_patterns, supercell_aux); supercell = make_supercell(other_cell, cell, act, supercell_aux); log(" Activation signal for %s: %s\n", log_id(other_cell), log_signal(act)); } log(" New cell: %s (%s)\n", log_id(supercell), log_id(supercell->type)); cells_to_remove.insert(cell); cells_to_remove.insert(other_cell); for (auto c : supercell_aux) if (is_part_of_scc(c)) goto do_rollback; if (0) { do_rollback: log(" New topology contains loops! Rolling back..\n"); cells_to_remove.erase(cell); cells_to_remove.erase(other_cell); shareable_cells.insert(other_cell); for (auto cc : supercell_aux) remove_cell(cc); continue; } pool supercell_activation_patterns; supercell_activation_patterns.insert(filtered_cell_activation_patterns.begin(), filtered_cell_activation_patterns.end()); supercell_activation_patterns.insert(filtered_other_cell_activation_patterns.begin(), filtered_other_cell_activation_patterns.end()); optimize_activation_patterns(supercell_activation_patterns); activation_patterns_cache[supercell] = supercell_activation_patterns; shareable_cells.insert(supercell); for (auto bit : topo_sigmap(all_ctrl_signals)) for (auto c : topo_bit_drivers[bit]) topo_cell_drivers[supercell].insert(c); topo_cell_drivers[supercell].insert(topo_cell_drivers[cell].begin(), topo_cell_drivers[cell].end()); topo_cell_drivers[supercell].insert(topo_cell_drivers[other_cell].begin(), topo_cell_drivers[other_cell].end()); topo_cell_drivers[cell] = { supercell }; topo_cell_drivers[other_cell] = { supercell }; if (limit > 0) limit--; break; } } if (!cells_to_remove.empty()) { log("Removing %d cells in module %s:\n", GetSize(cells_to_remove), log_id(module)); for (auto c : cells_to_remove) { log(" Removing cell %s (%s).\n", log_id(c), log_id(c->type)); remove_cell(c); } } log_assert(recursion_state.empty()); #ifndef NDEBUG bool after_scc = before_scc || module_has_scc(); log_assert(before_scc == after_scc); #endif } }; struct SharePass : public Pass { SharePass() : Pass("share", "perform sat-based resource sharing") { } void help() override { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" share [options] [selection]\n"); log("\n"); log("This pass merges shareable resources into a single resource. A SAT solver\n"); log("is used to determine if two resources are share-able.\n"); log("\n"); log(" -force\n"); log(" Per default the selection of cells that is considered for sharing is\n"); log(" narrowed using a list of cell types. With this option all selected\n"); log(" cells are considered for resource sharing.\n"); log("\n"); log(" IMPORTANT NOTE: If the -all option is used then no cells with internal\n"); log(" state must be selected!\n"); log("\n"); log(" -aggressive\n"); log(" Per default some heuristics are used to reduce the number of cells\n"); log(" considered for resource sharing to only large resources. This options\n"); log(" turns this heuristics off, resulting in much more cells being considered\n"); log(" for resource sharing.\n"); log("\n"); log(" -fast\n"); log(" Only consider the simple part of the control logic in SAT solving, resulting\n"); log(" in much easier SAT problems at the cost of maybe missing some opportunities\n"); log(" for resource sharing.\n"); log("\n"); log(" -limit N\n"); log(" Only perform the first N merges, then stop. This is useful for debugging.\n"); log("\n"); } void execute(std::vector args, RTLIL::Design *design) override { ShareWorkerConfig config; config.limit = -1; config.opt_force = false; config.opt_aggressive = false; config.opt_fast = false; config.generic_uni_ops.insert(ID($not)); // config.generic_uni_ops.insert(ID($pos)); config.generic_uni_ops.insert(ID($neg)); config.generic_cbin_ops.insert(ID($and)); config.generic_cbin_ops.insert(ID($or)); config.generic_cbin_ops.insert(ID($xor)); config.generic_cbin_ops.insert(ID($xnor)); config.generic_bin_ops.insert(ID($shl)); config.generic_bin_ops.insert(ID($shr)); config.generic_bin_ops.insert(ID($sshl)); config.generic_bin_ops.insert(ID($sshr)); config.generic_bin_ops.insert(ID($lt)); config.generic_bin_ops.insert(ID($le)); config.generic_bin_ops.insert(ID($eq)); config.generic_bin_ops.insert(ID($ne)); config.generic_bin_ops.insert(ID($eqx)); config.generic_bin_ops.insert(ID($nex)); config.generic_bin_ops.insert(ID($ge)); config.generic_bin_ops.insert(ID($gt)); config.generic_cbin_ops.insert(ID($add)); config.generic_cbin_ops.insert(ID($mul)); config.generic_bin_ops.insert(ID($sub)); config.generic_bin_ops.insert(ID($div)); config.generic_bin_ops.insert(ID($mod)); config.generic_bin_ops.insert(ID($divfloor)); config.generic_bin_ops.insert(ID($modfloor)); // config.generic_bin_ops.insert(ID($pow)); config.generic_uni_ops.insert(ID($logic_not)); config.generic_cbin_ops.insert(ID($logic_and)); config.generic_cbin_ops.insert(ID($logic_or)); config.generic_other_ops.insert(ID($alu)); config.generic_other_ops.insert(ID($macc)); log_header(design, "Executing SHARE pass (SAT-based resource sharing).\n"); size_t argidx; for (argidx = 1; argidx < args.size(); argidx++) { if (args[argidx] == "-force") { config.opt_force = true; continue; } if (args[argidx] == "-aggressive") { config.opt_aggressive = true; continue; } if (args[argidx] == "-fast") { config.opt_fast = true; continue; } if (args[argidx] == "-limit" && argidx+1 < args.size()) { config.limit = atoi(args[++argidx].c_str()); continue; } break; } extra_args(args, argidx, design); ShareWorker sw(config, design); for (auto module : design->selected_modules()) sw(module); } } SharePass; PRIVATE_NAMESPACE_END