Add support for various ff/latch cells simulation

This commit is contained in:
Miodrag Milanovic 2022-02-15 09:30:42 +01:00
parent 1586000048
commit fb22d7cdc4
3 changed files with 260 additions and 171 deletions

View File

@ -109,7 +109,6 @@ void FstData::extractVarNames()
} }
if (clean_name[0]=='\\') if (clean_name[0]=='\\')
clean_name = clean_name.substr(1); clean_name = clean_name.substr(1);
//log("adding %s.%s\n",var.scope.c_str(), clean_name.c_str());
name_to_handle[var.scope+"."+clean_name] = h->u.var.handle; name_to_handle[var.scope+"."+clean_name] = h->u.var.handle;
break; break;
@ -118,48 +117,6 @@ void FstData::extractVarNames()
} }
} }
static void reconstruct_edges_varlen(void *user_data, uint64_t pnt_time, fstHandle pnt_facidx, const unsigned char *pnt_value, uint32_t plen)
{
FstData *ptr = (FstData*)user_data;
ptr->reconstruct_edges_callback(pnt_time, pnt_facidx, pnt_value, plen);
}
static void reconstruct_edges(void *user_data, uint64_t pnt_time, fstHandle pnt_facidx, const unsigned char *pnt_value)
{
FstData *ptr = (FstData*)user_data;
uint32_t plen = (pnt_value) ? strlen((const char *)pnt_value) : 0;
ptr->reconstruct_edges_callback(pnt_time, pnt_facidx, pnt_value, plen);
}
void FstData::reconstruct_edges_callback(uint64_t pnt_time, fstHandle pnt_facidx, const unsigned char *pnt_value, uint32_t /* plen */)
{
std::string val = std::string((const char *)pnt_value);
std::string prev = last_data[pnt_facidx];
if (pnt_time>=start_time) {
if (prev!="1" && val=="1")
edges.push_back(pnt_time);
if (prev!="0" && val=="0")
edges.push_back(pnt_time);
}
last_data[pnt_facidx] = val;
}
std::vector<uint64_t> FstData::getAllEdges(std::vector<fstHandle> &signal, uint64_t start, uint64_t end)
{
start_time = start;
end_time = end;
last_data.clear();
for(auto &s : signal) {
last_data[s] = "x";
}
edges.clear();
fstReaderSetLimitTimeRange(ctx, start_time, end_time);
fstReaderClrFacProcessMaskAll(ctx);
for(const auto sig : signal)
fstReaderSetFacProcessMask(ctx,sig);
fstReaderIterBlocks2(ctx, reconstruct_edges, reconstruct_edges_varlen, this, nullptr);
return edges;
}
static void reconstruct_clb_varlen_attimes(void *user_data, uint64_t pnt_time, fstHandle pnt_facidx, const unsigned char *pnt_value, uint32_t plen) static void reconstruct_clb_varlen_attimes(void *user_data, uint64_t pnt_time, fstHandle pnt_facidx, const unsigned char *pnt_value, uint32_t plen)
{ {
@ -176,77 +133,65 @@ static void reconstruct_clb_attimes(void *user_data, uint64_t pnt_time, fstHandl
void FstData::reconstruct_callback_attimes(uint64_t pnt_time, fstHandle pnt_facidx, const unsigned char *pnt_value, uint32_t /* plen */) void FstData::reconstruct_callback_attimes(uint64_t pnt_time, fstHandle pnt_facidx, const unsigned char *pnt_value, uint32_t /* plen */)
{ {
if (sample_times_ndx >= sample_times.size()) return; if (pnt_time > end_time) return;
uint64_t time = sample_times[sample_times_ndx];
// if we are past the timestamp // if we are past the timestamp
if (pnt_time > time) { bool is_clock = false;
for (auto const& c : last_data) if (!all_samples) {
{ for(auto &s : clk_signals) {
handle_to_data[c.first].push_back(std::make_pair(time,c.second)); if (s==pnt_facidx) {
size_t index = handle_to_data[c.first].size() - 1; is_clock=true;
time_to_index[c.first][time] = index; break;
}
}
}
if (pnt_time > past_time) {
past_data = last_data;
past_time = pnt_time;
}
if (pnt_time > last_time) {
if (all_samples) {
callback(last_time);
last_time = pnt_time;
} else {
if (is_clock) {
std::string val = std::string((const char *)pnt_value);
std::string prev = past_data[pnt_facidx];
if ((prev!="1" && val=="1") || (prev!="0" && val=="0")) {
callback(last_time);
last_time = pnt_time;
}
}
} }
sample_times_ndx++;
} }
// always update last_data // always update last_data
last_data[pnt_facidx] = std::string((const char *)pnt_value); last_data[pnt_facidx] = std::string((const char *)pnt_value);
} }
void FstData::reconstructAtTimes(std::vector<fstHandle> &signal, std::vector<uint64_t> time) void FstData::reconstructAllAtTimes(std::vector<fstHandle> &signal, uint64_t start, uint64_t end, CallbackFunction cb)
{ {
handle_to_data.clear(); clk_signals = signal;
time_to_index.clear(); callback = cb;
start_time = start;
end_time = end;
last_data.clear(); last_data.clear();
sample_times_ndx = 0; last_time = start_time;
sample_times = time; past_data.clear();
fstReaderSetUnlimitedTimeRange(ctx); past_time = start_time;
fstReaderClrFacProcessMaskAll(ctx); all_samples = clk_signals.empty();
for(const auto sig : signal)
fstReaderSetFacProcessMask(ctx,sig);
fstReaderIterBlocks2(ctx, reconstruct_clb_attimes, reconstruct_clb_varlen_attimes, this, nullptr);
if (time_to_index[signal.back()].count(time.back())==0) {
for (auto const& c : last_data)
{
handle_to_data[c.first].push_back(std::make_pair(time.back(),c.second));
size_t index = handle_to_data[c.first].size() - 1;
time_to_index[c.first][time.back()] = index;
}
}
}
void FstData::reconstructAllAtTimes(std::vector<uint64_t> time)
{
handle_to_data.clear();
time_to_index.clear();
last_data.clear();
sample_times_ndx = 0;
sample_times = time;
fstReaderSetUnlimitedTimeRange(ctx); fstReaderSetUnlimitedTimeRange(ctx);
fstReaderSetFacProcessMaskAll(ctx); fstReaderSetFacProcessMaskAll(ctx);
fstReaderIterBlocks2(ctx, reconstruct_clb_attimes, reconstruct_clb_varlen_attimes, this, nullptr); fstReaderIterBlocks2(ctx, reconstruct_clb_attimes, reconstruct_clb_varlen_attimes, this, nullptr);
callback(last_time);
if (time_to_index[1].count(time.back())==0) { if (last_time!=end_time)
for (auto const& c : last_data) callback(end_time);
{
handle_to_data[c.first].push_back(std::make_pair(time.back(),c.second));
size_t index = handle_to_data[c.first].size() - 1;
time_to_index[c.first][time.back()] = index;
}
}
} }
std::string FstData::valueAt(fstHandle signal, uint64_t time) std::string FstData::valueOf(fstHandle signal)
{ {
if (handle_to_data.find(signal) == handle_to_data.end()) if (past_data.find(signal) == past_data.end())
log_error("Signal id %d not found\n", (int)signal); log_error("Signal id %d not found\n", (int)signal);
auto &data = handle_to_data[signal]; return past_data[signal];
if (time_to_index[signal].count(time)!=0) {
size_t index = time_to_index[signal][time];
return data.at(index).second;
} else {
log_error("No data for signal %d at time %d\n", (int)signal, (int)time);
}
} }

View File

@ -25,6 +25,9 @@
YOSYS_NAMESPACE_BEGIN YOSYS_NAMESPACE_BEGIN
typedef std::function<void(uint64_t)> CallbackFunction;
struct fst_end_of_data_exception { };
struct FstVar struct FstVar
{ {
fstHandle id; fstHandle id;
@ -45,14 +48,10 @@ class FstData
std::vector<FstVar>& getVars() { return vars; }; std::vector<FstVar>& getVars() { return vars; };
void reconstruct_edges_callback(uint64_t pnt_time, fstHandle pnt_facidx, const unsigned char *pnt_value, uint32_t plen);
std::vector<uint64_t> getAllEdges(std::vector<fstHandle> &signal, uint64_t start_time, uint64_t end_time);
void reconstruct_callback_attimes(uint64_t pnt_time, fstHandle pnt_facidx, const unsigned char *pnt_value, uint32_t plen); void reconstruct_callback_attimes(uint64_t pnt_time, fstHandle pnt_facidx, const unsigned char *pnt_value, uint32_t plen);
void reconstructAtTimes(std::vector<fstHandle> &signal,std::vector<uint64_t> time); void reconstructAllAtTimes(std::vector<fstHandle> &signal, uint64_t start_time, uint64_t end_time, CallbackFunction cb);
void reconstructAllAtTimes(std::vector<uint64_t> time);
std::string valueAt(fstHandle signal, uint64_t time); std::string valueOf(fstHandle signal);
fstHandle getHandle(std::string name); fstHandle getHandle(std::string name);
double getTimescale() { return timescale; } double getTimescale() { return timescale; }
const char *getTimescaleString() { return timescale_str.c_str(); } const char *getTimescaleString() { return timescale_str.c_str(); }
@ -64,16 +63,17 @@ private:
std::vector<FstVar> vars; std::vector<FstVar> vars;
std::map<fstHandle, FstVar> handle_to_var; std::map<fstHandle, FstVar> handle_to_var;
std::map<std::string, fstHandle> name_to_handle; std::map<std::string, fstHandle> name_to_handle;
std::map<fstHandle, std::vector<std::pair<uint64_t, std::string>>> handle_to_data;
std::map<fstHandle, std::string> last_data; std::map<fstHandle, std::string> last_data;
std::map<fstHandle, std::map<uint64_t, size_t>> time_to_index; uint64_t last_time;
std::vector<uint64_t> sample_times; std::map<fstHandle, std::string> past_data;
size_t sample_times_ndx; uint64_t past_time;
double timescale; double timescale;
std::string timescale_str; std::string timescale_str;
uint64_t start_time; uint64_t start_time;
uint64_t end_time; uint64_t end_time;
std::vector<uint64_t> edges; CallbackFunction callback;
std::vector<fstHandle> clk_signals;
bool all_samples;
}; };
YOSYS_NAMESPACE_END YOSYS_NAMESPACE_END

View File

@ -22,6 +22,7 @@
#include "kernel/celltypes.h" #include "kernel/celltypes.h"
#include "kernel/mem.h" #include "kernel/mem.h"
#include "kernel/fstdata.h" #include "kernel/fstdata.h"
#include "kernel/ff.h"
#include <ctime> #include <ctime>
@ -76,6 +77,7 @@ struct SimShared
double stop_time = -1; double stop_time = -1;
SimulationMode sim_mode = SimulationMode::sim; SimulationMode sim_mode = SimulationMode::sim;
bool cycles_set = false; bool cycles_set = false;
const pool<IdString> ff_types = RTLIL::builtin_ff_cell_types();
}; };
void zinit(State &v) void zinit(State &v)
@ -113,8 +115,13 @@ struct SimInstance
struct ff_state_t struct ff_state_t
{ {
State past_clock;
Const past_d; Const past_d;
Const past_ad;
SigSpec past_clk;
SigSpec past_ce;
SigSpec past_srst;
FfData data;
}; };
struct mem_state_t struct mem_state_t
@ -209,10 +216,15 @@ struct SimInstance
} }
} }
if (cell->type.in(ID($dff))) { if (shared->ff_types.count(cell->type)) {
FfData ff_data(nullptr, cell);
ff_state_t ff; ff_state_t ff;
ff.past_clock = State::Sx; ff.past_d = Const(State::Sx, ff_data.width);
ff.past_d = Const(State::Sx, cell->getParam(ID::WIDTH).as_int()); ff.past_ad = Const(State::Sx, ff_data.width);
ff.past_clk = State::Sx;
ff.past_ce = State::Sx;
ff.past_srst = State::Sx;
ff.data = ff_data;
ff_database[cell] = ff; ff_database[cell] = ff;
} }
@ -229,11 +241,10 @@ struct SimInstance
{ {
for (auto &it : ff_database) for (auto &it : ff_database)
{ {
Cell *cell = it.first;
ff_state_t &ff = it.second; ff_state_t &ff = it.second;
zinit(ff.past_d); zinit(ff.past_d);
SigSpec qsig = cell->getPort(ID::Q); SigSpec qsig = it.second.data.sig_q;
Const qdata = get_state(qsig); Const qdata = get_state(qsig);
zinit(qdata); zinit(qdata);
set_state(qsig, qdata); set_state(qsig, qdata);
@ -466,20 +477,138 @@ struct SimInstance
for (auto &it : ff_database) for (auto &it : ff_database)
{ {
Cell *cell = it.first;
ff_state_t &ff = it.second; ff_state_t &ff = it.second;
FfData ff_data = ff.data;
if (cell->type.in(ID($dff))) if (ff_data.has_clk) {
{ // flip-flops
bool clkpol = cell->getParam(ID::CLK_POLARITY).as_bool(); State current_clk = get_state(ff_data.sig_clk)[0];
State current_clock = get_state(cell->getPort(ID::CLK))[0];
if (clkpol ? (ff.past_clock == State::S1 || current_clock != State::S1) : // handle set/reset
(ff.past_clock == State::S0 || current_clock != State::S0)) if (ff.data.has_sr) {
Const current_q = get_state(ff.data.sig_q);
Const current_clr = get_state(ff.data.sig_clr);
Const current_set = get_state(ff.data.sig_set);
for(int i=0;i<ff.past_d.size();i++) {
if (current_clr[i] == (ff_data.pol_clr ? State::S1 : State::S0)) {
current_q[i] = State::S0;
}
else if (current_set[i] == (ff_data.pol_set ? State::S1 : State::S0)) {
current_q[i] = State::S1;
} else {
// all below is in sync with clk
if (ff_data.pol_clk ? (ff.past_clk == State::S1 || current_clk != State::S1) :
(ff.past_clk == State::S0 || current_clk != State::S0))
continue; continue;
if (set_state(cell->getPort(ID::Q), ff.past_d)) if (ff_data.has_ce) {
if (ff.past_ce == (ff_data.pol_ce ? State::S1 : State::S0))
current_q[i] = ff.past_d[i];
} else {
current_q[i] = ff.past_d[i];
}
}
}
if (set_state(ff_data.sig_q, current_q))
did_something = true; did_something = true;
} else {
// async reset
if (ff_data.has_arst) {
State current_arst = get_state(ff_data.sig_arst)[0];
if (current_arst == (ff_data.pol_arst ? State::S1 : State::S0)) {
if (set_state(ff_data.sig_q, ff_data.val_arst))
did_something = true;
continue;
}
}
// async load
if (ff_data.has_aload) {
State current_aload = get_state(ff_data.sig_aload)[0];
if (current_aload == (ff_data.pol_aload ? State::S1 : State::S0)) {
if (set_state(ff_data.sig_q, ff.past_ad))
did_something = true;
continue;
}
}
// all below is in sync with clk
if (ff_data.pol_clk ? (ff.past_clk == State::S1 || current_clk != State::S1) :
(ff.past_clk == State::S0 || current_clk != State::S0))
continue;
// chip enable priority over reset
if (ff_data.ce_over_srst && ff_data.has_ce) {
if (ff.past_ce != (ff_data.pol_ce ? State::S1 : State::S0))
continue;
}
// handle sync reset
if (ff_data.has_srst) {
if (ff.past_srst == (ff_data.pol_srst ? State::S1 : State::S0)) {
if (set_state(ff_data.sig_q, ff_data.val_srst))
did_something = true;
continue;
}
}
// reset had priority over chip enable
if (!ff_data.ce_over_srst && ff_data.has_ce) {
if (ff.past_ce != (ff_data.pol_ce ? State::S1 : State::S0))
continue;
}
if (set_state(ff_data.sig_q, ff.past_d))
did_something = true;
}
} else {
// handle set/reset
if (ff.data.has_sr) {
Const current_q = get_state(ff.data.sig_q);
Const current_clr = get_state(ff.data.sig_clr);
Const current_set = get_state(ff.data.sig_set);
for(int i=0;i<current_q.size();i++) {
if (current_clr[i] == (ff_data.pol_clr ? State::S1 : State::S0)) {
current_q[i] = State::S0;
}
else if (current_set[i] == (ff_data.pol_set ? State::S1 : State::S0)) {
current_q[i] = State::S1;
} else {
if (ff_data.has_aload) {
Const current_ad = get_state(ff.data.sig_ad);
State current_aload = get_state(ff_data.sig_aload)[0];
if (current_aload == (ff_data.pol_aload ? State::S1 : State::S0)) {
current_q[i] = current_ad[i];
}
}
}
}
if (set_state(ff_data.sig_q, current_q))
did_something = true;
}
// async load is true for all latches
else if (ff_data.has_aload) {
// async reset
if (ff_data.has_arst) {
State current_arst = get_state(ff_data.sig_arst)[0];
if (current_arst == (ff_data.pol_arst ? State::S1 : State::S0)) {
if (set_state(ff_data.sig_q, ff_data.val_arst))
did_something = true;
continue;
}
}
State current_aload = get_state(ff_data.sig_aload)[0];
if (current_aload == (ff_data.pol_aload ? State::S1 : State::S0)) {
if (set_state(ff_data.sig_q, get_state(ff.data.sig_ad)))
did_something = true;
}
} else if (ff_data.has_gclk) {
// $ff
if (set_state(ff_data.sig_q, ff.past_d))
did_something = true;
}
} }
} }
@ -538,13 +667,22 @@ struct SimInstance
{ {
for (auto &it : ff_database) for (auto &it : ff_database)
{ {
Cell *cell = it.first;
ff_state_t &ff = it.second; ff_state_t &ff = it.second;
if (cell->type.in(ID($dff))) { if (ff.data.has_aload)
ff.past_clock = get_state(cell->getPort(ID::CLK))[0]; ff.past_ad = get_state(ff.data.sig_ad);
ff.past_d = get_state(cell->getPort(ID::D));
} if (ff.data.has_clk || ff.data.has_gclk)
ff.past_d = get_state(ff.data.sig_d);
if (ff.data.has_clk)
ff.past_clk = get_state(ff.data.sig_clk)[0];
if (ff.data.has_ce)
ff.past_ce = get_state(ff.data.sig_ce)[0];
if (ff.data.has_srst)
ff.past_srst = get_state(ff.data.sig_srst)[0];
} }
for (auto &it : mem_database) for (auto &it : mem_database)
@ -595,8 +733,7 @@ struct SimInstance
for (auto &it : ff_database) for (auto &it : ff_database)
{ {
Cell *cell = it.first; SigSpec sig_q = it.second.data.sig_q;
SigSpec sig_q = cell->getPort(ID::Q);
Const initval = get_state(sig_q); Const initval = get_state(sig_q);
for (int i = 0; i < GetSize(sig_q); i++) for (int i = 0; i < GetSize(sig_q); i++)
@ -722,34 +859,32 @@ struct SimInstance
child.second->write_fst_step(f); child.second->write_fst_step(f);
} }
void setInitState(uint64_t time) void setInitState()
{ {
for (auto &it : ff_database) for (auto &it : ff_database)
{ {
Cell *cell = it.first; SigSpec qsig = it.second.data.sig_q;
SigSpec qsig = cell->getPort(ID::Q);
if (qsig.is_wire()) { if (qsig.is_wire()) {
IdString name = qsig.as_wire()->name; IdString name = qsig.as_wire()->name;
fstHandle id = shared->fst->getHandle(scope + "." + RTLIL::unescape_id(name)); fstHandle id = shared->fst->getHandle(scope + "." + RTLIL::unescape_id(name));
if (id==0 && name.isPublic()) if (id==0 && name.isPublic())
log_warning("Unable to found wire %s in input file.\n", (scope + "." + RTLIL::unescape_id(name)).c_str()); log_warning("Unable to found wire %s in input file.\n", (scope + "." + RTLIL::unescape_id(name)).c_str());
if (id!=0) { if (id!=0) {
Const fst_val = Const::from_string(shared->fst->valueAt(id, time)); Const fst_val = Const::from_string(shared->fst->valueOf(id));
set_state(qsig, fst_val); set_state(qsig, fst_val);
} }
} }
} }
for (auto child : children) for (auto child : children)
child.second->setInitState(time); child.second->setInitState();
} }
bool checkSignals(uint64_t time) bool checkSignals()
{ {
bool retVal = false; bool retVal = false;
for(auto &item : fst_handles) { for(auto &item : fst_handles) {
if (item.second==0) continue; // Ignore signals not found if (item.second==0) continue; // Ignore signals not found
Const fst_val = Const::from_string(shared->fst->valueAt(item.second, time)); Const fst_val = Const::from_string(shared->fst->valueOf(item.second));
Const sim_val = get_state(item.first); Const sim_val = get_state(item.first);
if (sim_val.size()!=fst_val.size()) if (sim_val.size()!=fst_val.size())
log_error("Signal '%s' size is different in gold and gate.\n", log_id(item.first)); log_error("Signal '%s' size is different in gold and gate.\n", log_id(item.first));
@ -779,7 +914,7 @@ struct SimInstance
} }
} }
for (auto child : children) for (auto child : children)
retVal |= child.second->checkSignals(time); retVal |= child.second->checkSignals();
return retVal; return retVal;
} }
}; };
@ -998,8 +1133,6 @@ struct SimWorker : SimShared
log_error("Can't find port %s.%s in FST.\n", scope.c_str(), log_id(portname)); log_error("Can't find port %s.%s in FST.\n", scope.c_str(), log_id(portname));
fst_clock.push_back(id); fst_clock.push_back(id);
} }
if (fst_clock.size()==0)
log_error("No clock signals defined for input file\n");
SigMap sigmap(topmod); SigMap sigmap(topmod);
std::map<Wire*,fstHandle> inputs; std::map<Wire*,fstHandle> inputs;
@ -1044,37 +1177,48 @@ struct SimWorker : SimShared
if (stopCount<startCount) { if (stopCount<startCount) {
log_error("Stop time is before start time\n"); log_error("Stop time is before start time\n");
} }
auto samples = fst->getAllEdges(fst_clock, startCount, stopCount);
// Limit to number of cycles if provided
if (cycles_set && ((size_t)(numcycles *2) < samples.size()))
samples.erase(samples.begin() + (numcycles*2), samples.end());
// Add setup time (start time)
if (samples.empty() || samples.front()!=startCount)
samples.insert(samples.begin(), startCount);
fst->reconstructAllAtTimes(samples);
bool initial = true; bool initial = true;
int cycle = 0; int cycle = 0;
log("Co-simulation from %lu%s to %lu%s\n", (unsigned long)startCount, fst->getTimescaleString(), (unsigned long)stopCount, fst->getTimescaleString()); log("Co-simulation from %lu%s to %lu%s", (unsigned long)startCount, fst->getTimescaleString(), (unsigned long)stopCount, fst->getTimescaleString());
for(auto &time : samples) { if (cycles_set)
log("Co-simulating cycle %d [%lu%s].\n", cycle, (unsigned long)time, fst->getTimescaleString()); log(" for %d clock cycle(s)",numcycles);
log("\n");
bool all_samples = fst_clock.empty();
try {
fst->reconstructAllAtTimes(fst_clock, startCount, stopCount, [&](uint64_t time) {
log("Co-simulating %s %d [%lu%s].\n", (all_samples ? "sample" : "cycle"), cycle, (unsigned long)time, fst->getTimescaleString());
for(auto &item : inputs) { for(auto &item : inputs) {
std::string v = fst->valueAt(item.second, time); std::string v = fst->valueOf(item.second);
top->set_state(item.first, Const::from_string(v)); top->set_state(item.first, Const::from_string(v));
} }
if (initial) { if (initial) {
top->setInitState(time); top->setInitState();
write_output_header();
initial = false; initial = false;
} }
update(); update();
write_output_step(5*cycle);
bool status = top->checkSignals(time); bool status = top->checkSignals();
if (status) if (status)
log_error("Signal difference\n"); log_error("Signal difference\n");
cycle++; cycle++;
// Limit to number of cycles if provided
if (cycles_set && cycle > numcycles *2)
throw fst_end_of_data_exception();
if (time==stopCount)
throw fst_end_of_data_exception();
});
} catch(fst_end_of_data_exception) {
// end of data detected
} }
write_output_step(5*(cycle-1)+2);
write_output_end();
if (writeback) { if (writeback) {
pool<Module*> wbmods; pool<Module*> wbmods;
top->writeback(wbmods); top->writeback(wbmods);