New methods on Design to push/pop selection instead of accessing the selection stack directly. Includes methods for pushing a full/complete/empty selection.
Also helper methods on modules to check `is_selected` and `is_selected_whole`.
Now uses two enums, one to control whether or not to include partially selected
modules (and what to do if they are encountered), and one to control whether or
not to include boxed modules (and what to do if they are encountered).
Mark Design::selected{modules, whole_modules}() deprecated and make them
provide warnings on boxes. There are a lot of places that use them and I can't
always tell which ones support boxed modules and which don't.
The `Design::selected_*()` methods no longer unconditionally skip boxed modules. Instead, selections are now box and design aware.
The selection constructor now optionally takes a design pointer, and has a new `selects_boxes` flag. If the selection has an assigned design, then `Selection::selected_*()` will only return true for boxed modules if the selects_boxes flag is set. A warning is raised if a selection is checked and no design is set. Selections can change design via the `Selection::optimize()` method.
Most places that iterate over `Design::modules()` and check `Selection::selected_module()` should instead use `Design::selected_modules()`.
Since boxed modules should only ever be selected explicitly, and `full_selection` (now) refers to all non-boxed modules, `Selection::optimize()` will clear the `full_selection` flag if the `selects_boxes` flag is enabled, and instead explicitly selects all modules (including boxed modules). This also means that `full_selection` will only get automatically applied to a design without any boxed modules.
These changes necessitated a number of changes to `select.cc` in order to support this functionality when operating on selections, in particular when combining selections (e.g. by union or difference).
To minimize redundancy, a number of places that previously iterated over `design->modules()` now push the current selection to the design, use `design->selected_modules()`, and then pop the selection when done.
Introduce `RTLIL::NamedObject`, to allow for iterating over all members of a module with a single iterator instead of needing to iterate over wires, cells, memories, and processes separately.
Also implement `Module::selected_{memories, processes, members}()` to match wires and cells methods. The `selected_members()` method combines each of the other `selected_*()` methods into a single list.
This is already supported by `SigSpec` and since both `SigChunk` and
`SigSpec` implement `extract` which is the multi-bit variant of this,
there is no good reason for `SigChunk` to not support
`SigBit operator[](int offset)`.
This adjusts the way the headers kernel/{yosys,rtlil,register,log}.h
include each other to avoid the need of including headers outside of
include guards as well as avoiding the inclusion of rtlil.h in the
middle of yosys.h with rtlil.h depending on the prefix of yosys.h, and
the suffix of yosys.h depending on rtlil.h.
To do this I moved some of the declaration in yosys.h into a new header
yosys_common.h. I'm not sure if that is strictly necessary.
Including any of these files still results in the declarations of all
these headers being included, so this shouldn't be a breaking change for
any passes or external plugins.
My main motivation for this is that ccls's (clang based language server)
include guard handling gets confused by the previous way the includes
were done. It often ends up treating the include guard as a generic
disabled preprocessor conditional, breaking navigation and highlighting
for the core RTLIL data structures.
Additionally I think avoiding cyclic includes in the middle of header
files that depend on includes being outside of include guards will also
be less confusing for developers reading the code, not only for tools
like ccls.
When we are iterating over a `SigSpec`, the visited values will be of
type `SigBit` (as is the return type of `operator*()`). Account for that
in the publicly declared types.
`std::iterator` has been deprecated in C++17. Yosys is being compiled
against the C++11 standard but plugins can opt to compile against a
newer one. To silence some deprecation warnings when those plugins are
being compiled, replace the `std::iterator` inheritance with the
equivalent type declarations.
The main speedup comes from swithing from using a SHA1 hash to std::hash<std::string>. There is no need to use an expensive cryptographic hash for fingerprinting in this context.
This does not correctly handle an `$overwrite_tag` on a module output,
but since we currently require the user to flatten the design for
cross-module dft, this cannot be observed from within the design, only
by manually inspecting the signals in the design.
The guard is optimised out on some compilers under certain conditions (eg: LTO on GCC) as constant under C++ lifetime rules.
This is because the guard type's member is invalid to access (UB) after the type has been destroyed, resulting in
`destruct_guard.ok` being unable to be `false` according to the optimiser, based on the lifetime rules.
This patch still invokes UB (all accesses to the destroyed IdString instance are), but at least the optimiser
can't reason that destruct_guard_ok cannot be false and therefore it's safe to optimise out from its guard role.
The new bitwise case equality (`$bweqx`) and bitwise mux (`$bwmux`)
cells enable compact encoding and decoding of 3-valued logic signals
using multiple 2-valued signals.
* Change simlib's $mux cell to use the ternary operator as $_MUX_
already does
* Stop opt_expr -keepdc from changing S=x to S=0
* Change const eval of $mux and $pmux to match the updated simlib
(fixes sim)
* The sat behavior of $mux already matches the updated simlib
The verilog frontend uses $mux for the ternary operators and this
changes all interpreations of the $mux cell (that I found) to match the
verilog simulation behavior for the ternary operator. For 'if' and
'case' expressions the frontend may also use $mux but uses $eqx if the
verilog simulation behavior is requested with the '-ifx' option.
For $pmux there is a remaining mismatch between the sat behavior and the
simlib behavior. Resolving this requires more discussion, as the $pmux
cell does not directly correspond to a specific verilog construct.
These can be used to protect undefined flip-flop initialization values
from optimizations that are not sound for formal verification and can
help mapping all solver-provided values in witness traces for flows that
use different backends simultaneously.
- Attempt to lookup a derived module if it potentially contains a port
connection with elaboration ambiguities
- Mark the cell if module has not yet been derived
- This can be extended to implement automatic hierarchical port
connections in a future change
This code now takes the AST nodes of type AST_BIND and generates a
representation in the RTLIL for them.
This is a little tricky, because a binding of the form:
bind baz foo_t foo_i (.arg (1 + bar));
means "make an instance of foo_t called foo_i, instantiate it inside
baz and connect the port arg to the result of the expression 1+bar".
Of course, 1+bar needs a cell for the addition. Where should that cell
live?
With this patch, the Binding structure that represents the construct
is itself an AST::AstModule module. This lets us put the adder cell
inside it. We'll pull the contents out and plonk them into 'baz' when
we actually do the binding operation as part of the hierarchy pass.
Of course, we don't want RTLIL::Binding to contain an
AST::AstModule (since kernel code shouldn't depend on a frontend), so
we define RTLIL::Binding as an abstract base class and put the
AST-specific code into an AST::Binding subclass. This is analogous to
the AST::AstModule class.