clockgate: prototype clock gating

This commit is contained in:
Emil J. Tywoniak 2024-09-09 15:00:54 +02:00
parent 0fc5812dcd
commit e64fceef70
3 changed files with 318 additions and 0 deletions

View File

@ -49,6 +49,7 @@ OBJS += passes/techmap/dffunmap.o
OBJS += passes/techmap/flowmap.o
OBJS += passes/techmap/extractinv.o
OBJS += passes/techmap/cellmatch.o
OBJS += passes/techmap/clockgate.o
endif
ifeq ($(DISABLE_SPAWN),0)

229
passes/techmap/clockgate.cc Normal file
View File

@ -0,0 +1,229 @@
#include "kernel/yosys.h"
#include "kernel/ff.h"
#include <optional>
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
struct ClockGateCell {
IdString name;
IdString ce_pin;
IdString clk_in_pin;
IdString clk_out_pin;
};
ClockGateCell icg_from_arg(std::string& name, std::string& str) {
ClockGateCell c;
c.name = RTLIL::escape_id(name);
char delimiter = ':';
size_t pos1 = str.find(delimiter);
if (pos1 == std::string::npos)
log_cmd_error("Not enough ports in descriptor string");
size_t pos2 = str.find(delimiter, pos1 + 1);
if (pos2 == std::string::npos)
log_cmd_error("Not enough ports in descriptor string");
size_t pos3 = str.find(delimiter, pos2 + 1);
if (pos3 != std::string::npos)
log_cmd_error("Too many ports in descriptor string");
std::string ce = str.substr(0, pos1);
c.ce_pin = RTLIL::escape_id(ce);
std::string clk_in = str.substr(pos1 + 1, pos2 - (pos1 + 1));
c.clk_in_pin = RTLIL::escape_id(clk_in);
std::string clk_out = str.substr(pos2 + 1, str.size() - (pos2 + 1));
c.clk_out_pin = RTLIL::escape_id(clk_out);
return c;
}
struct ClockgatePass : public Pass {
ClockgatePass() : Pass("clockgate", "extract clock gating out of flip flops") { }
void help() override {
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" clockgate [options] [selection]\n");
log("\n");
log("Creates gated clock nets for sets of FFs with clock enable\n");
log("sharing a clock and replaces the FFs with versions without\n");
log("clock enable inputs. Intended to reduce power consumption\n");
log("in ASIC designs.\n");
log("\n");
log(" -pos <celltype> <ce>:<clk>:<gclk>\n");
log(" If specified, rising-edge FFs will have CE inputs\n");
log(" removed and a gated clock will be created by the\n");
log(" user-specified <celltype> ICG (integrated clock gating)\n");
log(" cell with ports named <ce>, <clk>, <gclk>.\n");
log(" The ICG's clock enable pin must be active high.\n");
log(" -neg <celltype> <ce>:<clk>:<gclk>\n");
log(" If specified, falling-edge FFs will have CE inputs\n");
log(" removed and a gated clock will be created by the\n");
log(" user-specified <celltype> ICG (integrated clock gating)\n");
log(" cell with ports named <ce>, <clk>, <gclk>.\n");
log(" The ICG's clock enable pin must be active high.\n");
log(" -tie_lo <port_name>\n");
log(" Port <port_name> of the ICG will be tied to zero.\n");
log(" Intended for DFT scan-enable pins.\n");
log(" -min_net_size <n>\n");
log(" Only work on clocks with at least <n> eligible FFs.\n");
// log(" \n");
}
SigMap sigmap;
FfInitVals initvals;
// One ICG will be generated per ClkNetInfo
// if the number of FFs associated with it is sufficent
struct ClkNetInfo {
// Original, ungated clock into enabled FF
Wire* clk_net;
// Original clock enable into enabled FF
Wire* ce_net;
bool pol_clk;
bool pol_ce;
unsigned int hash() const {
auto t = std::make_tuple(clk_net, ce_net, pol_clk, pol_ce);
unsigned int h = mkhash_init;
h = mkhash(h, hash_ops<decltype(t)>::hash(t));
return h;
}
bool operator==(const ClkNetInfo& other) const {
return (clk_net == other.clk_net) &&
(ce_net == other.ce_net) &&
(pol_clk == other.pol_clk) &&
(pol_ce == other.pol_ce);
}
};
struct GClkNetInfo {
// How many CE FFs on this CLK net have we seen?
int net_size;
// After ICG generation, we have new gated CLK signals
Wire* new_net;
};
ClkNetInfo clk_info_from_ff(FfData& ff) {
Wire* clk = ff.sig_clk.as_wire();
Wire* ce = ff.sig_ce.as_wire();
ClkNetInfo info{clk, ce, ff.pol_clk, ff.pol_ce};
return info;
}
void execute(std::vector<std::string> args, RTLIL::Design *design) override {
log_header(design, "Executing CLOCK_GATE pass (extract clock gating out of flip flops).\n");
std::optional<ClockGateCell> pos_icg_desc;
std::optional<ClockGateCell> neg_icg_desc;
std::vector<std::string> tie_lo_ports;
int min_net_size = 0;
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) {
if (args[argidx] == "-pos" && argidx+2 < args.size()) {
auto name = args[++argidx];
auto rest = args[++argidx];
pos_icg_desc = icg_from_arg(name, rest);
}
if (args[argidx] == "-neg" && argidx+2 < args.size()) {
auto name = args[++argidx];
auto rest = args[++argidx];
neg_icg_desc = icg_from_arg(name, rest);
}
if (args[argidx] == "-tie_lo" && argidx+1 < args.size()) {
tie_lo_ports.push_back(RTLIL::escape_id(args[++argidx]));
}
if (args[argidx] == "-min_net_size" && argidx+1 < args.size()) {
min_net_size = atoi(args[++argidx].c_str());
}
}
extra_args(args, argidx, design);
pool<Cell*> ce_ffs;
dict<ClkNetInfo, GClkNetInfo> clk_nets;
int gated_flop_count = 0;
for (auto module : design->selected_whole_modules()) {
sigmap.set(module);
initvals.set(&sigmap, module);
for (auto cell : module->cells()) {
if (!RTLIL::builtin_ff_cell_types().count(cell->type))
continue;
FfData ff(&initvals, cell);
if (ff.has_ce) {
ce_ffs.insert(cell);
ClkNetInfo info = clk_info_from_ff(ff);
auto it = clk_nets.find(info);
if (it == clk_nets.end())
clk_nets[info] = GClkNetInfo();
clk_nets[info].net_size++;
}
}
for (auto& clk_net : clk_nets) {
log_debug("checking clk net %s\n", clk_net.first.clk_net->name.c_str());
auto& clk = clk_net.first;
auto& gclk = clk_net.second;
if (gclk.net_size < min_net_size)
continue;
std::optional<ClockGateCell> matching_icg_desc;
if (pos_icg_desc && clk.pol_clk)
matching_icg_desc = pos_icg_desc;
else if (neg_icg_desc && !clk.pol_clk)
matching_icg_desc = neg_icg_desc;
if (!matching_icg_desc)
continue;
log_debug("building ICG for clk net %s\n", clk_net.first.clk_net->name.c_str());
Cell* icg = module->addCell(NEW_ID, matching_icg_desc->name);
icg->setPort(matching_icg_desc->ce_pin, clk.ce_net);
icg->setPort(matching_icg_desc->clk_in_pin, clk.clk_net);
gclk.new_net = module->addWire(NEW_ID);
icg->setPort(matching_icg_desc->clk_out_pin, gclk.new_net);
// Tie low DFT ports like scan chain enable
for (auto port : tie_lo_ports)
icg->setPort(port, Const(0));
// Fix CE polarity if needed
if (!clk.pol_ce) {
SigBit ce_fixed_pol = module->NotGate(NEW_ID, clk.ce_net);
icg->setPort(matching_icg_desc->ce_pin, ce_fixed_pol);
}
}
for (auto cell : ce_ffs) {
FfData ff(&initvals, cell);
ClkNetInfo info = clk_info_from_ff(ff);
auto it = clk_nets.find(info);
log_assert(it != clk_nets.end() && "Bug: desync ce_ffs and clk_nets");
if (!it->second.new_net)
continue;
log_debug("Fix up FF %s\n", cell->name.c_str());
// Now we start messing with the design
ff.has_ce = false;
// Construct the clock gate
// ICG = integrated clock gate, industry shorthand
ff.sig_clk = (*it).second.new_net;
// Rebuild the flop
(void)ff.emit();
gated_flop_count++;
}
ce_ffs.clear();
clk_nets.clear();
}
log("Converted %d FFs.\n", gated_flop_count);
}
} ClockgatePass;
PRIVATE_NAMESPACE_END

View File

@ -0,0 +1,88 @@
read_verilog << EOT
module dffe_00( input clk, en,
input d1, output reg q1,
);
always @( negedge clk ) begin
if ( ~en )
q1 <= d1;
end
endmodule
module dffe_01( input clk, en,
input d1, output reg q1,
);
always @( negedge clk ) begin
if ( en )
q1 <= d1;
end
endmodule
module dffe_10( input clk, en,
input d1, output reg q1,
);
always @( posedge clk ) begin
if ( ~en )
q1 <= d1;
end
endmodule
module dffe_11( input clk, en,
input d1, output reg q1,
);
always @( posedge clk ) begin
if ( en )
q1 <= d1;
end
endmodule
EOT
proc
opt
design -save before
#------------------------------------------------------------------------------
clockgate -pos pdk_icg ce:clkin:clkout -tie_lo scanen
# falling edge clock flops don't get matched on -pos
select -module dffe_00 -assert-count 0 t:\\pdk_icg
select -module dffe_01 -assert-count 0 t:\\pdk_icg
# falling edge clock flops do get matched on -pos
select -module dffe_10 -assert-count 1 t:\\pdk_icg
select -module dffe_11 -assert-count 1 t:\\pdk_icg
# if necessary, EN is inverted, since the given ICG
# is assumed to have an active-high EN
select -module dffe_10 -assert-count 1 t:\$_NOT_
select -module dffe_11 -assert-count 0 t:\$_NOT_
#------------------------------------------------------------------------------
design -load before
clockgate -min_net_size 1 -neg pdk_icg ce:clkin:clkout -tie_lo scanen
# rising edge clock flops don't get matched on -neg
select -module dffe_00 -assert-count 1 t:\\pdk_icg
select -module dffe_01 -assert-count 1 t:\\pdk_icg
# rising edge clock flops do get matched on -neg
select -module dffe_10 -assert-count 0 t:\\pdk_icg
select -module dffe_11 -assert-count 0 t:\\pdk_icg
# if necessary, EN is inverted, since the given ICG
# is assumed to have an active-high EN
select -module dffe_00 -assert-count 1 t:\$_NOT_
select -module dffe_01 -assert-count 0 t:\$_NOT_
#------------------------------------------------------------------------------
design -load before
clockgate -min_net_size 2 -neg pdk_icg ce:clkin:clkout -tie_lo scanen
# No FF set sharing a (clock, clock enable) pair is large enough
select -module dffe_00 -assert-count 0 t:\\pdk_icg
select -module dffe_01 -assert-count 0 t:\\pdk_icg
select -module dffe_10 -assert-count 0 t:\\pdk_icg
select -module dffe_11 -assert-count 0 t:\\pdk_icg
# TODO test -tie_lo