Added translation from read-feedback to en-signals in memory_share

This commit is contained in:
Clifford Wolf 2014-07-18 16:46:40 +02:00
parent 44f13aff92
commit e441f07d89
3 changed files with 264 additions and 10 deletions

View File

@ -33,7 +33,9 @@ struct MemoryPass : public Pass {
log("This pass calls all the other memory_* passes in a useful order:\n"); log("This pass calls all the other memory_* passes in a useful order:\n");
log("\n"); log("\n");
log(" memory_dff\n"); log(" memory_dff\n");
log(" opt_clean\n");
log(" memory_share\n"); log(" memory_share\n");
log(" opt_clean\n");
log(" memory_collect\n"); log(" memory_collect\n");
log(" memory_map (skipped if called with -nomap)\n"); log(" memory_map (skipped if called with -nomap)\n");
log("\n"); log("\n");
@ -59,7 +61,9 @@ struct MemoryPass : public Pass {
extra_args(args, argidx, design); extra_args(args, argidx, design);
Pass::call(design, "memory_dff"); Pass::call(design, "memory_dff");
Pass::call(design, "opt_clean");
Pass::call(design, "memory_share"); Pass::call(design, "memory_share");
Pass::call(design, "opt_clean");
Pass::call(design, "memory_collect"); Pass::call(design, "memory_collect");
if (!flag_nomap) if (!flag_nomap)

View File

@ -36,7 +36,209 @@ struct MemoryShareWorker
{ {
RTLIL::Design *design; RTLIL::Design *design;
RTLIL::Module *module; RTLIL::Module *module;
SigMap sigmap; SigMap sigmap, sigmap_xmux;
std::map<RTLIL::SigBit, std::pair<RTLIL::Cell*, int>> sig_to_mux;
std::map<std::set<std::map<RTLIL::SigBit, bool>>, RTLIL::SigBit> conditions_logic_cache;
// -----------------------------------------------------------------
// Converting feedbacks to async read ports to proper enable signals
// -----------------------------------------------------------------
bool find_data_feedback(const std::set<RTLIL::SigBit> &async_rd_bits, RTLIL::SigBit sig,
std::map<RTLIL::SigBit, bool> &state, std::set<std::map<RTLIL::SigBit, bool>> &conditions)
{
if (async_rd_bits.count(sig)) {
conditions.insert(state);
return true;
}
if (sig_to_mux.count(sig) == 0)
return false;
RTLIL::Cell *cell = sig_to_mux.at(sig).first;
int bit_idx = sig_to_mux.at(sig).second;
std::vector<RTLIL::SigBit> sig_a = sigmap(cell->connections.at("\\A"));
std::vector<RTLIL::SigBit> sig_b = sigmap(cell->connections.at("\\B"));
std::vector<RTLIL::SigBit> sig_s = sigmap(cell->connections.at("\\S"));
std::vector<RTLIL::SigBit> sig_y = sigmap(cell->connections.at("\\Y"));
log_assert(sig_y.at(bit_idx) == sig);
for (int i = 0; i < int(sig_s.size()); i++)
if (state.count(sig_s[i]) && state.at(sig_s[i]) == true) {
if (find_data_feedback(async_rd_bits, sig_b.at(bit_idx + i*sig_y.size()), state, conditions))
cell->connections.at("\\B").replace(bit_idx + i*sig_y.size(), RTLIL::State::Sx);
return false;
}
for (int i = 0; i < int(sig_s.size()); i++)
{
if (state.count(sig_s[i]) && state.at(sig_s[i]) == false)
continue;
std::map<RTLIL::SigBit, bool> new_state = state;
new_state[sig_s[i]] = true;
if (find_data_feedback(async_rd_bits, sig_b.at(bit_idx + i*sig_y.size()), new_state, conditions))
cell->connections.at("\\B").replace(bit_idx + i*sig_y.size(), RTLIL::State::Sx);
}
std::map<RTLIL::SigBit, bool> new_state = state;
for (int i = 0; i < int(sig_s.size()); i++)
new_state[sig_s[i]] = false;
if (find_data_feedback(async_rd_bits, sig_a.at(bit_idx), new_state, conditions))
cell->connections.at("\\A").replace(bit_idx, RTLIL::State::Sx);
return false;
}
RTLIL::SigBit conditions_to_logic(std::set<std::map<RTLIL::SigBit, bool>> &conditions, int &created_conditions)
{
if (conditions_logic_cache.count(conditions))
return conditions_logic_cache.at(conditions);
RTLIL::SigSpec terms;
for (auto &cond : conditions) {
RTLIL::SigSpec sig1, sig2;
for (auto &it : cond) {
sig1.append_bit(it.first);
sig2.append_bit(it.second ? RTLIL::State::S1 : RTLIL::State::S0);
}
terms.append(module->Ne(NEW_ID, sig1, sig2));
created_conditions++;
}
if (terms.width > 1)
terms = module->ReduceAnd(NEW_ID, terms);
return conditions_logic_cache[conditions] = terms;
}
void translate_rd_feedback_to_en(std::string memid, std::vector<RTLIL::Cell*> &rd_ports, std::vector<RTLIL::Cell*> &wr_ports)
{
std::vector<std::set<RTLIL::SigBit>> async_rd_bits;
std::map<RTLIL::SigBit, std::set<RTLIL::SigBit>> muxtree_upstream_map;
std::set<RTLIL::SigBit> non_feedback_nets;
for (auto wire_it : module->wires)
if (wire_it.second->port_output) {
std::vector<RTLIL::SigBit> bits = RTLIL::SigSpec(wire_it.second);
non_feedback_nets.insert(bits.begin(), bits.end());
}
for (auto cell_it : module->cells)
{
RTLIL::Cell *cell = cell_it.second;
bool ignore_data_port = false;
if (cell->type == "$mux" || cell->type == "$pmux")
{
std::vector<RTLIL::SigBit> sig_a = sigmap(cell->connections.at("\\A"));
std::vector<RTLIL::SigBit> sig_b = sigmap(cell->connections.at("\\B"));
std::vector<RTLIL::SigBit> sig_s = sigmap(cell->connections.at("\\S"));
std::vector<RTLIL::SigBit> sig_y = sigmap(cell->connections.at("\\Y"));
non_feedback_nets.insert(sig_s.begin(), sig_s.end());
for (int i = 0; i < int(sig_y.size()); i++) {
muxtree_upstream_map[sig_y[i]].insert(sig_a[i]);
for (int j = 0; j < int(sig_s.size()); j++)
muxtree_upstream_map[sig_y[i]].insert(sig_b[i + j*sig_y.size()]);
}
continue;
}
if ((cell->type == "$memwr" || cell->type == "$memrd") &&
cell->parameters.at("\\MEMID").decode_string() == memid)
ignore_data_port = true;
for (auto conn : cell_it.second->connections)
{
if (ignore_data_port && conn.first == "\\DATA")
continue;
std::vector<RTLIL::SigBit> bits = sigmap(conn.second);
non_feedback_nets.insert(bits.begin(), bits.end());
}
}
std::set<RTLIL::SigBit> expand_non_feedback_nets = non_feedback_nets;
while (!expand_non_feedback_nets.empty())
{
std::set<RTLIL::SigBit> new_expand_non_feedback_nets;
for (auto &bit : expand_non_feedback_nets)
if (muxtree_upstream_map.count(bit))
for (auto &new_bit : muxtree_upstream_map.at(bit))
if (!non_feedback_nets.count(new_bit)) {
non_feedback_nets.insert(new_bit);
new_expand_non_feedback_nets.insert(new_bit);
}
expand_non_feedback_nets.swap(new_expand_non_feedback_nets);
}
for (auto cell : rd_ports)
{
if (cell->parameters.at("\\CLK_ENABLE").as_bool())
continue;
std::vector<RTLIL::SigBit> sig_data = sigmap(cell->connections.at("\\DATA"));
for (int i = 0; i < int(sig_data.size()); i++)
if (non_feedback_nets.count(sig_data[i]))
goto not_pure_feedback_port;
async_rd_bits.resize(std::max(async_rd_bits.size(), sig_data.size()));
for (int i = 0; i < int(sig_data.size()); i++)
async_rd_bits[i].insert(sig_data[i]);
not_pure_feedback_port:;
}
if (async_rd_bits.empty())
return;
log("Populating enable bits on write ports of memory %s with aync read feedback:\n", log_id(memid));
for (auto cell : wr_ports)
{
log(" Analyzing write port %s.\n", log_id(cell));
std::vector<RTLIL::SigBit> cell_data = cell->connections.at("\\DATA");
std::vector<RTLIL::SigBit> cell_en = cell->connections.at("\\EN");
int created_conditions = 0;
for (int i = 0; i < int(cell_data.size()); i++)
if (cell_en[i] != RTLIL::SigBit(RTLIL::State::S0))
{
std::map<RTLIL::SigBit, bool> state;
std::set<std::map<RTLIL::SigBit, bool>> conditions;
if (cell_en[i].wire != NULL) {
state[cell_en[i]] = false;
conditions.insert(state);
}
find_data_feedback(async_rd_bits.at(i), cell_data[i], state, conditions);
cell_en[i] = conditions_to_logic(conditions, created_conditions);
}
if (created_conditions) {
log(" Added enable logic for %d different cases.\n", created_conditions);
cell->connections.at("\\EN") = cell_en;
}
}
}
// ------------------------------------------------------
// Consolidate write ports that write to the same address
// ------------------------------------------------------
RTLIL::SigSpec mask_en_naive(RTLIL::SigSpec do_mask, RTLIL::SigSpec bits, RTLIL::SigSpec mask_bits) RTLIL::SigSpec mask_en_naive(RTLIL::SigSpec do_mask, RTLIL::SigSpec bits, RTLIL::SigSpec mask_bits)
{ {
@ -143,7 +345,7 @@ struct MemoryShareWorker
for (int i = 0; i < int(wr_ports.size()); i++) for (int i = 0; i < int(wr_ports.size()); i++)
{ {
RTLIL::Cell *cell = wr_ports.at(i); RTLIL::Cell *cell = wr_ports.at(i);
RTLIL::SigSpec addr = sigmap(cell->connections.at("\\ADDR")); RTLIL::SigSpec addr = sigmap_xmux(cell->connections.at("\\ADDR"));
if (cell->parameters.at("\\CLK_ENABLE").as_bool() != cache_clk_enable || if (cell->parameters.at("\\CLK_ENABLE").as_bool() != cache_clk_enable ||
(cache_clk_enable && (sigmap(cell->connections.at("\\CLK")) != cache_clk || (cache_clk_enable && (sigmap(cell->connections.at("\\CLK")) != cache_clk ||
@ -212,17 +414,18 @@ struct MemoryShareWorker
} }
// Then we need to merge the (masked) EN and the DATA signals. // Then we need to merge the (masked) EN and the DATA signals.
// Note that we intentionally do not use sigmap() on the DATA ports.
RTLIL::SigSpec merged_data = wr_ports[last_i]->connections.at("\\DATA"); RTLIL::SigSpec merged_data = wr_ports[last_i]->connections.at("\\DATA");
if (found_overlapping_bits) { if (found_overlapping_bits) {
log(" Creating logic for merging DATA and EN ports.\n"); log(" Creating logic for merging DATA and EN ports.\n");
merge_en_data(merged_en, merged_data, sigmap(cell->connections.at("\\EN")), cell->connections.at("\\DATA")); merge_en_data(merged_en, merged_data, sigmap(cell->connections.at("\\EN")), sigmap(cell->connections.at("\\DATA")));
} else { } else {
RTLIL::SigSpec cell_en = sigmap(cell->connections.at("\\EN"));
RTLIL::SigSpec cell_data = sigmap(cell->connections.at("\\DATA"));
for (int k = 0; k < int(en_bits.size()); k++) for (int k = 0; k < int(en_bits.size()); k++)
if (!active_bits_on_port[last_i][k]) { if (!active_bits_on_port[last_i][k]) {
merged_en.replace(k, cell->connections.at("\\EN").extract(k, 1)); merged_en.replace(k, cell_en.extract(k, 1));
merged_data.replace(k, cell->connections.at("\\DATA").extract(k, 1)); merged_data.replace(k, cell_data.extract(k, 1));
} }
merged_en.optimize(); merged_en.optimize();
merged_data.optimize(); merged_data.optimize();
@ -247,13 +450,28 @@ struct MemoryShareWorker
last_port_by_addr[addr] = i; last_port_by_addr[addr] = i;
} }
// Clean up `wr_ports': remove all NULL entries
std::vector<RTLIL::Cell*> wr_ports_with_nulls;
wr_ports_with_nulls.swap(wr_ports);
for (auto cell : wr_ports_with_nulls)
if (cell != NULL)
wr_ports.push_back(cell);
} }
// -------------
// Setup and run
// -------------
MemoryShareWorker(RTLIL::Design *design, RTLIL::Module *module) : MemoryShareWorker(RTLIL::Design *design, RTLIL::Module *module) :
design(design), module(module), sigmap(module) design(design), module(module), sigmap(module)
{ {
std::map<std::string, std::pair<std::vector<RTLIL::Cell*>, std::vector<RTLIL::Cell*>>> memindex; std::map<std::string, std::pair<std::vector<RTLIL::Cell*>, std::vector<RTLIL::Cell*>>> memindex;
sigmap_xmux = sigmap;
for (auto &it : module->cells) for (auto &it : module->cells)
{ {
RTLIL::Cell *cell = it.second; RTLIL::Cell *cell = it.second;
@ -266,19 +484,27 @@ struct MemoryShareWorker
if (cell->type == "$mux") if (cell->type == "$mux")
{ {
RTLIL::SigSpec sig_a = sigmap(cell->connections.at("\\A")); RTLIL::SigSpec sig_a = sigmap_xmux(cell->connections.at("\\A"));
RTLIL::SigSpec sig_b = sigmap(cell->connections.at("\\B")); RTLIL::SigSpec sig_b = sigmap_xmux(cell->connections.at("\\B"));
if (sig_a.is_fully_undef()) if (sig_a.is_fully_undef())
sigmap.add(cell->connections.at("\\Y"), sig_b); sigmap_xmux.add(cell->connections.at("\\Y"), sig_b);
else if (sig_b.is_fully_undef()) else if (sig_b.is_fully_undef())
sigmap.add(cell->connections.at("\\Y"), sig_a); sigmap_xmux.add(cell->connections.at("\\Y"), sig_a);
}
if (cell->type == "$mux" || cell->type == "$pmux")
{
std::vector<RTLIL::SigBit> sig_y = sigmap(cell->connections.at("\\Y"));
for (int i = 0; i < int(sig_y.size()); i++)
sig_to_mux[sig_y[i]] = std::pair<RTLIL::Cell*, int>(cell, i);
} }
} }
for (auto &it : memindex) { for (auto &it : memindex) {
std::sort(it.second.first.begin(), it.second.first.end(), memcells_cmp); std::sort(it.second.first.begin(), it.second.first.end(), memcells_cmp);
std::sort(it.second.second.begin(), it.second.second.end(), memcells_cmp); std::sort(it.second.second.begin(), it.second.second.end(), memcells_cmp);
translate_rd_feedback_to_en(it.first, it.second.first, it.second.second);
consolidate_wr_by_addr(it.first, it.second.second); consolidate_wr_by_addr(it.first, it.second.second);
} }
} }

View File

@ -0,0 +1,24 @@
// expect-wr-ports 1
// expect-rd-ports 1
module test(clk, rd_addr, rd_data, wr_addr, wr_en, wr_data);
input clk;
input [3:0] rd_addr;
output reg [31:0] rd_data;
input [3:0] wr_addr, wr_en;
input [31:0] wr_data;
reg [31:0] mem [0:15];
always @(posedge clk) begin
mem[wr_addr][ 7: 0] <= wr_en[0] ? wr_data[ 7: 0] : mem[wr_addr][ 7: 0];
mem[wr_addr][15: 8] <= wr_en[1] ? wr_data[15: 8] : mem[wr_addr][15: 8];
mem[wr_addr][23:16] <= wr_en[2] ? wr_data[23:16] : mem[wr_addr][23:16];
mem[wr_addr][31:24] <= wr_en[3] ? wr_data[31:24] : mem[wr_addr][31:24];
rd_data <= mem[rd_addr];
end
endmodule