Revert "Remove sequential extension"

This reverts commit 091bf4a18b.
This commit is contained in:
Eddie Hung 2019-08-20 18:17:14 -07:00
parent 091bf4a18b
commit f1a206ba03
9 changed files with 733 additions and 71 deletions

View File

@ -76,25 +76,32 @@ void aiger_encode(std::ostream &f, int x)
struct XAigerWriter struct XAigerWriter
{ {
Module *module; Module *module;
bool zinit_mode;
SigMap sigmap; SigMap sigmap;
dict<SigBit, bool> init_map;
pool<SigBit> input_bits, output_bits; pool<SigBit> input_bits, output_bits;
dict<SigBit, SigBit> not_map, alias_map; dict<SigBit, SigBit> not_map, ff_map, alias_map;
dict<SigBit, pair<SigBit, SigBit>> and_map; dict<SigBit, pair<SigBit, SigBit>> and_map;
vector<std::tuple<SigBit,RTLIL::Cell*,RTLIL::IdString,int>> ci_bits; vector<std::tuple<SigBit,RTLIL::Cell*,RTLIL::IdString,int>> ci_bits;
vector<std::tuple<SigBit,RTLIL::Cell*,RTLIL::IdString,int,int>> co_bits; vector<std::tuple<SigBit,RTLIL::Cell*,RTLIL::IdString,int,int>> co_bits;
vector<SigBit> ff_bits;
dict<SigBit, float> arrival_times; dict<SigBit, float> arrival_times;
vector<pair<int, int>> aig_gates; vector<pair<int, int>> aig_gates;
vector<int> aig_outputs; vector<int> aig_latchin, aig_latchinit, aig_outputs;
int aig_m = 0, aig_i = 0, aig_l = 0, aig_o = 0, aig_a = 0; int aig_m = 0, aig_i = 0, aig_l = 0, aig_o = 0, aig_a = 0;
dict<SigBit, int> aig_map; dict<SigBit, int> aig_map;
dict<SigBit, int> ordered_outputs; dict<SigBit, int> ordered_outputs;
dict<SigBit, int> ordered_latches;
vector<Cell*> box_list; vector<Cell*> box_list;
bool omode = false; bool omode = false;
//dict<SigBit, int> init_inputs;
//int initstate_ff = 0;
int mkgate(int a0, int a1) int mkgate(int a0, int a1)
{ {
aig_m++, aig_a++; aig_m++, aig_a++;
@ -137,7 +144,7 @@ struct XAigerWriter
return a; return a;
} }
XAigerWriter(Module *module, bool holes_mode=false) : module(module), sigmap(module) XAigerWriter(Module *module, bool zinit_mode, bool holes_mode=false) : module(module), zinit_mode(zinit_mode), sigmap(module)
{ {
pool<SigBit> undriven_bits; pool<SigBit> undriven_bits;
pool<SigBit> unused_bits; pool<SigBit> unused_bits;
@ -160,6 +167,14 @@ struct XAigerWriter
for (auto wire : module->wires()) for (auto wire : module->wires())
{ {
if (wire->attributes.count("\\init")) {
SigSpec initsig = sigmap(wire);
Const initval = wire->attributes.at("\\init");
for (int i = 0; i < GetSize(wire) && i < GetSize(initval); i++)
if (initval[i] == State::S0 || initval[i] == State::S1)
init_map[initsig[i]] = initval[i] == State::S1;
}
bool keep = wire->attributes.count("\\keep"); bool keep = wire->attributes.count("\\keep");
for (int i = 0; i < GetSize(wire); i++) for (int i = 0; i < GetSize(wire); i++)
@ -203,6 +218,12 @@ struct XAigerWriter
// box ordering, but not individual AIG cells // box ordering, but not individual AIG cells
dict<SigBit, pool<IdString>> bit_drivers, bit_users; dict<SigBit, pool<IdString>> bit_drivers, bit_users;
TopoSort<IdString, RTLIL::sort_by_id_str> toposort; TopoSort<IdString, RTLIL::sort_by_id_str> toposort;
struct flop_data_t {
IdString d_port;
IdString q_port;
int q_arrival;
};
dict<IdString, flop_data_t> flop_data;
bool abc_box_seen = false; bool abc_box_seen = false;
for (auto cell : module->selected_cells()) { for (auto cell : module->selected_cells()) {
@ -241,25 +262,86 @@ struct XAigerWriter
log_assert(!holes_mode); log_assert(!holes_mode);
if (cell->type == "$__ABC_FF_")
{
SigBit D = sigmap(cell->getPort("\\D").as_bit());
SigBit Q = sigmap(cell->getPort("\\Q").as_bit());
unused_bits.erase(D);
undriven_bits.erase(Q);
alias_map[Q] = D;
continue;
}
RTLIL::Module* inst_module = module->design->module(cell->type); RTLIL::Module* inst_module = module->design->module(cell->type);
if (inst_module && inst_module->attributes.count("\\abc_box_id")) { if (inst_module && inst_module->attributes.count("\\abc_box_id")) {
abc_box_seen = true; abc_box_seen = true;
if (!holes_mode) { toposort.node(cell->name);
toposort.node(cell->name);
for (const auto &conn : cell->connections()) {
auto port_wire = inst_module->wire(conn.first);
if (port_wire->port_input) {
// Ignore inout for the sake of topographical ordering
if (port_wire->port_output) continue;
for (auto bit : sigmap(conn.second))
bit_users[bit].insert(cell->name);
}
if (port_wire->port_output) auto r = flop_data.insert(std::make_pair(cell->type, flop_data_t{IdString(), IdString(), 0}));
for (auto bit : sigmap(conn.second)) if (r.second && inst_module->attributes.count("\\abc_flop")) {
bit_drivers[bit].insert(cell->name); IdString &abc_flop_d = r.first->second.d_port;
IdString &abc_flop_q = r.first->second.q_port;
for (auto port_name : inst_module->ports) {
auto wire = inst_module->wire(port_name);
log_assert(wire);
if (wire->attributes.count("\\abc_flop_d")) {
if (abc_flop_d != IdString())
log_error("More than one port has the 'abc_flop_d' attribute set on module '%s'.\n", log_id(cell->type));
abc_flop_d = port_name;
}
if (wire->attributes.count("\\abc_flop_q")) {
if (abc_flop_q != IdString())
log_error("More than one port has the 'abc_flop_q' attribute set on module '%s'.\n", log_id(cell->type));
abc_flop_q = port_name;
auto it = wire->attributes.find("\\abc_arrival");
if (it != wire->attributes.end()) {
if (it->second.flags != 0)
log_error("Attribute 'abc_arrival' on port '%s' of module '%s' is not an integer.\n", log_id(wire), log_id(cell->type));
r.first->second.q_arrival = it->second.as_int();
}
}
} }
if (abc_flop_d == IdString())
log_error("'abc_flop_d' attribute not found on any ports on module '%s'.\n", log_id(cell->type));
if (abc_flop_q == IdString())
log_error("'abc_flop_q' attribute not found on any ports on module '%s'.\n", log_id(cell->type));
}
auto abc_flop_d = r.first->second.d_port;
if (abc_flop_d != IdString()) {
SigBit d = cell->getPort(abc_flop_d);
SigBit I = sigmap(d);
if (I != d)
alias_map[I] = d;
unused_bits.erase(d);
auto abc_flop_q = r.first->second.q_port;
SigBit q = cell->getPort(abc_flop_q);
SigBit O = sigmap(q);
if (O != q)
alias_map[O] = q;
undriven_bits.erase(O);
ff_bits.emplace_back(q);
auto arrival = r.first->second.q_arrival;
if (arrival)
arrival_times[q] = arrival;
}
for (const auto &conn : cell->connections()) {
auto port_wire = inst_module->wire(conn.first);
if (port_wire->port_input) {
// Ignore inout for the sake of topographical ordering
if (port_wire->port_output) continue;
for (auto bit : sigmap(conn.second))
bit_users[bit].insert(cell->name);
}
if (port_wire->port_output)
for (auto bit : sigmap(conn.second))
bit_drivers[bit].insert(cell->name);
} }
} }
else { else {
@ -466,6 +548,7 @@ struct XAigerWriter
log_warning("Treating a total of %d undriven bits in %s like $anyseq.\n", GetSize(undriven_bits), log_id(module)); log_warning("Treating a total of %d undriven bits in %s like $anyseq.\n", GetSize(undriven_bits), log_id(module));
} }
init_map.sort();
if (holes_mode) { if (holes_mode) {
struct sort_by_port_id { struct sort_by_port_id {
bool operator()(const RTLIL::SigBit& a, const RTLIL::SigBit& b) const { bool operator()(const RTLIL::SigBit& a, const RTLIL::SigBit& b) const {
@ -481,6 +564,7 @@ struct XAigerWriter
} }
not_map.sort(); not_map.sort();
ff_map.sort();
and_map.sort(); and_map.sort();
aig_map[State::S0] = 0; aig_map[State::S0] = 0;
@ -492,12 +576,77 @@ struct XAigerWriter
aig_map[bit] = 2*aig_m; aig_map[bit] = 2*aig_m;
} }
for (auto bit : ff_bits) {
aig_m++, aig_i++;
log_assert(!aig_map.count(bit));
aig_map[bit] = 2*aig_m;
}
dict<SigBit, int> ff_aig_map;
for (auto &c : ci_bits) { for (auto &c : ci_bits) {
RTLIL::SigBit bit = std::get<0>(c); RTLIL::SigBit bit = std::get<0>(c);
aig_m++, aig_i++; aig_m++, aig_i++;
aig_map[bit] = 2*aig_m; auto r = aig_map.insert(std::make_pair(bit, 2*aig_m));
if (!r.second)
ff_aig_map[bit] = 2*aig_m;
} }
//if (zinit_mode)
//{
// for (auto it : ff_map) {
// if (init_map.count(it.first))
// continue;
// aig_m++, aig_i++;
// init_inputs[it.first] = 2*aig_m;
// }
//}
//for (auto it : ff_map) {
// aig_m++, aig_l++;
// aig_map[it.first] = 2*aig_m;
// ordered_latches[it.first] = aig_l-1;
// if (init_map.count(it.first) == 0)
// aig_latchinit.push_back(2);
// else
// aig_latchinit.push_back(init_map.at(it.first) ? 1 : 0);
//}
//if (!init_inputs.empty()) {
// aig_m++, aig_l++;
// initstate_ff = 2*aig_m+1;
// aig_latchinit.push_back(0);
//}
//if (zinit_mode)
//{
// for (auto it : ff_map)
// {
// int l = ordered_latches[it.first];
// if (aig_latchinit.at(l) == 1)
// aig_map[it.first] ^= 1;
// if (aig_latchinit.at(l) == 2)
// {
// int gated_ffout = mkgate(aig_map[it.first], initstate_ff^1);
// int gated_initin = mkgate(init_inputs[it.first], initstate_ff);
// aig_map[it.first] = mkgate(gated_ffout^1, gated_initin^1)^1;
// }
// }
//}
//for (auto it : ff_map) {
// int a = bit2aig(it.second);
// int l = ordered_latches[it.first];
// if (zinit_mode && aig_latchinit.at(l) == 1)
// aig_latchin.push_back(a ^ 1);
// else
// aig_latchin.push_back(a);
//}
//if (!init_inputs.empty())
// aig_latchin.push_back(1);
for (auto &c : co_bits) { for (auto &c : co_bits) {
RTLIL::SigBit bit = std::get<0>(c); RTLIL::SigBit bit = std::get<0>(c);
std::get<4>(c) = ordered_outputs[bit] = aig_o++; std::get<4>(c) = ordered_outputs[bit] = aig_o++;
@ -509,6 +658,11 @@ struct XAigerWriter
aig_outputs.push_back(bit2aig(bit)); aig_outputs.push_back(bit2aig(bit));
} }
for (auto bit : ff_bits) {
aig_o++;
aig_outputs.push_back(ff_aig_map.at(bit));
}
if (output_bits.empty()) { if (output_bits.empty()) {
aig_o++; aig_o++;
aig_outputs.push_back(0); aig_outputs.push_back(0);
@ -523,6 +677,8 @@ struct XAigerWriter
int aig_obcjf = aig_obcj; int aig_obcjf = aig_obcj;
log_assert(aig_m == aig_i + aig_l + aig_a); log_assert(aig_m == aig_i + aig_l + aig_a);
log_assert(aig_l == GetSize(aig_latchin));
log_assert(aig_l == GetSize(aig_latchinit));
log_assert(aig_obcjf == GetSize(aig_outputs)); log_assert(aig_obcjf == GetSize(aig_outputs));
f << stringf("%s %d %d %d %d %d", ascii_mode ? "aag" : "aig", aig_m, aig_i, aig_l, aig_o, aig_a); f << stringf("%s %d %d %d %d %d", ascii_mode ? "aag" : "aig", aig_m, aig_i, aig_l, aig_o, aig_a);
@ -533,6 +689,15 @@ struct XAigerWriter
for (int i = 0; i < aig_i; i++) for (int i = 0; i < aig_i; i++)
f << stringf("%d\n", 2*i+2); f << stringf("%d\n", 2*i+2);
//for (int i = 0; i < aig_l; i++) {
// if (zinit_mode || aig_latchinit.at(i) == 0)
// f << stringf("%d %d\n", 2*(aig_i+i)+2, aig_latchin.at(i));
// else if (aig_latchinit.at(i) == 1)
// f << stringf("%d %d 1\n", 2*(aig_i+i)+2, aig_latchin.at(i));
// else if (aig_latchinit.at(i) == 2)
// f << stringf("%d %d %d\n", 2*(aig_i+i)+2, aig_latchin.at(i), 2*(aig_i+i)+2);
//}
for (int i = 0; i < aig_obc; i++) for (int i = 0; i < aig_obc; i++)
f << stringf("%d\n", aig_outputs.at(i)); f << stringf("%d\n", aig_outputs.at(i));
@ -550,6 +715,15 @@ struct XAigerWriter
} }
else else
{ {
//for (int i = 0; i < aig_l; i++) {
// if (zinit_mode || aig_latchinit.at(i) == 0)
// f << stringf("%d\n", aig_latchin.at(i));
// else if (aig_latchinit.at(i) == 1)
// f << stringf("%d 1\n", aig_latchin.at(i));
// else if (aig_latchinit.at(i) == 2)
// f << stringf("%d %d\n", aig_latchin.at(i), 2*(aig_i+i)+2);
//}
for (int i = 0; i < aig_obc; i++) for (int i = 0; i < aig_obc; i++)
f << stringf("%d\n", aig_outputs.at(i)); f << stringf("%d\n", aig_outputs.at(i));
@ -582,14 +756,14 @@ struct XAigerWriter
std::stringstream h_buffer; std::stringstream h_buffer;
auto write_h_buffer = std::bind(write_buffer, std::ref(h_buffer), std::placeholders::_1); auto write_h_buffer = std::bind(write_buffer, std::ref(h_buffer), std::placeholders::_1);
write_h_buffer(1); write_h_buffer(1);
log_debug("ciNum = %d\n", GetSize(input_bits) + GetSize(ci_bits)); log_debug("ciNum = %d\n", GetSize(input_bits) + GetSize(ff_bits) + GetSize(ci_bits));
write_h_buffer(input_bits.size() + ci_bits.size()); write_h_buffer(input_bits.size() + ff_bits.size() + ci_bits.size());
log_debug("coNum = %d\n", GetSize(output_bits) + GetSize(co_bits)); log_debug("coNum = %d\n", GetSize(output_bits) + GetSize(ff_bits) + GetSize(co_bits));
write_h_buffer(output_bits.size() + GetSize(co_bits)); write_h_buffer(output_bits.size() + GetSize(ff_bits) + GetSize(co_bits));
log_debug("piNum = %d\n", GetSize(input_bits)); log_debug("piNum = %d\n", GetSize(input_bits) + GetSize(ff_bits));
write_h_buffer(input_bits.size()); write_h_buffer(input_bits.size() + ff_bits.size());
log_debug("poNum = %d\n", GetSize(output_bits)); log_debug("poNum = %d\n", GetSize(output_bits) + GetSize(ff_bits));
write_h_buffer(output_bits.size()); write_h_buffer(output_bits.size() + ff_bits.size());
log_debug("boxNum = %d\n", GetSize(box_list)); log_debug("boxNum = %d\n", GetSize(box_list));
write_h_buffer(box_list.size()); write_h_buffer(box_list.size());
@ -605,7 +779,7 @@ struct XAigerWriter
//for (auto bit : output_bits) //for (auto bit : output_bits)
// write_o_buffer(0); // write_o_buffer(0);
if (!box_list.empty()) { if (!box_list.empty() || !ff_bits.empty()) {
RTLIL::Module *holes_module = module->design->addModule("$__holes__"); RTLIL::Module *holes_module = module->design->addModule("$__holes__");
log_assert(holes_module); log_assert(holes_module);
@ -671,13 +845,41 @@ struct XAigerWriter
std::stringstream r_buffer; std::stringstream r_buffer;
auto write_r_buffer = std::bind(write_buffer, std::ref(r_buffer), std::placeholders::_1); auto write_r_buffer = std::bind(write_buffer, std::ref(r_buffer), std::placeholders::_1);
write_r_buffer(0); log_debug("flopNum = %d\n", GetSize(ff_bits));
write_r_buffer(ff_bits.size());
int mergeability_class = 1;
for (auto bit : ff_bits) {
write_r_buffer(mergeability_class++);
write_i_buffer(arrival_times.at(bit, 0));
//write_o_buffer(0);
}
f << "r"; f << "r";
std::string buffer_str = r_buffer.str(); std::string buffer_str = r_buffer.str();
int32_t buffer_size_be = to_big_endian(buffer_str.size()); int32_t buffer_size_be = to_big_endian(buffer_str.size());
f.write(reinterpret_cast<const char*>(&buffer_size_be), sizeof(buffer_size_be)); f.write(reinterpret_cast<const char*>(&buffer_size_be), sizeof(buffer_size_be));
f.write(buffer_str.data(), buffer_str.size()); f.write(buffer_str.data(), buffer_str.size());
std::stringstream s_buffer;
auto write_s_buffer = std::bind(write_buffer, std::ref(s_buffer), std::placeholders::_1);
write_s_buffer(ff_bits.size());
for (auto bit : ff_bits) {
auto it = bit.wire->attributes.find("\\init");
if (it != bit.wire->attributes.end()) {
auto init = it->second[bit.offset];
if (init == RTLIL::S1) {
write_s_buffer(1);
continue;
}
}
write_s_buffer(0);
}
f << "s";
buffer_str = s_buffer.str();
buffer_size_be = to_big_endian(buffer_str.size());
f.write(reinterpret_cast<const char*>(&buffer_size_be), sizeof(buffer_size_be));
f.write(buffer_str.data(), buffer_str.size());
if (holes_module) { if (holes_module) {
log_push(); log_push();
@ -713,7 +915,7 @@ struct XAigerWriter
Pass::call(holes_design, "clean -purge"); Pass::call(holes_design, "clean -purge");
std::stringstream a_buffer; std::stringstream a_buffer;
XAigerWriter writer(holes_module, true /* holes_mode */); XAigerWriter writer(holes_module, false /*zinit_mode*/, true /* holes_mode */);
writer.write_aiger(a_buffer, false /*ascii_mode*/); writer.write_aiger(a_buffer, false /*ascii_mode*/);
delete holes_design; delete holes_design;
@ -751,7 +953,9 @@ struct XAigerWriter
void write_map(std::ostream &f, bool verbose_map) void write_map(std::ostream &f, bool verbose_map)
{ {
dict<int, string> input_lines; dict<int, string> input_lines;
dict<int, string> init_lines;
dict<int, string> output_lines; dict<int, string> output_lines;
dict<int, string> latch_lines;
dict<int, string> wire_lines; dict<int, string> wire_lines;
for (auto wire : module->wires()) for (auto wire : module->wires())
@ -772,10 +976,30 @@ struct XAigerWriter
if (output_bits.count(b)) { if (output_bits.count(b)) {
int o = ordered_outputs.at(b); int o = ordered_outputs.at(b);
output_lines[o] += stringf("output %d %d %s\n", o - GetSize(co_bits), i, log_id(wire)); int init = 2;
auto it = init_map.find(b);
if (it != init_map.end())
init = it->second ? 1 : 0;
output_lines[o] += stringf("output %d %d %s %d\n", o - GetSize(co_bits), i, log_id(wire), init);
continue; continue;
} }
//if (init_inputs.count(sig[i])) {
// int a = init_inputs.at(sig[i]);
// log_assert((a & 1) == 0);
// init_lines[a] += stringf("init %d %d %s\n", (a >> 1)-1, i, log_id(wire));
// continue;
//}
//if (ordered_latches.count(sig[i])) {
// int l = ordered_latches.at(sig[i]);
// if (zinit_mode && (aig_latchinit.at(l) == 1))
// latch_lines[l] += stringf("invlatch %d %d %s\n", l, i, log_id(wire));
// else
// latch_lines[l] += stringf("latch %d %d %s\n", l, i, log_id(wire));
// continue;
//}
if (verbose_map) { if (verbose_map) {
if (aig_map.count(sig[i]) == 0) if (aig_map.count(sig[i]) == 0)
continue; continue;
@ -791,6 +1015,10 @@ struct XAigerWriter
f << it.second; f << it.second;
log_assert(input_lines.size() == input_bits.size()); log_assert(input_lines.size() == input_bits.size());
init_lines.sort();
for (auto &it : init_lines)
f << it.second;
int box_count = 0; int box_count = 0;
for (auto cell : box_list) for (auto cell : box_list)
f << stringf("box %d %d %s\n", box_count++, 0, log_id(cell->name)); f << stringf("box %d %d %s\n", box_count++, 0, log_id(cell->name));
@ -802,6 +1030,10 @@ struct XAigerWriter
if (omode && output_bits.empty()) if (omode && output_bits.empty())
f << "output " << output_lines.size() << " 0 $__dummy__\n"; f << "output " << output_lines.size() << " 0 $__dummy__\n";
latch_lines.sort();
for (auto &it : latch_lines)
f << it.second;
wire_lines.sort(); wire_lines.sort();
for (auto &it : wire_lines) for (auto &it : wire_lines)
f << it.second; f << it.second;
@ -822,6 +1054,10 @@ struct XAigerBackend : public Backend {
log(" -ascii\n"); log(" -ascii\n");
log(" write ASCII version of AIGER format\n"); log(" write ASCII version of AIGER format\n");
log("\n"); log("\n");
log(" -zinit\n");
log(" convert FFs to zero-initialized FFs, adding additional inputs for\n");
log(" uninitialized FFs.\n");
log("\n");
log(" -map <filename>\n"); log(" -map <filename>\n");
log(" write an extra file with port and latch symbols\n"); log(" write an extra file with port and latch symbols\n");
log("\n"); log("\n");
@ -832,6 +1068,7 @@ struct XAigerBackend : public Backend {
void execute(std::ostream *&f, std::string filename, std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE void execute(std::ostream *&f, std::string filename, std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
{ {
bool ascii_mode = false; bool ascii_mode = false;
bool zinit_mode = false;
bool verbose_map = false; bool verbose_map = false;
std::string map_filename; std::string map_filename;
@ -844,6 +1081,10 @@ struct XAigerBackend : public Backend {
ascii_mode = true; ascii_mode = true;
continue; continue;
} }
if (args[argidx] == "-zinit") {
zinit_mode = true;
continue;
}
if (map_filename.empty() && args[argidx] == "-map" && argidx+1 < args.size()) { if (map_filename.empty() && args[argidx] == "-map" && argidx+1 < args.size()) {
map_filename = args[++argidx]; map_filename = args[++argidx];
continue; continue;
@ -862,7 +1103,7 @@ struct XAigerBackend : public Backend {
if (top_module == nullptr) if (top_module == nullptr)
log_error("Can't find top module in current design!\n"); log_error("Can't find top module in current design!\n");
XAigerWriter writer(top_module); XAigerWriter writer(top_module, zinit_mode);
writer.write_aiger(*f, ascii_mode); writer.write_aiger(*f, ascii_mode);
if (!map_filename.empty()) { if (!map_filename.empty()) {

View File

@ -732,12 +732,19 @@ void AigerReader::parse_aiger_binary()
void AigerReader::post_process() void AigerReader::post_process()
{ {
pool<IdString> seen_boxes; pool<IdString> seen_boxes;
unsigned ci_count = 0, co_count = 0; pool<IdString> flops;
unsigned ci_count = 0, co_count = 0, flop_count = 0;
for (auto cell : boxes) { for (auto cell : boxes) {
RTLIL::Module* box_module = design->module(cell->type); RTLIL::Module* box_module = design->module(cell->type);
log_assert(box_module); log_assert(box_module);
bool is_flop = false;
if (seen_boxes.insert(cell->type).second) { if (seen_boxes.insert(cell->type).second) {
if (box_module->attributes.count("\\abc_flop")) {
log_assert(flop_count < flopNum);
flops.insert(cell->type);
is_flop = true;
}
auto it = box_module->attributes.find("\\abc_carry"); auto it = box_module->attributes.find("\\abc_carry");
if (it != box_module->attributes.end()) { if (it != box_module->attributes.end()) {
RTLIL::Wire *carry_in = nullptr, *carry_out = nullptr; RTLIL::Wire *carry_in = nullptr, *carry_out = nullptr;
@ -777,6 +784,8 @@ void AigerReader::post_process()
carry_out->port_id = ports.size(); carry_out->port_id = ports.size();
} }
} }
else
is_flop = flops.count(cell->type);
// NB: Assume box_module->ports are sorted alphabetically // NB: Assume box_module->ports are sorted alphabetically
// (as RTLIL::Module::fixup_ports() would do) // (as RTLIL::Module::fixup_ports() would do)
@ -803,7 +812,25 @@ void AigerReader::post_process()
rhs.append(wire); rhs.append(wire);
} }
cell->setPort(port_name, rhs); if (!is_flop || port_name != "\\$pastQ")
cell->setPort(port_name, rhs);
}
if (is_flop) {
RTLIL::Wire *d = outputs[outputs.size() - flopNum + flop_count];
log_assert(d);
log_assert(d->port_output);
d->port_output = false;
RTLIL::Wire *q = inputs[piNum - flopNum + flop_count];
log_assert(q);
log_assert(q->port_input);
q->port_input = false;
flop_count++;
module->connect(q, d);
cell->set_bool_attribute("\\abc_flop");
continue;
} }
} }
@ -907,6 +934,10 @@ void AigerReader::post_process()
} }
} }
log_debug(" -> %s\n", log_id(wire)); log_debug(" -> %s\n", log_id(wire));
int init;
mf >> init;
if (init < 2)
wire->attributes["\\init"] = init;
} }
else if (type == "box") { else if (type == "box") {
RTLIL::Cell* cell = module->cell(stringf("$__box%d__", variable)); RTLIL::Cell* cell = module->cell(stringf("$__box%d__", variable));

View File

@ -551,7 +551,7 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri
dict<IdString, bool> abc_box; dict<IdString, bool> abc_box;
vector<RTLIL::Cell*> boxes; vector<RTLIL::Cell*> boxes;
for (auto cell : module->selected_cells()) { for (auto cell : module->selected_cells()) {
if (cell->type.in(ID($_AND_), ID($_NOT_))) { if (cell->type.in(ID($_AND_), ID($_NOT_), ID($__ABC_FF_))) {
module->remove(cell); module->remove(cell);
continue; continue;
} }
@ -651,6 +651,7 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri
cell->attributes = mapped_cell->attributes; cell->attributes = mapped_cell->attributes;
} }
auto abc_flop = mapped_cell->attributes.count("\\abc_flop");
for (auto &conn : mapped_cell->connections()) { for (auto &conn : mapped_cell->connections()) {
RTLIL::SigSpec newsig; RTLIL::SigSpec newsig;
for (auto c : conn.second.chunks()) { for (auto c : conn.second.chunks()) {
@ -663,15 +664,17 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri
} }
cell->setPort(conn.first, newsig); cell->setPort(conn.first, newsig);
if (cell->input(conn.first)) { if (!abc_flop) {
for (auto i : newsig) if (cell->input(conn.first)) {
bit2sinks[i].push_back(cell); for (auto i : newsig)
for (auto i : conn.second) bit2sinks[i].push_back(cell);
bit_users[i].insert(mapped_cell->name); for (auto i : conn.second)
bit_users[i].insert(mapped_cell->name);
}
if (cell->output(conn.first))
for (auto i : conn.second)
bit_drivers[i].insert(mapped_cell->name);
} }
if (cell->output(conn.first))
for (auto i : conn.second)
bit_drivers[i].insert(mapped_cell->name);
} }
} }
@ -1167,6 +1170,7 @@ struct Abc9Pass : public Pass {
assign_map.set(mod); assign_map.set(mod);
if (!dff_mode || !clk_str.empty()) { if (!dff_mode || !clk_str.empty()) {
design->selection_stack.emplace_back(false); design->selection_stack.emplace_back(false);
RTLIL::Selection& sel = design->selection_stack.back(); RTLIL::Selection& sel = design->selection_stack.back();
sel.select(mod); sel.select(mod);
@ -1194,6 +1198,13 @@ struct Abc9Pass : public Pass {
std::map<RTLIL::Cell*, std::set<RTLIL::SigBit>> cell_to_bit, cell_to_bit_up, cell_to_bit_down; std::map<RTLIL::Cell*, std::set<RTLIL::SigBit>> cell_to_bit, cell_to_bit_up, cell_to_bit_down;
std::map<RTLIL::SigBit, std::set<RTLIL::Cell*>> bit_to_cell, bit_to_cell_up, bit_to_cell_down; std::map<RTLIL::SigBit, std::set<RTLIL::Cell*>> bit_to_cell, bit_to_cell_up, bit_to_cell_down;
pool<IdString> seen_cells;
struct flop_data_t {
IdString clk_port;
IdString en_port;
};
dict<IdString, flop_data_t> flop_data;
for (auto cell : all_cells) { for (auto cell : all_cells) {
clkdomain_t key; clkdomain_t key;
@ -1214,20 +1225,57 @@ struct Abc9Pass : public Pass {
} }
} }
if (cell->type.in(ID($_DFF_N_), ID($_DFF_P_))) decltype(flop_data)::iterator it;
{ if (seen_cells.insert(cell->type).second) {
key = clkdomain_t(cell->type == ID($_DFF_P_), assign_map(cell->getPort(ID(C))), true, RTLIL::SigSpec()); RTLIL::Module* inst_module = design->module(cell->type);
} if (!inst_module)
else continue;
if (cell->type.in(ID($_DFFE_NN_), ID($_DFFE_NP_), ID($_DFFE_PN_), ID($_DFFE_PP_)))
{
bool this_clk_pol = cell->type.in(ID($_DFFE_PN_), ID($_DFFE_PP_));
bool this_en_pol = cell->type.in(ID($_DFFE_NP_), ID($_DFFE_PP_));
key = clkdomain_t(this_clk_pol, assign_map(cell->getPort(ID(C))), this_en_pol, assign_map(cell->getPort(ID(E))));
}
else
continue;
if (!inst_module->attributes.count("\\abc_flop"))
continue;
IdString abc_flop_clk, abc_flop_en;
for (auto port_name : inst_module->ports) {
auto wire = inst_module->wire(port_name);
log_assert(wire);
if (wire->attributes.count("\\abc_flop_clk")) {
if (abc_flop_clk != IdString())
log_error("More than one port has the 'abc_flop_clk' attribute set on module '%s'.\n", log_id(cell->type));
abc_flop_clk = port_name;
}
if (wire->attributes.count("\\abc_flop_en")) {
if (abc_flop_en != IdString())
log_error("More than one port has the 'abc_flop_en' attribute set on module '%s'.\n", log_id(cell->type));
abc_flop_en = port_name;
}
}
if (abc_flop_clk == IdString())
log_error("'abc_flop_clk' attribute not found on any ports on module '%s'.\n", log_id(cell->type));
if (abc_flop_en == IdString())
log_error("'abc_flop_en' attribute not found on any ports on module '%s'.\n", log_id(cell->type));
it = flop_data.insert(std::make_pair(cell->type, flop_data_t{abc_flop_clk, abc_flop_en})).first;
}
else {
it = flop_data.find(cell->type);
if (it == flop_data.end())
continue;
}
const auto &data = it->second;
auto jt = cell->parameters.find("\\CLK_POLARITY");
if (jt == cell->parameters.end())
log_error("'CLK_POLARITY' is not a parameter on module '%s'.\n", log_id(cell->type));
bool this_clk_pol = jt->second.as_bool();
jt = cell->parameters.find("\\EN_POLARITY");
if (jt == cell->parameters.end())
log_error("'EN_POLARITY' is not a parameter on module '%s'.\n", log_id(cell->type));
bool this_en_pol = jt->second.as_bool();
key = clkdomain_t(this_clk_pol, assign_map(cell->getPort(data.clk_port)), this_en_pol, assign_map(cell->getPort(data.en_port)));
unassigned_cells.erase(cell); unassigned_cells.erase(cell);
expand_queue.insert(cell); expand_queue.insert(cell);

View File

@ -20,6 +20,103 @@
// ============================================================================ // ============================================================================
module FDRE (output reg Q, input C, CE, D, R);
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_R_INVERTED = 1'b0;
wire \$nextQ ;
\$__ABC_FDRE #(
.INIT(INIT),
.IS_C_INVERTED(IS_C_INVERTED),
.IS_D_INVERTED(IS_D_INVERTED),
.IS_R_INVERTED(IS_R_INVERTED),
.CLK_POLARITY(!IS_C_INVERTED),
.EN_POLARITY(1'b1)
) _TECHMAP_REPLACE_ (
.D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .R(R)
);
\$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(Q));
endmodule
module FDRE_1 (output reg Q, input C, CE, D, R);
parameter [0:0] INIT = 1'b0;
wire \$nextQ ;
\$__ABC_FDRE_1 #(
.INIT(|0),
.CLK_POLARITY(1'b0),
.EN_POLARITY(1'b1)
) _TECHMAP_REPLACE_ (
.D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .R(R)
);
\$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(Q));
endmodule
module FDCE (output reg Q, input C, CE, D, CLR);
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_CLR_INVERTED = 1'b0;
wire \$nextQ , \$currQ ;
\$__ABC_FDCE #(
.INIT(INIT),
.IS_C_INVERTED(IS_C_INVERTED),
.IS_D_INVERTED(IS_D_INVERTED),
.IS_CLR_INVERTED(IS_CLR_INVERTED),
.CLK_POLARITY(!IS_C_INVERTED),
.EN_POLARITY(1'b1)
) _TECHMAP_REPLACE_ (
.D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .CLR(CLR)
);
\$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ ));
\$__ABC_ASYNC abc_async (.A(\$currQ ), .S(CLR), .Y(Q));
endmodule
module FDCE_1 (output reg Q, input C, CE, D, CLR);
parameter [0:0] INIT = 1'b0;
wire \$nextQ , \$currQ ;
\$__ABC_FDCE_1 #(
.INIT(INIT),
.CLK_POLARITY(1'b0),
.EN_POLARITY(1'b1)
) _TECHMAP_REPLACE_ (
.D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .CLR(CLR)
);
\$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ ));
\$__ABC_ASYNC abc_async (.A(\$currQ ), .S(CLR), .Y(Q));
endmodule
module FDPE (output reg Q, input C, CE, D, PRE);
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_PRE_INVERTED = 1'b0;
wire \$nextQ , \$currQ ;
\$__ABC_FDPE #(
.INIT(INIT),
.IS_C_INVERTED(IS_C_INVERTED),
.IS_D_INVERTED(IS_D_INVERTED),
.IS_PRE_INVERTED(IS_PRE_INVERTED),
.CLK_POLARITY(!IS_C_INVERTED),
.EN_POLARITY(1'b1)
) _TECHMAP_REPLACE_ (
.D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .PRE(PRE)
);
\$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ ));
\$__ABC_ASYNC abc_async (.A(\$currQ ), .S(PRE), .Y(Q));
endmodule
module FDPE_1 (output reg Q, input C, CE, D, PRE);
parameter [0:0] INIT = 1'b0;
wire \$nextQ , \$currQ ;
\$__ABC_FDPE_1 #(
.INIT(INIT),
.CLK_POLARITY(1'b0),
.EN_POLARITY(1'b1)
) _TECHMAP_REPLACE_ (
.D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .PRE(PRE)
);
\$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ ));
\$__ABC_ASYNC abc_async (.A(\$currQ ), .S(PRE), .Y(Q));
endmodule
module RAM32X1D ( module RAM32X1D (
output DPO, SPO, output DPO, SPO,
input D, input D,

View File

@ -26,6 +26,94 @@ module \$__XILINX_MUXF78 (output O, input I0, I1, I2, I3, S0, S1);
: (S0 ? I1 : I0); : (S0 ? I1 : I0);
endmodule endmodule
module \$__ABC_FF_ (input C, D, output Q);
endmodule
(* abc_box_id = 1000 *)
module \$__ABC_ASYNC (input A, S, output Y);
endmodule
(* abc_box_id=1001, lib_whitebox, abc_flop *)
module \$__ABC_FDRE ((* abc_flop_q, abc_arrival=303 *) output Q,
(* abc_flop_clk *) input C,
(* abc_flop_en *) input CE,
(* abc_flop_d *) input D,
input R, \$pastQ );
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_R_INVERTED = 1'b0;
parameter CLK_POLARITY = !IS_C_INVERTED;
parameter EN_POLARITY = 1'b1;
assign Q = (R ^ IS_R_INVERTED) ? 1'b0 : (CE ? (D ^ IS_D_INVERTED) : \$pastQ );
endmodule
(* abc_box_id=1002, lib_whitebox, abc_flop *)
module \$__ABC_FDRE_1 ((* abc_flop_q, abc_arrival=303 *) output Q,
(* abc_flop_clk *) input C,
(* abc_flop_en *) input CE,
(* abc_flop_d *) input D,
input R, \$pastQ );
parameter [0:0] INIT = 1'b0;
parameter CLK_POLARITY = 1'b0;
parameter EN_POLARITY = 1'b1;
assign Q = R ? 1'b0 : (CE ? D : \$pastQ );
endmodule
(* abc_box_id=1003, lib_whitebox, abc_flop *)
module \$__ABC_FDCE ((* abc_flop_q, abc_arrival=303 *) output Q,
(* abc_flop_clk *) input C,
(* abc_flop_en *) input CE,
(* abc_flop_d *) input D,
input CLR, \$pastQ );
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_CLR_INVERTED = 1'b0;
parameter CLK_POLARITY = !IS_C_INVERTED;
parameter EN_POLARITY = 1'b1;
assign Q = (CE && !(CLR ^ IS_CLR_INVERTED)) ? (D ^ IS_D_INVERTED) : \$pastQ ;
endmodule
(* abc_box_id=1004, lib_whitebox, abc_flop *)
module \$__ABC_FDCE_1 ((* abc_flop_q, abc_arrival=303 *) output Q,
(* abc_flop_clk *) input C,
(* abc_flop_en *) input CE,
(* abc_flop_d *) input D,
input CLR, \$pastQ );
parameter [0:0] INIT = 1'b0;
parameter CLK_POLARITY = 1'b0;
parameter EN_POLARITY = 1'b1;
assign Q = (CE && !CLR) ? D : \$pastQ ;
endmodule
(* abc_box_id=1005, lib_whitebox, abc_flop *)
module \$__ABC_FDPE ((* abc_flop_q, abc_arrival=303 *) output Q,
(* abc_flop_clk *) input C,
(* abc_flop_en *) input CE,
(* abc_flop_d *) input D,
input PRE, \$pastQ );
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_PRE_INVERTED = 1'b0;
parameter CLK_POLARITY = !IS_C_INVERTED;
parameter EN_POLARITY = 1'b1;
assign Q = (CE && !(PRE ^ IS_PRE_INVERTED)) ? (D ^ IS_D_INVERTED) : \$pastQ ;
endmodule
(* abc_box_id=1006, lib_whitebox, abc_flop *)
module \$__ABC_FDPE_1 ((* abc_flop_q, abc_arrival=303 *) output Q,
(* abc_flop_clk *) input C,
(* abc_flop_en *) input CE,
(* abc_flop_d *) input D,
input PRE, \$pastQ );
parameter [0:0] INIT = 1'b0;
parameter CLK_POLARITY = 1'b0;
parameter EN_POLARITY = 1'b1;
assign Q = (CE && !PRE) ? D : \$pastQ ;
endmodule
(* abc_box_id=2000 *) (* abc_box_id=2000 *)
module \$__ABC_LUTMUX6 (input A, input [5:0] S, output Y); module \$__ABC_LUTMUX6 (input A, input [5:0] S, output Y);
endmodule endmodule
@ -33,6 +121,7 @@ endmodule
module \$__ABC_LUTMUX7 (input A, input [6:0] S, output Y); module \$__ABC_LUTMUX7 (input A, input [6:0] S, output Y);
endmodule endmodule
module \$__ABC_RAM32X1D ( module \$__ABC_RAM32X1D (
// Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L957 // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L957
(* abc_arrival=1153 *) output DPO, SPO, (* abc_arrival=1153 *) output DPO, SPO,

View File

@ -20,6 +20,125 @@
// ============================================================================ // ============================================================================
module \$__ABC_ASYNC (input A, S, output Y);
assign Y = A;
endmodule
module \$__ABC_FDRE (output Q,
input C,
input CE,
input D,
input R, \$pastQ );
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_R_INVERTED = 1'b0;
parameter CLK_POLARITY = !IS_C_INVERTED;
parameter EN_POLARITY = 1'b1;
FDRE #(
.INIT(INIT),
.IS_C_INVERTED(IS_C_INVERTED),
.IS_D_INVERTED(IS_D_INVERTED),
.IS_R_INVERTED(IS_R_INVERTED),
) _TECHMAP_REPLACE_ (
.D(D), .Q(Q), .C(C), .CE(CE), .R(R)
);
endmodule
module \$__ABC_FDRE_1 (output Q,
input C,
input CE,
input D,
input R, \$pastQ );
parameter [0:0] INIT = 1'b0;
parameter CLK_POLARITY = 1'b0;
parameter EN_POLARITY = 1'b1;
assign Q = R ? 1'b0 : (CE ? D : \$pastQ );
FDRE_1 #(
.INIT(INIT),
) _TECHMAP_REPLACE_ (
.D(D), .Q(Q), .C(C), .CE(CE), .R(R)
);
endmodule
module \$__ABC_FDCE (output Q,
input C,
input CE,
input D,
input CLR, \$pastQ );
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_CLR_INVERTED = 1'b0;
parameter CLK_POLARITY = !IS_C_INVERTED;
parameter EN_POLARITY = 1'b1;
FDCE #(
.INIT(INIT),
.IS_C_INVERTED(IS_C_INVERTED),
.IS_D_INVERTED(IS_D_INVERTED),
.IS_CLR_INVERTED(IS_CLR_INVERTED),
) _TECHMAP_REPLACE_ (
.D(D), .Q(Q), .C(C), .CE(CE), .CLR(CLR)
);
endmodule
module \$__ABC_FDCE_1 (output Q,
input C,
input CE,
input D,
input CLR, \$pastQ );
parameter [0:0] INIT = 1'b0;
parameter CLK_POLARITY = 1'b0;
parameter EN_POLARITY = 1'b1;
FDCE_1 #(
.INIT(INIT),
) _TECHMAP_REPLACE_ (
.D(D), .Q(Q), .C(C), .CE(CE), .CLR(CLR)
);
endmodule
module \$__ABC_FDPE (output Q,
input C,
input CE,
input D,
input PRE, \$pastQ );
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_PRE_INVERTED = 1'b0;
parameter CLK_POLARITY = !IS_C_INVERTED;
parameter EN_POLARITY = 1'b1;
FDPE #(
.INIT(INIT),
.IS_C_INVERTED(IS_C_INVERTED),
.IS_D_INVERTED(IS_D_INVERTED),
.IS_PRE_INVERTED(IS_PRE_INVERTED),
) _TECHMAP_REPLACE_ (
.D(D), .Q(Q), .C(C), .CE(CE), .PRE(PRE)
);
endmodule
module \$__ABC_FDPE_1 (output Q,
input C,
input CE,
input D,
input PRE, \$pastQ );
parameter [0:0] INIT = 1'b0;
parameter CLK_POLARITY = 1'b0;
parameter EN_POLARITY = 1'b1;
FDPE_1 #(
.INIT(INIT),
) _TECHMAP_REPLACE_ (
.D(D), .Q(Q), .C(C), .CE(CE), .PRE(PRE)
);
endmodule
module \$__ABC_LUTMUX6 (input A, input [5:0] S, output Y); module \$__ABC_LUTMUX6 (input A, input [5:0] S, output Y);
assign Y = A; assign Y = A;
endmodule endmodule

View File

@ -38,6 +38,47 @@ CARRY4 4 1 10 8
592 540 520 356 - 512 548 292 - 228 592 540 520 356 - 512 548 292 - 228
580 526 507 398 385 508 528 378 380 114 580 526 507 398 385 508 528 378 380 114
# Box to emulate async behaviour of FD[CP]*
# Inputs: A S
# Outputs: Y
$__ABC_ASYNC 1000 0 2 1
0 764
# The following FD*.{CE,R,CLR,PRE) are offset by 46ps to
# reflect the -46ps Tsu
# https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L237-L251
# https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L265-L277
# Inputs: C CE D R \$pastQ
# Outputs: Q
FDRE 1001 1 5 1
0 151 0 446 0
# Inputs: C CE D R \$pastQ
# Outputs: Q
FDRE_1 1002 1 5 1
0 151 0 446 0
# Inputs: C CE CLR D \$pastQ
# Outputs: Q
FDCE 1003 1 5 1
0 151 806 0 0
# Inputs: C CE CLR D \$pastQ
# Outputs: Q
FDCE_1 1004 1 5 1
0 151 806 0 0
# Inputs: C CE D PRE \$pastQ
# Outputs: Q
FDPE 1005 1 5 1
0 151 0 806 0
# Inputs: C CE D PRE \$pastQ
# Outputs: Q
FDPE_1 1006 1 5 1
0 151 0 806 0
# SLICEM/A6LUT # SLICEM/A6LUT
# Box to emulate comb/seq behaviour of RAMD{32,64} and SRL{16,32} # Box to emulate comb/seq behaviour of RAMD{32,64} and SRL{16,32}
# Inputs: A S0 S1 S2 S3 S4 S5 # Inputs: A S0 S1 S2 S3 S4 S5

View File

@ -211,8 +211,7 @@ endmodule
`endif `endif
module FDRE ((* abc_arrival=303 *) output reg Q, module FDRE (output reg Q, input C, CE, D, R);
input C, CE, D, R);
parameter [0:0] INIT = 1'b0; parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0; parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0; parameter [0:0] IS_D_INVERTED = 1'b0;
@ -224,8 +223,7 @@ module FDRE ((* abc_arrival=303 *) output reg Q,
endcase endgenerate endcase endgenerate
endmodule endmodule
module FDSE ((* abc_arrival=303 *) output reg Q, module FDSE (output reg Q, input C, CE, D, S);
input C, CE, D, S);
parameter [0:0] INIT = 1'b1; parameter [0:0] INIT = 1'b1;
parameter [0:0] IS_C_INVERTED = 1'b0; parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0; parameter [0:0] IS_D_INVERTED = 1'b0;
@ -237,8 +235,7 @@ module FDSE ((* abc_arrival=303 *) output reg Q,
endcase endgenerate endcase endgenerate
endmodule endmodule
module FDCE ((* abc_arrival=303 *) output reg Q, module FDCE (output reg Q, input C, CE, D, CLR);
input C, CE, D, CLR);
parameter [0:0] INIT = 1'b0; parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0; parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0; parameter [0:0] IS_D_INVERTED = 1'b0;
@ -252,8 +249,7 @@ module FDCE ((* abc_arrival=303 *) output reg Q,
endcase endgenerate endcase endgenerate
endmodule endmodule
module FDPE ((* abc_arrival=303 *) output reg Q, module FDPE (output reg Q, input C, CE, D, PRE);
input C, CE, D, PRE);
parameter [0:0] INIT = 1'b1; parameter [0:0] INIT = 1'b1;
parameter [0:0] IS_C_INVERTED = 1'b0; parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0; parameter [0:0] IS_D_INVERTED = 1'b0;
@ -267,29 +263,25 @@ module FDPE ((* abc_arrival=303 *) output reg Q,
endcase endgenerate endcase endgenerate
endmodule endmodule
module FDRE_1 ((* abc_arrival=303 *) output reg Q, module FDRE_1 (output reg Q, input C, CE, D, R);
input C, CE, D, R);
parameter [0:0] INIT = 1'b0; parameter [0:0] INIT = 1'b0;
initial Q <= INIT; initial Q <= INIT;
always @(negedge C) if (R) Q <= 1'b0; else if(CE) Q <= D; always @(negedge C) if (R) Q <= 1'b0; else if(CE) Q <= D;
endmodule endmodule
module FDSE_1 ((* abc_arrival=303 *) output reg Q, module FDSE_1 (output reg Q, input C, CE, D, S);
input C, CE, D, S);
parameter [0:0] INIT = 1'b1; parameter [0:0] INIT = 1'b1;
initial Q <= INIT; initial Q <= INIT;
always @(negedge C) if (S) Q <= 1'b1; else if(CE) Q <= D; always @(negedge C) if (S) Q <= 1'b1; else if(CE) Q <= D;
endmodule endmodule
module FDCE_1 ((* abc_arrival=303 *) output reg Q, module FDCE_1 (output reg Q, input C, CE, D, CLR);
input C, CE, D, CLR);
parameter [0:0] INIT = 1'b0; parameter [0:0] INIT = 1'b0;
initial Q <= INIT; initial Q <= INIT;
always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else if (CE) Q <= D; always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else if (CE) Q <= D;
endmodule endmodule
module FDPE_1 ((* abc_arrival=303 *) output reg Q, module FDPE_1 (output reg Q, input C, CE, D, PRE);
input C, CE, D, PRE);
parameter [0:0] INIT = 1'b1; parameter [0:0] INIT = 1'b1;
initial Q <= INIT; initial Q <= INIT;
always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else if (CE) Q <= D; always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else if (CE) Q <= D;

View File

@ -379,6 +379,8 @@ struct SynthXilinxPass : public ScriptPass
std::string techmap_args = "-map +/techmap.v -map +/xilinx/cells_map.v"; std::string techmap_args = "-map +/techmap.v -map +/xilinx/cells_map.v";
if (widemux > 0) if (widemux > 0)
techmap_args += stringf(" -D MIN_MUX_INPUTS=%d", widemux); techmap_args += stringf(" -D MIN_MUX_INPUTS=%d", widemux);
if (abc9)
techmap_args += " -map +/xilinx/ff_map.v";
run("techmap " + techmap_args); run("techmap " + techmap_args);
run("clean"); run("clean");
} }
@ -409,9 +411,11 @@ struct SynthXilinxPass : public ScriptPass
// has performed any necessary retiming // has performed any necessary retiming
if (!nosrl || help_mode) if (!nosrl || help_mode)
run("shregmap -minlen 3 -init -params -enpol any_or_none", "(skip if '-nosrl')"); run("shregmap -minlen 3 -init -params -enpol any_or_none", "(skip if '-nosrl')");
std::string techmap_args = "-map +/xilinx/lut_map.v -map +/xilinx/ff_map.v"; std::string techmap_args = "-map +/xilinx/lut_map.v";
if (abc9) if (abc9)
techmap_args += " -map +/xilinx/abc_unmap.v"; techmap_args += " -map +/xilinx/abc_unmap.v";
else
techmap_args += " -map +/xilinx/ff_map.v";
run("techmap " + techmap_args); run("techmap " + techmap_args);
run("dffinit -ff FDRE Q INIT -ff FDCE Q INIT -ff FDPE Q INIT -ff FDSE Q INIT " run("dffinit -ff FDRE Q INIT -ff FDCE Q INIT -ff FDPE Q INIT -ff FDSE Q INIT "
"-ff FDRE_1 Q INIT -ff FDCE_1 Q INIT -ff FDPE_1 Q INIT -ff FDSE_1 Q INIT"); "-ff FDRE_1 Q INIT -ff FDCE_1 Q INIT -ff FDPE_1 Q INIT -ff FDSE_1 Q INIT");