Compare commits

..

No commits in common. "835688bf80eb9db7241c1aa767b7e97dad1c0eeb" and "b6721aa9d824ec5b4ec1c61167b53bab62fb1e01" have entirely different histories.

10 changed files with 433 additions and 400 deletions

View File

@ -1,3 +0,0 @@
Marcelina Kościelnicka <mwk@0x04.net>
Marcelina Kościelnicka <mwk@0x04.net> <koriakin@0x04.net>
Marcelina Kościelnicka <mwk@0x04.net> <marcin@symbioticeda.com>

144
.travis.yml Normal file
View File

@ -0,0 +1,144 @@
sudo: false
language: cpp
cache:
ccache: true
directories:
- ~/.local-bin
env:
global:
- MAKEFLAGS="-j 2"
matrix:
include:
# Latest gcc-4.8, earliest version supported by Travis
- os: linux
addons:
apt:
packages:
- g++-4.8
- gperf
- build-essential
- bison
- flex
- libreadline-dev
- gawk
- tcl-dev
- libffi-dev
- git
- graphviz
- xdot
- pkg-config
- python
- python3
- libboost-system-dev
- libboost-python-dev
- libboost-filesystem-dev
- zlib1g-dev
env:
- MATRIX_EVAL="CONFIG=gcc && CC=gcc-4.8 && CXX=g++-4.8"
# Latest gcc supported on Travis Linux
- os: linux
addons:
apt:
sources:
- ubuntu-toolchain-r-test
packages:
- g++-9
- gperf
- build-essential
- bison
- flex
- libreadline-dev
- gawk
- tcl-dev
- libffi-dev
- git
- graphviz
- xdot
- pkg-config
- python
- python3
- libboost-system-dev
- libboost-python-dev
- libboost-filesystem-dev
- zlib1g-dev
env:
- MATRIX_EVAL="CONFIG=gcc && CC=gcc-9 && CXX=g++-9"
# Clang which ships on Trusty Linux
- os: linux
addons:
apt:
sources:
- ubuntu-toolchain-r-test
- llvm-toolchain-precise-3.8
packages:
- clang-3.8
- gperf
- build-essential
- bison
- flex
- libreadline-dev
- gawk
- tcl-dev
- libffi-dev
- git
- graphviz
- xdot
- pkg-config
- python
- python3
- libboost-system-dev
- libboost-python-dev
- libboost-filesystem-dev
- zlib1g-dev
env:
- MATRIX_EVAL="CONFIG=clang && CC=clang-3.8 && CXX=clang++-3.8"
# Latest clang supported by Travis Linux
- os: linux
addons:
apt:
sources:
- llvm-toolchain-xenial-8
packages:
- clang-8
- gperf
- build-essential
- bison
- flex
- libreadline-dev
- gawk
- tcl-dev
- libffi-dev
- git
- graphviz
- xdot
- pkg-config
- python
- python3
- libboost-system-dev
- libboost-python-dev
- libboost-filesystem-dev
- zlib1g-dev
env:
- MATRIX_EVAL="CONFIG=clang && CC=clang-8 && CXX=clang++-8"
# # Latest clang on Mac OS X
# - os: osx
# osx_image: xcode9.4
# env:
# - MATRIX_EVAL="CONFIG=clang && CC=clang && CXX=clang++"
before_install:
- ./.travis/setup.sh
script:
- ./.travis/build-and-test.sh
after_success:
- ./.travis/deploy-after-success.sh

51
.travis/build-and-test.sh Executable file
View File

@ -0,0 +1,51 @@
#! /bin/bash
set -e
source .travis/common.sh
##########################################################################
echo
echo 'Configuring...' && echo -en 'travis_fold:start:script.configure\\r'
echo
if [ "$CONFIG" = "gcc" ]; then
echo "Configuring for gcc."
make config-gcc
elif [ "$CONFIG" = "clang" ]; then
echo "Configuring for clang."
make config-clang
fi
echo
echo -en 'travis_fold:end:script.configure\\r'
echo
##########################################################################
echo
echo 'Building...' && echo -en 'travis_fold:start:script.build\\r'
echo
make CC=$CC CXX=$CC LD=$CC
echo
echo -en 'travis_fold:end:script.build\\r'
echo
##########################################################################
./yosys tests/simple/fiedler-cooley.v
echo
echo 'Testing...' && echo -en 'travis_fold:start:script.test\\r'
echo
make test
echo
echo -en 'travis_fold:end:script.test\\r'
echo
##########################################################################

15
.travis/common.sh Normal file
View File

@ -0,0 +1,15 @@
#! /bin/bash
# Setup the CC / CXX from the matrix config
eval "${MATRIX_EVAL}"
# Look for location binaries first
export PATH="$HOME/.local-bin/bin:$PATH"
# OS X specific common setup
if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then
export PATH="/usr/local/opt/ccache/libexec:$PATH"
fi
# Parallel builds!
MAKEFLAGS="-j 2"

View File

@ -0,0 +1,6 @@
#! /bin/bash
set -x
set -e
# FIXME: Upload the build results somewhere...

63
.travis/setup.sh Executable file
View File

@ -0,0 +1,63 @@
#! /bin/bash
set -e
source .travis/common.sh
##########################################################################
# Output status information.
(
set +e
set -x
git status
git branch -v
git log -n 5 --graph
git log --format=oneline -n 20 --graph
)
echo
echo -en 'travis_fold:end:before_install.git\\r'
echo
##########################################################################
# Mac OS X specific setup.
if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then
(
echo
echo 'Setting up brew...' && echo -en 'travis_fold:start:before_install.brew\\r'
echo
brew update
brew tap Homebrew/bundle
brew bundle
brew install ccache
echo
echo -en 'travis_fold:end:before_install.brew\\r'
echo
)
fi
##########################################################################
# Install iverilog
(
if [ ! -e ~/.local-bin/bin/iverilog ]; then
echo
echo 'Building iverilog...' && echo -en 'travis_fold:start:before_install.iverilog\\r'
echo
mkdir -p ~/.local-src
mkdir -p ~/.local-bin
cd ~/.local-src
git clone git://github.com/steveicarus/iverilog.git
cd iverilog
autoconf
CC=gcc CXX=g++ ./configure --prefix=$HOME/.local-bin
make
make install
echo
echo -en 'travis_fold:end:before_install.iverilog\\r'
echo
fi
)
##########################################################################

View File

@ -66,12 +66,6 @@ struct hash_int_ops {
} }
}; };
template<> struct hash_ops<bool> : hash_int_ops
{
static inline unsigned int hash(bool a) {
return a ? 1 : 0;
}
};
template<> struct hash_ops<int32_t> : hash_int_ops template<> struct hash_ops<int32_t> : hash_int_ops
{ {
static inline unsigned int hash(int32_t a) { static inline unsigned int hash(int32_t a) {

View File

@ -18,25 +18,22 @@
*/ */
#include "kernel/yosys.h" #include "kernel/yosys.h"
#include "kernel/satgen.h"
#include "kernel/sigtools.h" #include "kernel/sigtools.h"
#include "kernel/mem.h" #include "kernel/modtools.h"
USING_YOSYS_NAMESPACE USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN PRIVATE_NAMESPACE_BEGIN
// Describes found feedback path. bool memrd_cmp(RTLIL::Cell *a, RTLIL::Cell *b)
struct FeedbackPath { {
// Which write port it is. return a->name < b->name;
int wrport_idx; }
// Which data bit of that write port it is.
int data_bit_idx;
// Values of all mux select signals that need to be set to select this path.
dict<RTLIL::SigBit, bool> condition;
// The exact feedback bit used (used to match read port).
SigBit feedback_bit;
FeedbackPath(int wrport_idx, int data_bit_idx, dict<RTLIL::SigBit, bool> condition, SigBit feedback_bit) : wrport_idx(wrport_idx), data_bit_idx(data_bit_idx), condition(condition), feedback_bit(feedback_bit) {} bool memwr_cmp(RTLIL::Cell *a, RTLIL::Cell *b)
}; {
return a->parameters.at(ID::PRIORITY).as_int() < b->parameters.at(ID::PRIORITY).as_int();
}
struct OptMemFeedbackWorker struct OptMemFeedbackWorker
{ {
@ -44,32 +41,24 @@ struct OptMemFeedbackWorker
RTLIL::Module *module; RTLIL::Module *module;
SigMap sigmap, sigmap_xmux; SigMap sigmap, sigmap_xmux;
dict<RTLIL::SigBit, std::pair<RTLIL::Cell*, int>> sig_to_mux; std::map<RTLIL::SigBit, std::pair<RTLIL::Cell*, int>> sig_to_mux;
dict<RTLIL::SigBit, int> sig_users_count; std::map<pair<std::set<std::map<SigBit, bool>>, SigBit>, SigBit> conditions_logic_cache;
dict<pair<pool<dict<SigBit, bool>>, SigBit>, SigBit> conditions_logic_cache;
// ----------------------------------------------------------------- // -----------------------------------------------------------------
// Converting feedbacks to async read ports to proper enable signals // Converting feedbacks to async read ports to proper enable signals
// ----------------------------------------------------------------- // -----------------------------------------------------------------
void find_data_feedback(const pool<RTLIL::SigBit> &async_rd_bits, RTLIL::SigBit sig, bool find_data_feedback(const std::set<RTLIL::SigBit> &async_rd_bits, RTLIL::SigBit sig,
const dict<RTLIL::SigBit, bool> &state, std::map<RTLIL::SigBit, bool> &state, std::set<std::map<RTLIL::SigBit, bool>> &conditions)
int wrport_idx, int data_bit_idx,
std::vector<FeedbackPath> &paths)
{ {
if (async_rd_bits.count(sig)) { if (async_rd_bits.count(sig)) {
paths.push_back(FeedbackPath(wrport_idx, data_bit_idx, state, sig)); conditions.insert(state);
return; return true;
}
if (sig_users_count[sig] != 1) {
// Only descend into muxes if we're the only user.
return;
} }
if (sig_to_mux.count(sig) == 0) if (sig_to_mux.count(sig) == 0)
return; return false;
RTLIL::Cell *cell = sig_to_mux.at(sig).first; RTLIL::Cell *cell = sig_to_mux.at(sig).first;
int bit_idx = sig_to_mux.at(sig).second; int bit_idx = sig_to_mux.at(sig).second;
@ -80,32 +69,46 @@ struct OptMemFeedbackWorker
std::vector<RTLIL::SigBit> sig_y = sigmap(cell->getPort(ID::Y)); std::vector<RTLIL::SigBit> sig_y = sigmap(cell->getPort(ID::Y));
log_assert(sig_y.at(bit_idx) == sig); log_assert(sig_y.at(bit_idx) == sig);
for (int i = 0; i < GetSize(sig_s); i++) for (int i = 0; i < int(sig_s.size()); i++)
if (state.count(sig_s[i]) && state.at(sig_s[i]) == true) { if (state.count(sig_s[i]) && state.at(sig_s[i]) == true) {
find_data_feedback(async_rd_bits, sig_b.at(bit_idx + i*sig_y.size()), state, wrport_idx, data_bit_idx, paths); if (find_data_feedback(async_rd_bits, sig_b.at(bit_idx + i*sig_y.size()), state, conditions)) {
return; RTLIL::SigSpec new_b = cell->getPort(ID::B);
new_b.replace(bit_idx + i*sig_y.size(), RTLIL::State::Sx);
cell->setPort(ID::B, new_b);
}
return false;
} }
for (int i = 0; i < GetSize(sig_s); i++) for (int i = 0; i < int(sig_s.size()); i++)
{ {
if (state.count(sig_s[i]) && state.at(sig_s[i]) == false) if (state.count(sig_s[i]) && state.at(sig_s[i]) == false)
continue; continue;
dict<RTLIL::SigBit, bool> new_state = state; std::map<RTLIL::SigBit, bool> new_state = state;
new_state[sig_s[i]] = true; new_state[sig_s[i]] = true;
find_data_feedback(async_rd_bits, sig_b.at(bit_idx + i*sig_y.size()), new_state, wrport_idx, data_bit_idx, paths); if (find_data_feedback(async_rd_bits, sig_b.at(bit_idx + i*sig_y.size()), new_state, conditions)) {
RTLIL::SigSpec new_b = cell->getPort(ID::B);
new_b.replace(bit_idx + i*sig_y.size(), RTLIL::State::Sx);
cell->setPort(ID::B, new_b);
}
} }
dict<RTLIL::SigBit, bool> new_state = state; std::map<RTLIL::SigBit, bool> new_state = state;
for (auto bit : sig_s) for (int i = 0; i < int(sig_s.size()); i++)
new_state[bit] = false; new_state[sig_s[i]] = false;
find_data_feedback(async_rd_bits, sig_a.at(bit_idx), new_state, wrport_idx, data_bit_idx, paths); if (find_data_feedback(async_rd_bits, sig_a.at(bit_idx), new_state, conditions)) {
RTLIL::SigSpec new_a = cell->getPort(ID::A);
new_a.replace(bit_idx, RTLIL::State::Sx);
cell->setPort(ID::A, new_a);
}
return false;
} }
RTLIL::SigBit conditions_to_logic(pool<dict<RTLIL::SigBit, bool>> &conditions, SigBit olden) RTLIL::SigBit conditions_to_logic(std::set<std::map<RTLIL::SigBit, bool>> &conditions, SigBit olden, int &created_conditions)
{ {
auto key = make_pair(conditions, olden); auto key = make_pair(conditions, olden);
@ -120,9 +123,10 @@ struct OptMemFeedbackWorker
sig2.append(it.second ? RTLIL::State::S1 : RTLIL::State::S0); sig2.append(it.second ? RTLIL::State::S1 : RTLIL::State::S0);
} }
terms.append(module->Ne(NEW_ID, sig1, sig2)); terms.append(module->Ne(NEW_ID, sig1, sig2));
created_conditions++;
} }
if (olden != State::S1) if (olden.wire != nullptr || olden != State::S1)
terms.append(olden); terms.append(olden);
if (GetSize(terms) == 0) if (GetSize(terms) == 0)
@ -134,115 +138,120 @@ struct OptMemFeedbackWorker
return conditions_logic_cache[key] = terms; return conditions_logic_cache[key] = terms;
} }
void translate_rd_feedback_to_en(Mem &mem) void translate_rd_feedback_to_en(std::string memid, std::vector<RTLIL::Cell*> &rd_ports, std::vector<RTLIL::Cell*> &wr_ports)
{ {
// Look for async read ports that may be suitable for feedback paths. std::map<RTLIL::SigSpec, std::vector<std::set<RTLIL::SigBit>>> async_rd_bits;
dict<RTLIL::SigSpec, std::vector<pool<RTLIL::SigBit>>> async_rd_bits; std::map<RTLIL::SigBit, std::set<RTLIL::SigBit>> muxtree_upstream_map;
std::set<RTLIL::SigBit> non_feedback_nets;
for (auto &port : mem.rd_ports) for (auto wire : module->wires())
if (wire->port_output) {
std::vector<RTLIL::SigBit> bits = sigmap(wire);
non_feedback_nets.insert(bits.begin(), bits.end());
}
for (auto cell : module->cells())
{ {
if (port.clk_enable) bool ignore_data_port = false;
if (cell->type.in(ID($mux), ID($pmux)))
{
std::vector<RTLIL::SigBit> sig_a = sigmap(cell->getPort(ID::A));
std::vector<RTLIL::SigBit> sig_b = sigmap(cell->getPort(ID::B));
std::vector<RTLIL::SigBit> sig_s = sigmap(cell->getPort(ID::S));
std::vector<RTLIL::SigBit> sig_y = sigmap(cell->getPort(ID::Y));
non_feedback_nets.insert(sig_s.begin(), sig_s.end());
for (int i = 0; i < int(sig_y.size()); i++) {
muxtree_upstream_map[sig_y[i]].insert(sig_a[i]);
for (int j = 0; j < int(sig_s.size()); j++)
muxtree_upstream_map[sig_y[i]].insert(sig_b[i + j*sig_y.size()]);
}
continue;
}
if (cell->type.in(ID($memwr), ID($memrd)) &&
cell->parameters.at(ID::MEMID).decode_string() == memid)
ignore_data_port = true;
for (auto conn : cell->connections())
{
if (ignore_data_port && conn.first == ID::DATA)
continue;
std::vector<RTLIL::SigBit> bits = sigmap(conn.second);
non_feedback_nets.insert(bits.begin(), bits.end());
}
}
std::set<RTLIL::SigBit> expand_non_feedback_nets = non_feedback_nets;
while (!expand_non_feedback_nets.empty())
{
std::set<RTLIL::SigBit> new_expand_non_feedback_nets;
for (auto &bit : expand_non_feedback_nets)
if (muxtree_upstream_map.count(bit))
for (auto &new_bit : muxtree_upstream_map.at(bit))
if (!non_feedback_nets.count(new_bit)) {
non_feedback_nets.insert(new_bit);
new_expand_non_feedback_nets.insert(new_bit);
}
expand_non_feedback_nets.swap(new_expand_non_feedback_nets);
}
for (auto cell : rd_ports)
{
if (cell->parameters.at(ID::CLK_ENABLE).as_bool())
continue; continue;
SigSpec addr = sigmap_xmux(port.addr); RTLIL::SigSpec sig_addr = sigmap(cell->getPort(ID::ADDR));
std::vector<RTLIL::SigBit> sig_data = sigmap(cell->getPort(ID::DATA));
async_rd_bits[addr].resize(mem.width); for (int i = 0; i < int(sig_data.size()); i++)
for (int i = 0; i < mem.width; i++) if (non_feedback_nets.count(sig_data[i]))
async_rd_bits[addr][i].insert(sigmap(port.data[i])); goto not_pure_feedback_port;
async_rd_bits[sig_addr].resize(max(async_rd_bits.size(), sig_data.size()));
for (int i = 0; i < int(sig_data.size()); i++)
async_rd_bits[sig_addr][i].insert(sig_data[i]);
not_pure_feedback_port:;
} }
if (async_rd_bits.empty()) if (async_rd_bits.empty())
return; return;
// Look for actual feedback paths. log("Populating enable bits on write ports of memory %s.%s with aync read feedback:\n", log_id(module), log_id(memid));
std::vector<FeedbackPath> paths;
for (int i = 0; i < GetSize(mem.wr_ports); i++) for (auto cell : wr_ports)
{ {
auto &port = mem.wr_ports[i]; RTLIL::SigSpec sig_addr = sigmap_xmux(cell->getPort(ID::ADDR));
if (!async_rd_bits.count(sig_addr))
SigSpec addr = sigmap_xmux(port.addr);
if (!async_rd_bits.count(addr))
continue; continue;
log(" Analyzing %s.%s write port %d.\n", log_id(module), log_id(mem.memid), i); log(" Analyzing write port %s.\n", log_id(cell));
for (int j = 0; j < GetSize(port.data); j++) std::vector<RTLIL::SigBit> cell_data = cell->getPort(ID::DATA);
{ std::vector<RTLIL::SigBit> cell_en = cell->getPort(ID::EN);
if (port.en[j] == State::S0)
continue;
dict<RTLIL::SigBit, bool> state; int created_conditions = 0;
for (int i = 0; i < int(cell_data.size()); i++)
if (cell_en[i] != RTLIL::SigBit(RTLIL::State::S0))
{
std::map<RTLIL::SigBit, bool> state;
std::set<std::map<RTLIL::SigBit, bool>> conditions;
find_data_feedback(async_rd_bits.at(addr).at(j), sigmap(port.data[j]), state, i, j, paths); find_data_feedback(async_rd_bits.at(sig_addr).at(i), cell_data[i], state, conditions);
cell_en[i] = conditions_to_logic(conditions, cell_en[i], created_conditions);
}
if (created_conditions) {
log(" Added enable logic for %d different cases.\n", created_conditions);
cell->setPort(ID::EN, cell_en);
} }
} }
if (paths.empty())
return;
// Now determine which read ports are actually used only for
// feedback paths, and can be removed.
dict<SigBit, int> feedback_users_count;
for (auto &path : paths)
feedback_users_count[path.feedback_bit]++;
pool<SigBit> feedback_ok;
for (auto &port : mem.rd_ports)
{
if (port.clk_enable)
continue;
bool ok = true;
for (auto bit : sigmap(port.data))
if (sig_users_count[bit] != feedback_users_count[bit])
ok = false;
if (ok)
{
// This port is going bye-bye.
for (auto bit : sigmap(port.data))
feedback_ok.insert(bit);
port.removed = true;
}
}
if (feedback_ok.empty())
return;
// Prepare a feedback condition list grouped by port bits.
dict<std::pair<int, int>, pool<dict<SigBit, bool>>> portbit_conds;
for (auto &path : paths)
if (feedback_ok.count(path.feedback_bit))
portbit_conds[std::make_pair(path.wrport_idx, path.data_bit_idx)].insert(path.condition);
if (portbit_conds.empty())
return;
// Okay, let's do it.
log("Populating enable bits on write ports of memory %s.%s with async read feedback:\n", log_id(module), log_id(mem.memid));
for (auto &it : portbit_conds)
{
int wrport_idx = it.first.first;
int bit = it.first.second;
auto &port = mem.wr_ports[wrport_idx];
port.en[bit] = conditions_to_logic(it.second, port.en[bit]);
log(" Port %d bit %d: added enable logic for %d different cases.\n", wrport_idx, bit, GetSize(it.second));
}
mem.emit();
for (auto bit : feedback_ok)
module->connect(bit, State::Sx);
design->scratchpad_set_bool("opt.did_something", true);
} }
// ------------- // -------------
@ -253,7 +262,7 @@ struct OptMemFeedbackWorker
void operator()(RTLIL::Module* module) void operator()(RTLIL::Module* module)
{ {
std::vector<Mem> memories = Mem::get_selected_memories(module); std::map<std::string, std::pair<std::vector<RTLIL::Cell*>, std::vector<RTLIL::Cell*>>> memindex;
this->module = module; this->module = module;
sigmap.set(module); sigmap.set(module);
@ -261,15 +270,14 @@ struct OptMemFeedbackWorker
conditions_logic_cache.clear(); conditions_logic_cache.clear();
sigmap_xmux = sigmap; sigmap_xmux = sigmap;
for (auto wire : module->wires()) {
if (wire->port_output)
for (auto bit : sigmap(wire))
sig_users_count[bit]++;
}
for (auto cell : module->cells()) for (auto cell : module->cells())
{ {
if (cell->type == ID($memrd))
memindex[cell->parameters.at(ID::MEMID).decode_string()].first.push_back(cell);
if (cell->type == ID($memwr))
memindex[cell->parameters.at(ID::MEMID).decode_string()].second.push_back(cell);
if (cell->type == ID($mux)) if (cell->type == ID($mux))
{ {
RTLIL::SigSpec sig_a = sigmap_xmux(cell->getPort(ID::A)); RTLIL::SigSpec sig_a = sigmap_xmux(cell->getPort(ID::A));
@ -287,15 +295,13 @@ struct OptMemFeedbackWorker
for (int i = 0; i < int(sig_y.size()); i++) for (int i = 0; i < int(sig_y.size()); i++)
sig_to_mux[sig_y[i]] = std::pair<RTLIL::Cell*, int>(cell, i); sig_to_mux[sig_y[i]] = std::pair<RTLIL::Cell*, int>(cell, i);
} }
for (auto &conn : cell->connections())
if (!cell->known() || cell->input(conn.first))
for (auto bit : sigmap(conn.second))
sig_users_count[bit]++;
} }
for (auto &mem : memories) for (auto &it : memindex) {
translate_rd_feedback_to_en(mem); std::sort(it.second.first.begin(), it.second.first.end(), memrd_cmp);
std::sort(it.second.second.begin(), it.second.second.end(), memwr_cmp);
translate_rd_feedback_to_en(it.first, it.second.first, it.second.second);
}
} }
}; };
@ -307,10 +313,10 @@ struct OptMemFeedbackPass : public Pass {
log("\n"); log("\n");
log(" opt_mem_feedback [selection]\n"); log(" opt_mem_feedback [selection]\n");
log("\n"); log("\n");
log("This pass detects cases where an asynchronous read port is only connected via\n"); log("This pass detects cases where an asynchronous read port is connected via\n");
log("a mux tree to a write port with the same address. When such a connection is\n"); log("a mux tree to a write port with the same address. When such a path is\n");
log("found, it is replaced with a new condition on an enable signal, allowing\n"); log("found, it is replaced with a new condition on an enable signal, possibly\n");
log("for removal of the read port.\n"); log("allowing for removal of the read port.\n");
log("\n"); log("\n");
} }
void execute(std::vector<std::string> args, RTLIL::Design *design) override { void execute(std::vector<std::string> args, RTLIL::Design *design) override {

View File

@ -1,101 +0,0 @@
# Case 1.
read_verilog << EOT
module top(...);
input clk;
input sel;
input [3:0] ra;
input [3:0] wa;
input wd;
output [3:0] rd;
reg [3:0] mem[0:15];
integer i;
initial begin
for (i = 0; i < 16; i = i + 1)
mem[i] <= i;
end
assign rd = mem[ra];
always @(posedge clk) begin
mem[wa] <= {4{sel ? wd : mem[wa][0]}};
end
endmodule
EOT
hierarchy -auto-top
proc
opt_clean
design -save start
memory_map
design -save preopt
design -load start
opt_mem_feedback
memory_map
design -save postopt
equiv_opt -assert -run prepare: :
design -reset
# Case 2.
read_verilog << EOT
module top(...);
input clk;
input s1;
input s2;
input s3;
input [3:0] ra;
input [3:0] wa;
input wd;
output rd;
reg mem[0:15];
integer i;
initial begin
for (i = 0; i < 16; i = i + 1)
mem[i] <= ^i;
end
assign rd = mem[ra];
wire ta = s1 ? wd : mem[wa];
wire tb = s2 ? wd : ta;
wire tc = s3 ? tb : ta;
always @(posedge clk) begin
mem[wa] <= tc;
end
endmodule
EOT
hierarchy -auto-top
proc
opt_clean
design -save start
memory_map
design -save preopt
design -load start
opt_mem_feedback
memory_map
design -save postopt
equiv_opt -assert -run prepare: :

View File

@ -1,142 +0,0 @@
# Good case: proper feedback port.
read_verilog << EOT
module top(...);
input clk;
input en;
input s;
input [3:0] ra;
output [15:0] rd;
input [3:0] wa;
input [15:0] wd;
reg [15:0] mem[0:15];
assign rd = mem[ra];
always @(posedge clk) begin
if (en) begin
mem[wa] <= {mem[wa][15:8], s ? wd[7:0] : mem[wa][7:0]};
end
end
endmodule
EOT
hierarchy -auto-top
proc
opt_clean
design -save start
memory_map
design -save preopt
design -load start
opt_mem_feedback
select -assert-count 1 t:$memrd
memory_map
design -save postopt
equiv_opt -assert -run prepare: :
design -reset
# Bad case: read port also used for other things.
read_verilog << EOT
module top(...);
input clk;
input en;
input s;
output [15:0] rd;
input [3:0] wa;
input [15:0] wd;
reg [15:0] mem[0:15];
assign rd = mem[wa];
always @(posedge clk) begin
if (en) begin
mem[wa] <= {s ? rd : wd[15:8], s ? wd[7:0] : rd};
end
end
endmodule
EOT
hierarchy -auto-top
proc
opt_clean
design -save start
memory_map
design -save preopt
design -load start
select -assert-count 1 t:$memrd
opt_mem_feedback
select -assert-count 1 t:$memrd
memory_map
design -save postopt
equiv_opt -assert -run prepare: :
design -reset
# Bad case: another user of the mux out.
read_verilog << EOT
module top(...);
input clk;
input en;
input s;
output [15:0] rd;
input [3:0] wa;
input [15:0] wd;
reg [15:0] mem[0:15];
assign rd = s ? wd : mem[wa];
always @(posedge clk) begin
if (en) begin
mem[wa] <= rd;
end
end
endmodule
EOT
hierarchy -auto-top
proc
opt_clean
design -save start
memory_map
design -save preopt
design -load start
select -assert-count 1 t:$memrd
opt_mem_feedback
select -assert-count 1 t:$memrd
memory_map
design -save postopt
equiv_opt -assert -run prepare: :