Merge pull request #2208 from boqwxp/qbfsat-cleanup

qbfsat: Cleanup and refactoring
This commit is contained in:
clairexen 2020-07-02 17:48:37 +02:00 committed by GitHub
commit e4b9e64d1b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 274 additions and 255 deletions

View File

@ -33,5 +33,6 @@ misc/*.py @btut
backends/firrtl @ucbjrl @azidar
passes/sat/qbfsat.cc @boqwxp
passes/sat/qbfsat.h @boqwxp
passes/cmds/exec.cc @boqwxp
passes/cmds/printattrs.cc @boqwxp

View File

@ -1,4 +1,4 @@
/*
/* -*- c++ -*-
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2020 Alberto Gonzalez <boqwxp@airmail.cc>
@ -18,13 +18,8 @@
*/
#include "kernel/yosys.h"
#include "kernel/celltypes.h"
#include "kernel/consteval.h"
#include "kernel/log.h"
#include "kernel/rtlil.h"
#include "kernel/register.h"
#include <algorithm>
#include <numeric>
#include "qbfsat.h"
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
@ -36,156 +31,7 @@ static inline unsigned int difference(unsigned int a, unsigned int b) {
return a - b;
}
struct QbfSolutionType {
std::vector<std::string> stdout_lines;
dict<pool<std::string>, std::string> hole_to_value;
double solver_time;
bool sat;
bool unknown; //true if neither 'sat' nor 'unsat'
QbfSolutionType() : solver_time(0.0), sat(false), unknown(true) {}
};
struct QbfSolveOptions {
bool specialize, specialize_from_file, write_solution, nocleanup, dump_final_smt2, assume_outputs, assume_neg;
bool nooptimize, nobisection;
bool sat, unsat, show_smtbmc;
enum Solver{Z3, Yices, CVC4} solver;
enum OptimizationLevel{O0, O1, O2} oflag;
int timeout;
std::string specialize_soln_file;
std::string write_soln_soln_file;
std::string dump_final_smt2_file;
size_t argidx;
QbfSolveOptions() : specialize(false), specialize_from_file(false), write_solution(false),
nocleanup(false), dump_final_smt2(false), assume_outputs(false), assume_neg(false),
nooptimize(false), nobisection(false), sat(false), unsat(false), show_smtbmc(false),
solver(Yices), oflag(O0), timeout(0), argidx(0) {};
};
std::string get_solver_name(const QbfSolveOptions &opt) {
if (opt.solver == opt.Solver::Z3)
return "z3";
else if (opt.solver == opt.Solver::Yices)
return "yices";
else if (opt.solver == opt.Solver::CVC4)
return "cvc4";
else
log_cmd_error("unknown solver specified.\n");
return "";
}
void recover_solution(QbfSolutionType &sol) {
YS_REGEX_TYPE sat_regex = YS_REGEX_COMPILE("Status: PASSED");
YS_REGEX_TYPE unsat_regex = YS_REGEX_COMPILE("Solver Error.*model is not available");
YS_REGEX_TYPE unsat_regex2 = YS_REGEX_COMPILE("Status: FAILED");
YS_REGEX_TYPE timeout_regex = YS_REGEX_COMPILE("No solution found! \\(timeout\\)");
YS_REGEX_TYPE timeout_regex2 = YS_REGEX_COMPILE("No solution found! \\(interrupted\\)");
YS_REGEX_TYPE unknown_regex = YS_REGEX_COMPILE("No solution found! \\(unknown\\)");
YS_REGEX_TYPE unknown_regex2 = YS_REGEX_COMPILE("Unexpected EOF response from solver");
YS_REGEX_TYPE memout_regex = YS_REGEX_COMPILE("Solver Error:.*error \"out of memory\"");
YS_REGEX_TYPE hole_value_regex = YS_REGEX_COMPILE_WITH_SUBS("Value for anyconst in [a-zA-Z0-9_]* \\(([^:]*:[^\\)]*)\\): (.*)");
#ifndef NDEBUG
YS_REGEX_TYPE hole_loc_regex = YS_REGEX_COMPILE("[^:]*:[0-9]+.[0-9]+-[0-9]+.[0-9]+");
YS_REGEX_TYPE hole_val_regex = YS_REGEX_COMPILE("[0-9]+");
#endif
YS_REGEX_MATCH_TYPE m;
bool sat_regex_found = false;
bool unsat_regex_found = false;
dict<std::string, bool> hole_value_recovered;
for (const std::string &x : sol.stdout_lines) {
if(YS_REGEX_NS::regex_search(x, m, hole_value_regex)) {
std::string loc = m[1].str();
std::string val = m[2].str();
#ifndef NDEBUG
log_assert(YS_REGEX_NS::regex_search(loc, hole_loc_regex));
log_assert(YS_REGEX_NS::regex_search(val, hole_val_regex));
#endif
auto locs = split_tokens(loc, "|");
pool<std::string> loc_pool(locs.begin(), locs.end());
sol.hole_to_value[loc_pool] = val;
}
else if (YS_REGEX_NS::regex_search(x, sat_regex)) {
sat_regex_found = true;
sol.sat = true;
sol.unknown = false;
}
else if (YS_REGEX_NS::regex_search(x, unsat_regex)) {
unsat_regex_found = true;
sol.sat = false;
sol.unknown = false;
}
else if (YS_REGEX_NS::regex_search(x, memout_regex)) {
sol.unknown = true;
log_warning("solver ran out of memory\n");
}
else if (YS_REGEX_NS::regex_search(x, timeout_regex)) {
sol.unknown = true;
log_warning("solver timed out\n");
}
else if (YS_REGEX_NS::regex_search(x, timeout_regex2)) {
sol.unknown = true;
log_warning("solver timed out\n");
}
else if (YS_REGEX_NS::regex_search(x, unknown_regex)) {
sol.unknown = true;
log_warning("solver returned \"unknown\"\n");
}
else if (YS_REGEX_NS::regex_search(x, unsat_regex2)) {
unsat_regex_found = true;
sol.sat = false;
sol.unknown = false;
}
else if (YS_REGEX_NS::regex_search(x, unknown_regex2)) {
sol.unknown = true;
}
}
#ifndef NDEBUG
log_assert(!sol.unknown && sol.sat? sat_regex_found : true);
log_assert(!sol.unknown && !sol.sat? unsat_regex_found : true);
#endif
}
dict<std::pair<pool<std::string>, int>, RTLIL::SigBit> get_hole_loc_idx_sigbit_map(RTLIL::Module *module, const QbfSolutionType &sol) {
dict<std::pair<pool<std::string>, int>, RTLIL::SigBit> hole_loc_idx_to_sigbit;
pool<RTLIL::SigBit> anyconst_sigbits;
dict<RTLIL::SigBit, RTLIL::SigBit> anyconst_sigbit_to_wire_sigbit;
for (auto cell : module->cells()) {
pool<std::string> cell_src = cell->get_strpool_attribute(ID::src);
auto pos = sol.hole_to_value.find(cell_src);
if (pos != sol.hole_to_value.end() && cell->type.in("$anyconst", "$anyseq")) {
RTLIL::SigSpec port_y = cell->getPort(ID::Y);
for (int i = GetSize(port_y) - 1; i >= 0; --i) {
hole_loc_idx_to_sigbit[std::make_pair(pos->first, i)] = port_y[i];
anyconst_sigbits.insert(port_y[i]);
}
}
}
for (auto &conn : module->connections()) {
auto lhs = conn.first;
auto rhs = conn.second;
for (auto i = 0; i < GetSize(rhs); ++i) {
if (anyconst_sigbits[rhs[i]]) {
auto pos = anyconst_sigbit_to_wire_sigbit.find(rhs[i]);
if (pos != anyconst_sigbit_to_wire_sigbit.end())
log_cmd_error("conflicting names for hole $anyconst sigbit %s\n", log_signal(rhs[i]));
anyconst_sigbit_to_wire_sigbit[rhs[i]] = lhs[i];
}
}
}
for (auto &it : hole_loc_idx_to_sigbit) {
auto pos = anyconst_sigbit_to_wire_sigbit.find(it.second);
if (pos != anyconst_sigbit_to_wire_sigbit.end())
it.second = pos->second;
}
return hole_loc_idx_to_sigbit;
}
pool<std::string> validate_design_and_get_inputs(RTLIL::Module *module, const QbfSolveOptions &opt) {
pool<std::string> validate_design_and_get_inputs(RTLIL::Module *module, bool assume_outputs) {
bool found_input = false;
bool found_hole = false;
bool found_1bit_output = false;
@ -213,53 +59,16 @@ pool<std::string> validate_design_and_get_inputs(RTLIL::Module *module, const Qb
log_cmd_error("Did not find any existentially-quantified variables. Use 'sat' instead.\n");
if (!found_1bit_output && !found_assert_assume)
log_cmd_error("Did not find any single-bit outputs or $assert/$assume cells. Is this a miter circuit?\n");
if (!found_assert_assume && !opt.assume_outputs)
if (!found_assert_assume && !assume_outputs)
log_cmd_error("Did not find any $assert/$assume cells. Single-bit outputs were found, but `-assume-outputs` was not specified.\n");
return input_wires;
}
void write_solution(RTLIL::Module *module, const QbfSolutionType &sol, const std::string &file) {
std::ofstream fout(file.c_str());
if (!fout)
log_cmd_error("could not open solution file for writing.\n");
//There is a question here: How exactly shall we identify holes?
//There are at least two reasonable options:
//1. By the source location of the $anyconst cells
//2. By the name(s) of the wire(s) connected to each SigBit of the $anyconst cell->getPort(ID::Y) SigSpec.
//
//Option 1 has the benefit of being very precise. There is very limited potential for confusion, as long
//as the source attribute has been set. However, if the source attribute is not set, this won't work.
//More importantly, we want to have the ability to port hole assignments to other modules with compatible
//hole names and widths. Obviously in those cases source locations of the $anyconst cells will not match.
//
//Option 2 has the benefits previously described, but wire names can be changed automatically by
//optimization or techmapping passes, especially when (ex/im)porting from BLIF for optimization with ABC.
//
//The approach taken here is to allow both options. We write the assignment information for each bit of
//the solution on a separate line. Each line is of one of two forms:
//
//location bit name = value
//location bit name [offset] = value
//
//where '[', ']', and '=' are literal symbols, "location" is the $anyconst cell source location attribute,
//"bit" is the index of the $anyconst cell, "name" is the `wire->name` field of the SigBit corresponding
//to the current bit of the $anyconst cell->getPort(ID::Y), "offset" is the `offset` field of that same
//SigBit, and "value", which is either '0' or '1', represents the assignment for that bit.
dict<std::pair<pool<std::string>, int>, RTLIL::SigBit> hole_loc_idx_to_sigbit = get_hole_loc_idx_sigbit_map(module, sol);
for (auto &x : sol.hole_to_value) {
std::string src_as_str = std::accumulate(x.first.begin(), x.first.end(), std::string(), [](const std::string &a, const std::string &b){return a + "|" + b;});
for (auto i = 0; i < GetSize(x.second); ++i)
fout << src_as_str.c_str() << " " << i << " " << log_signal(hole_loc_idx_to_sigbit[std::make_pair(x.first, i)]) << " = " << x.second[GetSize(x.second) - 1 - i] << std::endl;
}
}
void specialize_from_file(RTLIL::Module *module, const std::string &file) {
YS_REGEX_TYPE hole_bit_assn_regex = YS_REGEX_COMPILE_WITH_SUBS("^(.+) ([0-9]+) ([^ ]+) \\[([0-9]+)] = ([01])$");
YS_REGEX_TYPE hole_assn_regex = YS_REGEX_COMPILE_WITH_SUBS("^(.+) ([0-9]+) ([^ ]+) = ([01])$"); //if no index specified
YS_REGEX_MATCH_TYPE bit_m, m;
//(hole_loc, hole_bit, hole_name, hole_offset) -> (value, found)
dict<pool<std::string>, RTLIL::Cell*> anyconst_loc_to_cell;
dict<RTLIL::SigBit, RTLIL::State> hole_assignments;
@ -318,7 +127,7 @@ void specialize_from_file(RTLIL::Module *module, const std::string &file) {
}
void specialize(RTLIL::Module *module, const QbfSolutionType &sol, bool quiet = false) {
dict<std::pair<pool<std::string>, int>, RTLIL::SigBit> hole_loc_idx_to_sigbit = get_hole_loc_idx_sigbit_map(module, sol);
auto hole_loc_idx_to_sigbit = sol.get_hole_loc_idx_sigbit_map(module);
pool<RTLIL::Cell *> anyconsts_to_remove;
for (auto cell : module->cells())
if (cell->type == "$anyconst")
@ -348,30 +157,10 @@ void specialize(RTLIL::Module *module, const QbfSolutionType &sol, bool quiet =
}
}
void dump_model(RTLIL::Module *module, const QbfSolutionType &sol) {
log("Satisfiable model:\n");
dict<std::pair<pool<std::string>, int>, RTLIL::SigBit> hole_loc_idx_to_sigbit = get_hole_loc_idx_sigbit_map(module, sol);
for (auto &it : sol.hole_to_value) {
pool<std::string> hole_loc = it.first;
std::string hole_value = it.second;
for (unsigned int i = 0; i < hole_value.size(); ++i) {
int bit_idx = GetSize(hole_value) - 1 - i;
auto it = hole_loc_idx_to_sigbit.find(std::make_pair(hole_loc, i));
log_assert(it != hole_loc_idx_to_sigbit.end());
RTLIL::SigBit hole_sigbit = it->second;
log("\t%s = 1'b%c\n", log_signal(hole_sigbit), hole_value[bit_idx]);
}
}
}
void allconstify_inputs(RTLIL::Module *module, const pool<std::string> &input_wires) {
for (auto &n : input_wires) {
RTLIL::Wire *input = module->wire(n);
#ifndef NDEBUG
log_assert(input != nullptr);
#endif
RTLIL::Cell *allconst = module->addCell("$allconst$" + n, "$allconst");
allconst->setParam(ID(WIDTH), input->width);
@ -383,7 +172,7 @@ void allconstify_inputs(RTLIL::Module *module, const pool<std::string> &input_wi
module->fixup_ports();
}
void assume_miter_outputs(RTLIL::Module *module, const QbfSolveOptions &opt) {
void assume_miter_outputs(RTLIL::Module *module, bool assume_neg) {
std::vector<RTLIL::Wire *> wires_to_assume;
for (auto w : module->wires())
if (w->port_output && w->width == 1)
@ -398,7 +187,7 @@ void assume_miter_outputs(RTLIL::Module *module, const QbfSolveOptions &opt) {
log("\n");
}
if (opt.assume_neg) {
if (assume_neg) {
for (unsigned int i = 0; i < wires_to_assume.size(); ++i) {
RTLIL::SigSpec n_wire = module->LogicNot(wires_to_assume[i]->name.str() + "__n__qbfsat", wires_to_assume[i], false, wires_to_assume[i]->get_src_attribute());
wires_to_assume[i] = n_wire.as_wire();
@ -418,9 +207,7 @@ void assume_miter_outputs(RTLIL::Module *module, const QbfSolveOptions &opt) {
wires_to_assume.swap(buf);
}
#ifndef NDEBUG
log_assert(wires_to_assume.size() == 1);
#endif
module->addAssume("$assume_qbfsat_miter_outputs", wires_to_assume[0], RTLIL::S1);
}
@ -428,9 +215,13 @@ QbfSolutionType call_qbf_solver(RTLIL::Module *mod, const QbfSolveOptions &opt,
//Execute and capture stdout from `yosys-smtbmc -s z3 -t 1 -g --binary [--dump-smt2 <file>]`
QbfSolutionType ret;
const std::string yosys_smtbmc_exe = proc_self_dirname() + "yosys-smtbmc";
const std::string smt2_command = "write_smt2 -stbv -wires " + tempdir_name + "/problem" + (iter_num != 0? stringf("%d", iter_num) : "") + ".smt2";
const std::string smt2_command = stringf("write_smt2 -stbv -wires %s/problem%d.smt2", tempdir_name.c_str(), iter_num);
const std::string smtbmc_warning = "z3: WARNING:";
const std::string smtbmc_cmd = yosys_smtbmc_exe + " -s " + (get_solver_name(opt)) + (opt.timeout != 0? stringf(" --timeout %d", opt.timeout) : "") + " -t 1 -g --binary " + (opt.dump_final_smt2? "--dump-smt2 " + opt.dump_final_smt2_file + " " : "") + tempdir_name + "/problem" + (iter_num != 0? stringf("%d", iter_num) : "") + ".smt2 2>&1";
const std::string smtbmc_cmd = stringf("%s -s %s %s -t 1 -g --binary %s %s/problem%d.smt2 2>&1",
yosys_smtbmc_exe.c_str(), opt.get_solver_name().c_str(),
(opt.timeout != 0? stringf("--timeout %d", opt.timeout) : "").c_str(),
(opt.dump_final_smt2? "--dump-smt2 " + opt.dump_final_smt2_file : "").c_str(),
tempdir_name.c_str(), iter_num);
Pass::call(mod->design, smt2_command);
@ -451,13 +242,13 @@ QbfSolutionType call_qbf_solver(RTLIL::Module *mod, const QbfSolveOptions &opt,
ret.solver_time = (end - begin) / 1e9f;
if (!quiet) log("Solver finished in %.3f seconds.\n", ret.solver_time);
recover_solution(ret);
ret.recover_solution();
return ret;
}
QbfSolutionType qbf_solve(RTLIL::Module *mod, const QbfSolveOptions &opt) {
QbfSolutionType ret, best_soln;
const std::string tempdir_name = make_temp_dir("/tmp/yosys-z3-XXXXXX");
const std::string tempdir_name = make_temp_dir("/tmp/yosys-qbfsat-XXXXXX");
RTLIL::Module *module = mod;
RTLIL::Design *design = module->design;
std::string module_name = module->name.str();
@ -468,10 +259,10 @@ QbfSolutionType qbf_solve(RTLIL::Module *mod, const QbfSolveOptions &opt) {
Pass::call(design, "design -push-copy");
//Replace input wires with wires assigned $allconst cells:
pool<std::string> input_wires = validate_design_and_get_inputs(module, opt);
pool<std::string> input_wires = validate_design_and_get_inputs(module, opt.assume_outputs);
allconstify_inputs(module, input_wires);
if (opt.assume_outputs)
assume_miter_outputs(module, opt);
assume_miter_outputs(module, opt.assume_neg);
//Find the wire to be optimized, if any:
for (auto wire : module->wires()) {
@ -699,33 +490,6 @@ QbfSolveOptions parse_args(const std::vector<std::string> &args) {
return opt;
}
void print_proof_failed()
{
log("\n");
log(" ______ ___ ___ _ _ _ _ \n");
log(" (_____ \\ / __) / __) (_) | | | |\n");
log(" _____) )___ ___ ___ _| |__ _| |__ _____ _| | _____ __| | |\n");
log(" | ____/ ___) _ \\ / _ (_ __) (_ __|____ | | || ___ |/ _ |_|\n");
log(" | | | | | |_| | |_| || | | | / ___ | | || ____( (_| |_ \n");
log(" |_| |_| \\___/ \\___/ |_| |_| \\_____|_|\\_)_____)\\____|_|\n");
log("\n");
}
void print_qed()
{
log("\n");
log(" /$$$$$$ /$$$$$$$$ /$$$$$$$ \n");
log(" /$$__ $$ | $$_____/ | $$__ $$ \n");
log(" | $$ \\ $$ | $$ | $$ \\ $$ \n");
log(" | $$ | $$ | $$$$$ | $$ | $$ \n");
log(" | $$ | $$ | $$__/ | $$ | $$ \n");
log(" | $$/$$ $$ | $$ | $$ | $$ \n");
log(" | $$$$$$/ /$$| $$$$$$$$ /$$| $$$$$$$//$$\n");
log(" \\____ $$$|__/|________/|__/|_______/|__/\n");
log(" \\__/ \n");
log("\n");
}
struct QbfSatPass : public Pass {
QbfSatPass() : Pass("qbfsat", "solve a 2QBF-SAT problem in the circuit") { }
void help() override
@ -767,9 +531,11 @@ struct QbfSatPass : public Pass {
log("\n");
log(" -solver <solver>\n");
log(" Use a particular solver. Choose one of: \"z3\", \"yices\", and \"cvc4\".\n");
log(" (default: yices)\n");
log("\n");
log(" -timeout <value>\n");
log(" Set the per-iteration timeout in seconds.\n");
log(" (default: no timeout)\n");
log("\n");
log(" -O0, -O1, -O2\n");
log(" Control the use of ABC to simplify the QBF-SAT problem before solving.\n");
@ -827,12 +593,12 @@ struct QbfSatPass : public Pass {
else if (ret.sat) {
print_qed();
if (opt.write_solution) {
write_solution(module, ret, opt.write_soln_soln_file);
ret.write_solution(module, opt.write_soln_soln_file);
}
if (opt.specialize) {
specialize(module, ret);
} else {
dump_model(module, ret);
ret.dump_model(module);
}
if (opt.unsat)
log_cmd_error("expected problem to be UNSAT\n");

252
passes/sat/qbfsat.h Normal file
View File

@ -0,0 +1,252 @@
/* -*- c++ -*-
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2020 Alberto Gonzalez <boqwxp@airmail.cc>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#ifndef QBFSAT_H
#define QBFSAT_H
#include "kernel/yosys.h"
#include <numeric>
YOSYS_NAMESPACE_BEGIN
struct QbfSolveOptions {
bool specialize = false, specialize_from_file = false, write_solution = false, nocleanup = false;
bool dump_final_smt2 = false, assume_outputs = false, assume_neg = false, nooptimize = false;
bool nobisection = false, sat = false, unsat = false, show_smtbmc = false;
enum Solver{Z3, Yices, CVC4} solver = Yices;
enum OptimizationLevel{O0, O1, O2} oflag = O0;
int timeout = 0;
std::string specialize_soln_file = "";
std::string write_soln_soln_file = "";
std::string dump_final_smt2_file = "";
size_t argidx = 0;
std::string get_solver_name() const {
if (solver == Solver::Z3)
return "z3";
else if (solver == Solver::Yices)
return "yices";
else if (solver == Solver::CVC4)
return "cvc4";
log_cmd_error("unknown solver specified.\n");
return "";
}
};
struct QbfSolutionType {
std::vector<std::string> stdout_lines = {};
dict<pool<std::string>, std::string> hole_to_value = {};
double solver_time = 0;
bool sat = false;
bool unknown = true; //true if neither 'sat' nor 'unsat'
dict<std::pair<pool<std::string>, int>, RTLIL::SigBit> get_hole_loc_idx_sigbit_map(RTLIL::Module *module) const {
dict<std::pair<pool<std::string>, int>, RTLIL::SigBit> hole_loc_idx_to_sigbit;
pool<RTLIL::SigBit> anyconst_sigbits;
dict<RTLIL::SigBit, RTLIL::SigBit> anyconst_sigbit_to_wire_sigbit;
for (auto cell : module->cells()) {
pool<std::string> cell_src = cell->get_strpool_attribute(ID::src);
auto pos = hole_to_value.find(cell_src);
if (pos != hole_to_value.end() && cell->type.in("$anyconst", "$anyseq")) {
RTLIL::SigSpec port_y = cell->getPort(ID::Y);
for (int i = GetSize(port_y) - 1; i >= 0; --i) {
hole_loc_idx_to_sigbit[std::make_pair(pos->first, i)] = port_y[i];
anyconst_sigbits.insert(port_y[i]);
}
}
}
for (auto &conn : module->connections()) {
auto lhs = conn.first;
auto rhs = conn.second;
for (auto i = 0; i < GetSize(rhs); ++i) {
if (anyconst_sigbits[rhs[i]]) {
auto pos = anyconst_sigbit_to_wire_sigbit.find(rhs[i]);
if (pos != anyconst_sigbit_to_wire_sigbit.end())
log_cmd_error("conflicting names for hole $anyconst sigbit %s\n", log_signal(rhs[i]));
anyconst_sigbit_to_wire_sigbit[rhs[i]] = lhs[i];
}
}
}
for (auto &it : hole_loc_idx_to_sigbit) {
auto pos = anyconst_sigbit_to_wire_sigbit.find(it.second);
if (pos != anyconst_sigbit_to_wire_sigbit.end())
it.second = pos->second;
}
return hole_loc_idx_to_sigbit;
}
void dump_model(RTLIL::Module *module) const {
log("Satisfiable model:\n");
auto hole_loc_idx_to_sigbit = get_hole_loc_idx_sigbit_map(module);
for (auto &it : hole_to_value) {
pool<std::string> hole_loc = it.first;
std::string hole_value = it.second;
for (unsigned int i = 0; i < hole_value.size(); ++i) {
int bit_idx = GetSize(hole_value) - 1 - i;
auto it = hole_loc_idx_to_sigbit.find(std::make_pair(hole_loc, i));
log_assert(it != hole_loc_idx_to_sigbit.end());
RTLIL::SigBit hole_sigbit = it->second;
log("\t%s = 1'b%c\n", log_signal(hole_sigbit), hole_value[bit_idx]);
}
}
}
void write_solution(RTLIL::Module *module, const std::string &file) const {
std::ofstream fout(file.c_str());
if (!fout)
log_cmd_error("could not open solution file for writing.\n");
//There is a question here: How exactly shall we identify holes?
//There are at least two reasonable options:
//1. By the source location of the $anyconst cells
//2. By the name(s) of the wire(s) connected to each SigBit of the $anyconst cell->getPort(ID::Y) SigSpec.
//
//Option 1 has the benefit of being very precise. There is very limited potential for confusion, as long
//as the source attribute has been set. However, if the source attribute is not set, this won't work.
//More importantly, we want to have the ability to port hole assignments to other modules with compatible
//hole names and widths. Obviously in those cases source locations of the $anyconst cells will not match.
//
//Option 2 has the benefits previously described, but wire names can be changed automatically by
//optimization or techmapping passes, especially when (ex/im)porting from BLIF for optimization with ABC.
//
//The approach taken here is to allow both options. We write the assignment information for each bit of
//the solution on a separate line. Each line is of one of two forms:
//
//location bit name = value
//location bit name [offset] = value
//
//where '[', ']', and '=' are literal symbols, "location" is the $anyconst cell source location attribute,
//"bit" is the index of the $anyconst cell, "name" is the `wire->name` field of the SigBit corresponding
//to the current bit of the $anyconst cell->getPort(ID::Y), "offset" is the `offset` field of that same
//SigBit, and "value", which is either '0' or '1', represents the assignment for that bit.
auto hole_loc_idx_to_sigbit = get_hole_loc_idx_sigbit_map(module);
for (auto &x : hole_to_value) {
std::string src_as_str = std::accumulate(x.first.begin(), x.first.end(), std::string(), [](const std::string &a, const std::string &b){return a + "|" + b;});
for (auto i = 0; i < GetSize(x.second); ++i)
fout << src_as_str.c_str() << " " << i << " " << log_signal(hole_loc_idx_to_sigbit[std::make_pair(x.first, i)]) << " = " << x.second[GetSize(x.second) - 1 - i] << std::endl;
}
}
void recover_solution() {
YS_REGEX_TYPE sat_regex = YS_REGEX_COMPILE("Status: PASSED");
YS_REGEX_TYPE unsat_regex = YS_REGEX_COMPILE("Solver Error.*model is not available");
YS_REGEX_TYPE unsat_regex2 = YS_REGEX_COMPILE("Status: FAILED");
YS_REGEX_TYPE timeout_regex = YS_REGEX_COMPILE("No solution found! \\(timeout\\)");
YS_REGEX_TYPE timeout_regex2 = YS_REGEX_COMPILE("No solution found! \\(interrupted\\)");
YS_REGEX_TYPE unknown_regex = YS_REGEX_COMPILE("No solution found! \\(unknown\\)");
YS_REGEX_TYPE unknown_regex2 = YS_REGEX_COMPILE("Unexpected EOF response from solver");
YS_REGEX_TYPE memout_regex = YS_REGEX_COMPILE("Solver Error:.*error \"out of memory\"");
YS_REGEX_TYPE hole_value_regex = YS_REGEX_COMPILE_WITH_SUBS("Value for anyconst in [a-zA-Z0-9_]* \\(([^:]*:[^\\)]*)\\): (.*)");
#ifndef NDEBUG
YS_REGEX_TYPE hole_loc_regex = YS_REGEX_COMPILE("[^:]*:[0-9]+.[0-9]+-[0-9]+.[0-9]+");
YS_REGEX_TYPE hole_val_regex = YS_REGEX_COMPILE("[0-9]+");
#endif
YS_REGEX_MATCH_TYPE m;
bool sat_regex_found = false;
bool unsat_regex_found = false;
dict<std::string, bool> hole_value_recovered;
for (const std::string &x : stdout_lines) {
if(YS_REGEX_NS::regex_search(x, m, hole_value_regex)) {
std::string loc = m[1].str();
std::string val = m[2].str();
#ifndef NDEBUG
log_assert(YS_REGEX_NS::regex_search(loc, hole_loc_regex));
log_assert(YS_REGEX_NS::regex_search(val, hole_val_regex));
#endif
auto locs = split_tokens(loc, "|");
pool<std::string> loc_pool(locs.begin(), locs.end());
hole_to_value[loc_pool] = val;
}
else if (YS_REGEX_NS::regex_search(x, sat_regex)) {
sat_regex_found = true;
sat = true;
unknown = false;
}
else if (YS_REGEX_NS::regex_search(x, unsat_regex)) {
unsat_regex_found = true;
sat = false;
unknown = false;
}
else if (YS_REGEX_NS::regex_search(x, memout_regex)) {
unknown = true;
log_warning("solver ran out of memory\n");
}
else if (YS_REGEX_NS::regex_search(x, timeout_regex)) {
unknown = true;
log_warning("solver timed out\n");
}
else if (YS_REGEX_NS::regex_search(x, timeout_regex2)) {
unknown = true;
log_warning("solver timed out\n");
}
else if (YS_REGEX_NS::regex_search(x, unknown_regex)) {
unknown = true;
log_warning("solver returned \"unknown\"\n");
}
else if (YS_REGEX_NS::regex_search(x, unsat_regex2)) {
unsat_regex_found = true;
sat = false;
unknown = false;
}
else if (YS_REGEX_NS::regex_search(x, unknown_regex2)) {
unknown = true;
}
}
log_assert(!unknown && sat? sat_regex_found : true);
log_assert(!unknown && !sat? unsat_regex_found : true);
}
};
void print_proof_failed()
{
log("\n");
log(" ______ ___ ___ _ _ _ _ \n");
log(" (_____ \\ / __) / __) (_) | | | |\n");
log(" _____) )___ ___ ___ _| |__ _| |__ _____ _| | _____ __| | |\n");
log(" | ____/ ___) _ \\ / _ (_ __) (_ __|____ | | || ___ |/ _ |_|\n");
log(" | | | | | |_| | |_| || | | | / ___ | | || ____( (_| |_ \n");
log(" |_| |_| \\___/ \\___/ |_| |_| \\_____|_|\\_)_____)\\____|_|\n");
log("\n");
}
void print_qed()
{
log("\n");
log(" /$$$$$$ /$$$$$$$$ /$$$$$$$ \n");
log(" /$$__ $$ | $$_____/ | $$__ $$ \n");
log(" | $$ \\ $$ | $$ | $$ \\ $$ \n");
log(" | $$ | $$ | $$$$$ | $$ | $$ \n");
log(" | $$ | $$ | $$__/ | $$ | $$ \n");
log(" | $$/$$ $$ | $$ | $$ | $$ \n");
log(" | $$$$$$/ /$$| $$$$$$$$ /$$| $$$$$$$//$$\n");
log(" \\____ $$$|__/|________/|__/|_______/|__/\n");
log(" \\__/ \n");
log("\n");
}
YOSYS_NAMESPACE_END
#endif