- Signed cell outputs are sign extended when bound to larger wires
- Signed connections are sign extended when bound to larger cell inputs
- Sign extension is performed in hierarchy and flatten phases
- genrtlil indirects signed constants through signed wires
- Other phases producing RTLIL may need to be updated to preserve
signedness information
- Resolves#1418
- Resolves#2265
For connection `assign a = b;`, `sigmap(a)` returns `b`. This is
exactly the opposite of the desired canonicalization for driven bits.
Consider the following code:
module foo(inout a, b);
assign a = b;
endmodule
module bar(output c);
foo f(c, 1'b0);
endmodule
Before this commit, the inout ports would be swapped after flattening
(and cause a crash while attempting to drive a constant value).
This issue was introduced in 9f772eb9.
Fixes#2183.
Before this commit, `flatten` matched the template objects with
the newly created objects solely by their name. Because of this,
it could be confused by code such as:
module bar();
$dff a();
endmodule
module foo();
bar b();
$dff \b.a ();
endmodule
After this commit, `flatten` avoids every possible case of name
collision.
Fixes#2106.
`flatten` cannot derive modules in most cases because that would just
yield processes, and it does not support `-autoproc`; in practice
`flatten` has to be preceded by a call to `hierarchy`, which makes
deriving unnecessary.
After splitting the passes, some options can never be activated,
and most conditions involving them become dead. Remove them, and also
all of the newly dead code.
Although the two passes started out very similar, they diverged over
time and now have little in common. Moreover, `techmap` is extremely
complex while `flatten` does not have to be, and this complexity
interferes with improving `flatten`.