Refactored GreenPAK4 cells_sim into cells_sim_ams and cells_sim_digital

This commit is contained in:
Andrew Zonenberg 2017-08-05 16:33:24 -07:00
parent 007f29b9c2
commit fe3a932cfa
4 changed files with 451 additions and 428 deletions

View File

@ -6,4 +6,6 @@ OBJS += techlibs/greenpak4/greenpak4_dffinv.o
$(eval $(call add_share_file,share/greenpak4,techlibs/greenpak4/cells_latch.v))
$(eval $(call add_share_file,share/greenpak4,techlibs/greenpak4/cells_map.v))
$(eval $(call add_share_file,share/greenpak4,techlibs/greenpak4/cells_sim.v))
$(eval $(call add_share_file,share/greenpak4,techlibs/greenpak4/cells_sim_ams.v))
$(eval $(call add_share_file,share/greenpak4,techlibs/greenpak4/cells_sim_digital.v))
$(eval $(call add_share_file,share/greenpak4,techlibs/greenpak4/gp_dff.lib))

View File

@ -1,57 +1,9 @@
`timescale 1ns/1ps
module GP_2LUT(input IN0, IN1, output OUT);
parameter [3:0] INIT = 0;
assign OUT = INIT[{IN1, IN0}];
endmodule
`include "cells_sim_ams.v"
`include "cells_sim_digital.v"
module GP_3LUT(input IN0, IN1, IN2, output OUT);
parameter [7:0] INIT = 0;
assign OUT = INIT[{IN2, IN1, IN0}];
endmodule
module GP_4LUT(input IN0, IN1, IN2, IN3, output OUT);
parameter [15:0] INIT = 0;
assign OUT = INIT[{IN3, IN2, IN1, IN0}];
endmodule
module GP_ABUF(input wire IN, output wire OUT);
assign OUT = IN;
//must be 1, 5, 20, 50
//values >1 only available with Vdd > 2.7V
parameter BANDWIDTH_KHZ = 1;
//cannot simulate mixed signal IP
endmodule
module GP_ACMP(input wire PWREN, input wire VIN, input wire VREF, output reg OUT);
parameter BANDWIDTH = "HIGH";
parameter VIN_ATTEN = 1;
parameter VIN_ISRC_EN = 0;
parameter HYSTERESIS = 0;
initial OUT = 0;
//cannot simulate mixed signal IP
endmodule
module GP_BANDGAP(output reg OK);
parameter AUTO_PWRDN = 1;
parameter CHOPPER_EN = 1;
parameter OUT_DELAY = 100;
//cannot simulate mixed signal IP
endmodule
module GP_CLKBUF(input wire IN, output wire OUT);
assign OUT = IN;
endmodule
//Cells still in this file have INCOMPLETE simulation models, need to finish them
module GP_COUNT8(input CLK, input wire RST, output reg OUT, output reg[7:0] POUT);
@ -129,14 +81,6 @@ module GP_COUNT14_ADV(input CLK, input RST, output reg OUT,
endmodule
module GP_DAC(input[7:0] DIN, input wire VREF, output reg VOUT);
initial VOUT = 0;
//analog hard IP is not supported for simulation
endmodule
module GP_DCMP(input[7:0] INP, input[7:0] INN, input CLK, input PWRDN, output reg GREATER, output reg EQUAL);
parameter PWRDN_SYNC = 1'b0;
parameter CLK_EDGE = "RISING";
@ -159,237 +103,6 @@ module GP_DCMP(input[7:0] INP, input[7:0] INN, input CLK, input PWRDN, output re
endmodule
module GP_DCMPREF(output reg[7:0]OUT);
parameter[7:0] REF_VAL = 8'h00;
initial OUT = REF_VAL;
endmodule
module GP_DCMPMUX(input[1:0] SEL, input[7:0] IN0, input[7:0] IN1, input[7:0] IN2, input[7:0] IN3, output reg[7:0] OUTA, output reg[7:0] OUTB);
always @(*) begin
case(SEL)
2'd00: begin
OUTA <= IN0;
OUTB <= IN3;
end
2'd01: begin
OUTA <= IN1;
OUTB <= IN2;
end
2'd02: begin
OUTA <= IN2;
OUTB <= IN1;
end
2'd03: begin
OUTA <= IN3;
OUTB <= IN0;
end
endcase
end
endmodule
module GP_DELAY(input IN, output reg OUT);
parameter DELAY_STEPS = 1;
parameter GLITCH_FILTER = 0;
initial OUT = 0;
generate
//TODO: These delays are PTV dependent! For now, hard code 3v3 timing
//Change simulation-mode delay depending on global Vdd range (how to specify this?)
always @(*) begin
case(DELAY_STEPS)
1: #166 OUT = IN;
2: #318 OUT = IN;
2: #471 OUT = IN;
3: #622 OUT = IN;
default: begin
$display("ERROR: GP_DELAY must have DELAY_STEPS in range [1,4]");
$finish;
end
endcase
end
endgenerate
endmodule
module GP_DFF(input D, CLK, output reg Q);
parameter [0:0] INIT = 1'bx;
initial Q = INIT;
always @(posedge CLK) begin
Q <= D;
end
endmodule
module GP_DFFI(input D, CLK, output reg nQ);
parameter [0:0] INIT = 1'bx;
initial nQ = INIT;
always @(posedge CLK) begin
nQ <= ~D;
end
endmodule
module GP_DFFR(input D, CLK, nRST, output reg Q);
parameter [0:0] INIT = 1'bx;
initial Q = INIT;
always @(posedge CLK, negedge nRST) begin
if (!nRST)
Q <= 1'b0;
else
Q <= D;
end
endmodule
module GP_DFFRI(input D, CLK, nRST, output reg nQ);
parameter [0:0] INIT = 1'bx;
initial nQ = INIT;
always @(posedge CLK, negedge nRST) begin
if (!nRST)
nQ <= 1'b1;
else
nQ <= ~D;
end
endmodule
module GP_DFFS(input D, CLK, nSET, output reg Q);
parameter [0:0] INIT = 1'bx;
initial Q = INIT;
always @(posedge CLK, negedge nSET) begin
if (!nSET)
Q <= 1'b1;
else
Q <= D;
end
endmodule
module GP_DFFSI(input D, CLK, nSET, output reg nQ);
parameter [0:0] INIT = 1'bx;
initial nQ = INIT;
always @(posedge CLK, negedge nSET) begin
if (!nSET)
nQ <= 1'b0;
else
nQ <= ~D;
end
endmodule
module GP_DFFSR(input D, CLK, nSR, output reg Q);
parameter [0:0] INIT = 1'bx;
parameter [0:0] SRMODE = 1'bx;
initial Q = INIT;
always @(posedge CLK, negedge nSR) begin
if (!nSR)
Q <= SRMODE;
else
Q <= D;
end
endmodule
module GP_DFFSRI(input D, CLK, nSR, output reg nQ);
parameter [0:0] INIT = 1'bx;
parameter [0:0] SRMODE = 1'bx;
initial nQ = INIT;
always @(posedge CLK, negedge nSR) begin
if (!nSR)
nQ <= ~SRMODE;
else
nQ <= ~D;
end
endmodule
module GP_DLATCH(input D, input nCLK, output reg Q);
parameter [0:0] INIT = 1'bx;
initial Q = INIT;
always @(*) begin
if(!nCLK)
Q <= D;
end
endmodule
module GP_DLATCHI(input D, input nCLK, output reg nQ);
parameter [0:0] INIT = 1'bx;
initial nQ = INIT;
always @(*) begin
if(!nCLK)
nQ <= ~D;
end
endmodule
module GP_DLATCHR(input D, input nCLK, input nRST, output reg Q);
parameter [0:0] INIT = 1'bx;
initial Q = INIT;
always @(*) begin
if(!nRST)
Q <= 1'b0;
else if(!nCLK)
Q <= D;
end
endmodule
module GP_DLATCHRI(input D, input nCLK, input nRST, output reg nQ);
parameter [0:0] INIT = 1'bx;
initial nQ = INIT;
always @(*) begin
if(!nRST)
nQ <= 1'b1;
else if(!nCLK)
nQ <= ~D;
end
endmodule
module GP_DLATCHS(input D, input nCLK, input nSET, output reg Q);
parameter [0:0] INIT = 1'bx;
initial Q = INIT;
always @(*) begin
if(!nSET)
Q <= 1'b1;
else if(!nCLK)
Q <= D;
end
endmodule
module GP_DLATCHSI(input D, input nCLK, input nSET, output reg nQ);
parameter [0:0] INIT = 1'bx;
initial nQ = INIT;
always @(*) begin
if(!nSET)
nQ <= 1'b0;
else if(!nCLK)
nQ <= ~D;
end
endmodule
module GP_DLATCHSR(input D, input nCLK, input nSR, output reg Q);
parameter [0:0] INIT = 1'bx;
parameter[0:0] SRMODE = 1'bx;
initial Q = INIT;
always @(*) begin
if(!nSR)
Q <= SRMODE;
else if(!nCLK)
Q <= D;
end
endmodule
module GP_DLATCHSRI(input D, input nCLK, input nSR, output reg nQ);
parameter [0:0] INIT = 1'bx;
parameter[0:0] SRMODE = 1'bx;
initial nQ = INIT;
always @(*) begin
if(!nSR)
nQ <= ~SRMODE;
else if(!nCLK)
nQ <= ~D;
end
endmodule
module GP_EDGEDET(input IN, output reg OUT);
parameter EDGE_DIRECTION = "RISING";
@ -400,107 +113,6 @@ module GP_EDGEDET(input IN, output reg OUT);
endmodule
module GP_IBUF(input IN, output OUT);
assign OUT = IN;
endmodule
module GP_IOBUF(input IN, input OE, output OUT, inout IO);
assign OUT = IO;
assign IO = OE ? IN : 1'bz;
endmodule
module GP_INV(input IN, output OUT);
assign OUT = ~IN;
endmodule
module GP_LFOSC(input PWRDN, output reg CLKOUT);
parameter PWRDN_EN = 0;
parameter AUTO_PWRDN = 0;
parameter OUT_DIV = 1;
initial CLKOUT = 0;
//auto powerdown not implemented for simulation
//output dividers not implemented for simulation
always begin
if(PWRDN)
CLKOUT = 0;
else begin
//half period of 1730 Hz
#289017;
CLKOUT = ~CLKOUT;
end
end
endmodule
module GP_OBUF(input IN, output OUT);
assign OUT = IN;
endmodule
module GP_OBUFT(input IN, input OE, output OUT);
assign OUT = OE ? IN : 1'bz;
endmodule
module GP_PGA(input wire VIN_P, input wire VIN_N, input wire VIN_SEL, output reg VOUT);
parameter GAIN = 1;
parameter INPUT_MODE = "SINGLE";
initial VOUT = 0;
//cannot simulate mixed signal IP
endmodule
module GP_PGEN(input wire nRST, input wire CLK, output reg OUT);
initial OUT = 0;
parameter PATTERN_DATA = 16'h0;
parameter PATTERN_LEN = 5'd16;
reg[3:0] count = 0;
always @(posedge CLK) begin
if(!nRST)
OUT <= PATTERN_DATA[0];
else begin
count <= count + 1;
OUT <= PATTERN_DATA[count];
if( (count + 1) == PATTERN_LEN)
count <= 0;
end
end
endmodule
module GP_PWRDET(output reg VDD_LOW);
initial VDD_LOW = 0;
endmodule
module GP_POR(output reg RST_DONE);
parameter POR_TIME = 500;
initial begin
RST_DONE = 0;
if(POR_TIME == 4)
#4000;
else if(POR_TIME == 500)
#500000;
else begin
$display("ERROR: bad POR_TIME for GP_POR cell");
$finish;
end
RST_DONE = 1;
end
endmodule
module GP_RCOSC(input PWRDN, output reg CLKOUT_HARDIP, output reg CLKOUT_FABRIC);
parameter PWRDN_EN = 0;
@ -567,29 +179,6 @@ module GP_RINGOSC(input PWRDN, output reg CLKOUT_HARDIP, output reg CLKOUT_FABRI
endmodule
module GP_SHREG(input nRST, input CLK, input IN, output OUTA, output OUTB);
parameter OUTA_TAP = 1;
parameter OUTA_INVERT = 0;
parameter OUTB_TAP = 1;
reg[15:0] shreg = 0;
always @(posedge CLK, negedge nRST) begin
if(!nRST)
shreg = 0;
else
shreg <= {shreg[14:0], IN};
end
assign OUTA = (OUTA_INVERT) ? ~shreg[OUTA_TAP - 1] : shreg[OUTA_TAP - 1];
assign OUTB = shreg[OUTB_TAP - 1];
endmodule
module GP_SPI(
input SCK,
inout SDAT,
@ -625,17 +214,3 @@ module GP_SYSRESET(input RST);
//cannot simulate whole system reset
endmodule
module GP_VDD(output OUT);
assign OUT = 1;
endmodule
module GP_VREF(input VIN, output reg VOUT);
parameter VIN_DIV = 1;
parameter VREF = 0;
//cannot simulate mixed signal IP
endmodule
module GP_VSS(output OUT);
assign OUT = 0;
endmodule

View File

@ -0,0 +1,89 @@
`timescale 1ns/1ps
/*
This file contains analog / mixed signal cells, or other things that are not possible to fully model
in behavioral Verilog.
It also contains some stuff like oscillators that use non-synthesizeable constructs such as delays.
TODO: do we want a third file for those cells?
*/
module GP_ABUF(input wire IN, output wire OUT);
assign OUT = IN;
//must be 1, 5, 20, 50
//values >1 only available with Vdd > 2.7V
parameter BANDWIDTH_KHZ = 1;
endmodule
module GP_ACMP(input wire PWREN, input wire VIN, input wire VREF, output reg OUT);
parameter BANDWIDTH = "HIGH";
parameter VIN_ATTEN = 1;
parameter VIN_ISRC_EN = 0;
parameter HYSTERESIS = 0;
initial OUT = 0;
endmodule
module GP_BANDGAP(output reg OK);
parameter AUTO_PWRDN = 1;
parameter CHOPPER_EN = 1;
parameter OUT_DELAY = 100;
endmodule
module GP_DAC(input[7:0] DIN, input wire VREF, output reg VOUT);
initial VOUT = 0;
//analog hard IP is not supported for simulation
endmodule
module GP_LFOSC(input PWRDN, output reg CLKOUT);
parameter PWRDN_EN = 0;
parameter AUTO_PWRDN = 0;
parameter OUT_DIV = 1;
initial CLKOUT = 0;
//auto powerdown not implemented for simulation
//output dividers not implemented for simulation
always begin
if(PWRDN)
CLKOUT = 0;
else begin
//half period of 1730 Hz
#289017;
CLKOUT = ~CLKOUT;
end
end
endmodule
module GP_PGA(input wire VIN_P, input wire VIN_N, input wire VIN_SEL, output reg VOUT);
parameter GAIN = 1;
parameter INPUT_MODE = "SINGLE";
initial VOUT = 0;
//cannot simulate mixed signal IP
endmodule
module GP_PWRDET(output reg VDD_LOW);
initial VDD_LOW = 0;
endmodule
module GP_VREF(input VIN, output reg VOUT);
parameter VIN_DIV = 1;
parameter VREF = 0;
//cannot simulate mixed signal IP
endmodule

View File

@ -0,0 +1,357 @@
`timescale 1ns/1ps
/*
This file contains simulation models for GreenPAK cells which are possible to fully model using synthesizeable
behavioral Verilog constructs only.
*/
module GP_2LUT(input IN0, IN1, output OUT);
parameter [3:0] INIT = 0;
assign OUT = INIT[{IN1, IN0}];
endmodule
module GP_3LUT(input IN0, IN1, IN2, output OUT);
parameter [7:0] INIT = 0;
assign OUT = INIT[{IN2, IN1, IN0}];
endmodule
module GP_4LUT(input IN0, IN1, IN2, IN3, output OUT);
parameter [15:0] INIT = 0;
assign OUT = INIT[{IN3, IN2, IN1, IN0}];
endmodule
module GP_CLKBUF(input wire IN, output wire OUT);
assign OUT = IN;
endmodule
module GP_DCMPREF(output reg[7:0]OUT);
parameter[7:0] REF_VAL = 8'h00;
initial OUT = REF_VAL;
endmodule
module GP_DCMPMUX(input[1:0] SEL, input[7:0] IN0, input[7:0] IN1, input[7:0] IN2, input[7:0] IN3, output reg[7:0] OUTA, output reg[7:0] OUTB);
always @(*) begin
case(SEL)
2'd00: begin
OUTA <= IN0;
OUTB <= IN3;
end
2'd01: begin
OUTA <= IN1;
OUTB <= IN2;
end
2'd02: begin
OUTA <= IN2;
OUTB <= IN1;
end
2'd03: begin
OUTA <= IN3;
OUTB <= IN0;
end
endcase
end
endmodule
module GP_DELAY(input IN, output reg OUT);
parameter DELAY_STEPS = 1;
parameter GLITCH_FILTER = 0;
initial OUT = 0;
generate
if(GLITCH_FILTER) begin
initial begin
$display("ERROR: GP_DELAY glitch filter mode not implemented");
$finish;
end
end
//TODO: These delays are PTV dependent! For now, hard code 3v3 timing
//Change simulation-mode delay depending on global Vdd range (how to specify this?)
always @(*) begin
case(DELAY_STEPS)
1: #166 OUT = IN;
2: #318 OUT = IN;
2: #471 OUT = IN;
3: #622 OUT = IN;
default: begin
$display("ERROR: GP_DELAY must have DELAY_STEPS in range [1,4]");
$finish;
end
endcase
end
endgenerate
endmodule
module GP_DFF(input D, CLK, output reg Q);
parameter [0:0] INIT = 1'bx;
initial Q = INIT;
always @(posedge CLK) begin
Q <= D;
end
endmodule
module GP_DFFI(input D, CLK, output reg nQ);
parameter [0:0] INIT = 1'bx;
initial nQ = INIT;
always @(posedge CLK) begin
nQ <= ~D;
end
endmodule
module GP_DFFR(input D, CLK, nRST, output reg Q);
parameter [0:0] INIT = 1'bx;
initial Q = INIT;
always @(posedge CLK, negedge nRST) begin
if (!nRST)
Q <= 1'b0;
else
Q <= D;
end
endmodule
module GP_DFFRI(input D, CLK, nRST, output reg nQ);
parameter [0:0] INIT = 1'bx;
initial nQ = INIT;
always @(posedge CLK, negedge nRST) begin
if (!nRST)
nQ <= 1'b1;
else
nQ <= ~D;
end
endmodule
module GP_DFFS(input D, CLK, nSET, output reg Q);
parameter [0:0] INIT = 1'bx;
initial Q = INIT;
always @(posedge CLK, negedge nSET) begin
if (!nSET)
Q <= 1'b1;
else
Q <= D;
end
endmodule
module GP_DFFSI(input D, CLK, nSET, output reg nQ);
parameter [0:0] INIT = 1'bx;
initial nQ = INIT;
always @(posedge CLK, negedge nSET) begin
if (!nSET)
nQ <= 1'b0;
else
nQ <= ~D;
end
endmodule
module GP_DFFSR(input D, CLK, nSR, output reg Q);
parameter [0:0] INIT = 1'bx;
parameter [0:0] SRMODE = 1'bx;
initial Q = INIT;
always @(posedge CLK, negedge nSR) begin
if (!nSR)
Q <= SRMODE;
else
Q <= D;
end
endmodule
module GP_DFFSRI(input D, CLK, nSR, output reg nQ);
parameter [0:0] INIT = 1'bx;
parameter [0:0] SRMODE = 1'bx;
initial nQ = INIT;
always @(posedge CLK, negedge nSR) begin
if (!nSR)
nQ <= ~SRMODE;
else
nQ <= ~D;
end
endmodule
module GP_DLATCH(input D, input nCLK, output reg Q);
parameter [0:0] INIT = 1'bx;
initial Q = INIT;
always @(*) begin
if(!nCLK)
Q <= D;
end
endmodule
module GP_DLATCHI(input D, input nCLK, output reg nQ);
parameter [0:0] INIT = 1'bx;
initial nQ = INIT;
always @(*) begin
if(!nCLK)
nQ <= ~D;
end
endmodule
module GP_DLATCHR(input D, input nCLK, input nRST, output reg Q);
parameter [0:0] INIT = 1'bx;
initial Q = INIT;
always @(*) begin
if(!nRST)
Q <= 1'b0;
else if(!nCLK)
Q <= D;
end
endmodule
module GP_DLATCHRI(input D, input nCLK, input nRST, output reg nQ);
parameter [0:0] INIT = 1'bx;
initial nQ = INIT;
always @(*) begin
if(!nRST)
nQ <= 1'b1;
else if(!nCLK)
nQ <= ~D;
end
endmodule
module GP_DLATCHS(input D, input nCLK, input nSET, output reg Q);
parameter [0:0] INIT = 1'bx;
initial Q = INIT;
always @(*) begin
if(!nSET)
Q <= 1'b1;
else if(!nCLK)
Q <= D;
end
endmodule
module GP_DLATCHSI(input D, input nCLK, input nSET, output reg nQ);
parameter [0:0] INIT = 1'bx;
initial nQ = INIT;
always @(*) begin
if(!nSET)
nQ <= 1'b0;
else if(!nCLK)
nQ <= ~D;
end
endmodule
module GP_DLATCHSR(input D, input nCLK, input nSR, output reg Q);
parameter [0:0] INIT = 1'bx;
parameter[0:0] SRMODE = 1'bx;
initial Q = INIT;
always @(*) begin
if(!nSR)
Q <= SRMODE;
else if(!nCLK)
Q <= D;
end
endmodule
module GP_DLATCHSRI(input D, input nCLK, input nSR, output reg nQ);
parameter [0:0] INIT = 1'bx;
parameter[0:0] SRMODE = 1'bx;
initial nQ = INIT;
always @(*) begin
if(!nSR)
nQ <= ~SRMODE;
else if(!nCLK)
nQ <= ~D;
end
endmodule
module GP_IBUF(input IN, output OUT);
assign OUT = IN;
endmodule
module GP_IOBUF(input IN, input OE, output OUT, inout IO);
assign OUT = IO;
assign IO = OE ? IN : 1'bz;
endmodule
module GP_INV(input IN, output OUT);
assign OUT = ~IN;
endmodule
module GP_OBUF(input IN, output OUT);
assign OUT = IN;
endmodule
module GP_OBUFT(input IN, input OE, output OUT);
assign OUT = OE ? IN : 1'bz;
endmodule
module GP_PGEN(input wire nRST, input wire CLK, output reg OUT);
initial OUT = 0;
parameter PATTERN_DATA = 16'h0;
parameter PATTERN_LEN = 5'd16;
reg[3:0] count = 0;
always @(posedge CLK) begin
if(!nRST)
OUT <= PATTERN_DATA[0];
else begin
count <= count + 1;
OUT <= PATTERN_DATA[count];
if( (count + 1) == PATTERN_LEN)
count <= 0;
end
end
endmodule
module GP_POR(output reg RST_DONE);
parameter POR_TIME = 500;
initial begin
RST_DONE = 0;
if(POR_TIME == 4)
#4000;
else if(POR_TIME == 500)
#500000;
else begin
$display("ERROR: bad POR_TIME for GP_POR cell");
$finish;
end
RST_DONE = 1;
end
endmodule
module GP_SHREG(input nRST, input CLK, input IN, output OUTA, output OUTB);
parameter OUTA_TAP = 1;
parameter OUTA_INVERT = 0;
parameter OUTB_TAP = 1;
reg[15:0] shreg = 0;
always @(posedge CLK, negedge nRST) begin
if(!nRST)
shreg = 0;
else
shreg <= {shreg[14:0], IN};
end
assign OUTA = (OUTA_INVERT) ? ~shreg[OUTA_TAP - 1] : shreg[OUTA_TAP - 1];
assign OUTB = shreg[OUTB_TAP - 1];
endmodule
module GP_VDD(output OUT);
assign OUT = 1;
endmodule
module GP_VSS(output OUT);
assign OUT = 0;
endmodule