Speed up TopoSort. The main sorting algorithm implementation in TopoSort::sort_worker is 11-12x faster. Overall, the complete sequence of building the graph and sorting is about 2.5-3x faster. The overall impact in e.g. the replace_const_cells optimization pass is a ~25% speedup. End-to-end impact on our synthesis flow is about 3%.

This commit is contained in:
Rasmus Munk Larsen 2023-09-20 15:49:05 -07:00
parent 8fb807cd24
commit e0042bdff7
5 changed files with 126 additions and 79 deletions

View File

@ -31,34 +31,30 @@ YOSYS_NAMESPACE_BEGIN
// A map-like container, but you can save and restore the state // A map-like container, but you can save and restore the state
// ------------------------------------------------ // ------------------------------------------------
template<typename Key, typename T, typename OPS = hash_ops<Key>> template <typename Key, typename T, typename OPS = hash_ops<Key>> struct stackmap {
struct stackmap private:
{ std::vector<dict<Key, T *, OPS>> backup_state;
private:
std::vector<dict<Key, T*, OPS>> backup_state;
dict<Key, T, OPS> current_state; dict<Key, T, OPS> current_state;
static T empty_tuple; static T empty_tuple;
public: public:
stackmap() { } stackmap() {}
stackmap(const dict<Key, T, OPS> &other) : current_state(other) { } stackmap(const dict<Key, T, OPS> &other) : current_state(other) {}
template<typename Other> template <typename Other> stackmap &operator=(const Other &other)
void operator=(const Other &other)
{ {
for (auto &it : current_state) for (const auto &it : current_state)
if (!backup_state.empty() && backup_state.back().count(it.first) == 0) if (!backup_state.empty() && backup_state.back().count(it.first) == 0)
backup_state.back()[it.first] = new T(it.second); backup_state.back()[it.first] = new T(it.second);
current_state.clear(); current_state.clear();
for (auto &it : other) for (const auto &it : other)
set(it.first, it.second); set(it.first, it.second);
return *this;
} }
bool has(const Key &k) bool has(const Key &k) { return current_state.count(k) != 0; }
{
return current_state.count(k) != 0;
}
void set(const Key &k, const T &v) void set(const Key &k, const T &v)
{ {
@ -83,7 +79,7 @@ public:
void reset(const Key &k) void reset(const Key &k)
{ {
for (int i = GetSize(backup_state)-1; i >= 0; i--) for (int i = GetSize(backup_state) - 1; i >= 0; i--)
if (backup_state[i].count(k) != 0) { if (backup_state[i].count(k) != 0) {
if (backup_state[i].at(k) == nullptr) if (backup_state[i].at(k) == nullptr)
current_state.erase(k); current_state.erase(k);
@ -94,20 +90,14 @@ public:
current_state.erase(k); current_state.erase(k);
} }
const dict<Key, T, OPS> &stdmap() const dict<Key, T, OPS> &stdmap() { return current_state; }
{
return current_state;
}
void save() void save() { backup_state.resize(backup_state.size() + 1); }
{
backup_state.resize(backup_state.size()+1);
}
void restore() void restore()
{ {
log_assert(!backup_state.empty()); log_assert(!backup_state.empty());
for (auto &it : backup_state.back()) for (const auto &it : backup_state.back())
if (it.second != nullptr) { if (it.second != nullptr) {
current_state[it.first] = *it.second; current_state[it.first] = *it.second;
delete it.second; delete it.second;
@ -123,46 +113,116 @@ public:
} }
}; };
// ------------------------------------------------ // ------------------------------------------------
// A simple class for topological sorting // A simple class for topological sorting
// ------------------------------------------------ // ------------------------------------------------
template<typename T, typename C = std::less<T>> template <typename T, typename C = std::less<T>, typename OPS = hash_ops<T>> class TopoSort
struct TopoSort
{ {
bool analyze_loops, found_loops; public:
std::map<T, std::set<T, C>, C> database; // We use this ordering of the edges in the adjacency matrix for
std::set<std::set<T, C>> loops; // exact compatibility with an older implementation.
std::vector<T> sorted; struct IndirectCmp {
IndirectCmp(const std::vector<T> &nodes) : nodes_(nodes) {}
bool operator()(int a, int b) const
{
log_assert(static_cast<size_t>(a) < nodes_.size());
log_assert(static_cast<size_t>(b) < nodes_.size());
return node_cmp_(nodes_[a], nodes_[b]);
}
const C node_cmp_;
const std::vector<T> &nodes_;
};
TopoSort() bool analyze_loops;
std::map<T, int, C> node_to_index;
std::vector<std::set<int, IndirectCmp>> edges;
std::vector<T> sorted;
std::set<std::set<T, C>> loops;
public:
TopoSort() : indirect_cmp(nodes)
{ {
analyze_loops = true; analyze_loops = true;
found_loops = false; found_loops = false;
} }
void node(T n) int node(T n)
{ {
if (database.count(n) == 0) auto it = node_to_index.find(n);
database[n] = std::set<T, C>(); if (it == node_to_index.end()) {
int index = static_cast<size_t>(nodes.size());
node_to_index[n] = index;
nodes.push_back(n);
edges.push_back(std::set<int, IndirectCmp>(indirect_cmp));
return index;
}
return it->second;
} }
void edge(T left, T right) void edge(int l_index, int r_index) { edges[r_index].insert(l_index); }
void edge(T left, T right) { edge(node(left), node(right)); }
bool has_edges(const T &node)
{ {
node(left); auto it = node_to_index.find(node);
database[right].insert(left); return it == node_to_index.end() || !edges[it->second].empty();
} }
void sort_worker(const T &n, std::set<T, C> &marked_cells, std::set<T, C> &active_cells, std::vector<T> &active_stack) bool sort()
{ {
if (active_cells.count(n)) { log_assert(GetSize(node_to_index) == GetSize(edges));
log_assert(GetSize(nodes) == GetSize(edges));
loops.clear();
sorted.clear();
found_loops = false;
std::vector<bool> marked_cells(edges.size(), false);
std::vector<bool> active_cells(edges.size(), false);
std::vector<int> active_stack;
marked_cells.reserve(edges.size());
sorted.reserve(edges.size());
for (const auto &it : node_to_index)
sort_worker(it.second, marked_cells, active_cells, active_stack);
log_assert(GetSize(sorted) == GetSize(nodes));
return !found_loops;
}
// Build the more expensive representation of edges for
// a few passes that use it directly.
std::map<T, std::set<T, C>, C> get_database()
{
std::map<T, std::set<T, C>, C> database;
for (size_t i = 0; i < nodes.size(); ++i) {
std::set<T, C> converted_edge_set;
for (int other_node : edges[i]) {
converted_edge_set.insert(nodes[other_node]);
}
database.emplace(nodes[i], converted_edge_set);
}
return database;
}
private:
bool found_loops;
std::vector<T> nodes;
const IndirectCmp indirect_cmp;
void sort_worker(const int root_index, std::vector<bool> &marked_cells, std::vector<bool> &active_cells, std::vector<int> &active_stack)
{
if (active_cells[root_index]) {
found_loops = true; found_loops = true;
if (analyze_loops) { if (analyze_loops) {
std::set<T, C> loop; std::set<T, C> loop;
for (int i = GetSize(active_stack)-1; i >= 0; i--) { for (int i = GetSize(active_stack) - 1; i >= 0; i--) {
loop.insert(active_stack[i]); const int index = active_stack[i];
if (active_stack[i] == n) loop.insert(nodes[index]);
if (index == root_index)
break; break;
} }
loops.insert(loop); loops.insert(loop);
@ -170,42 +230,24 @@ struct TopoSort
return; return;
} }
if (marked_cells.count(n)) if (marked_cells[root_index])
return; return;
if (!database.at(n).empty()) if (!edges[root_index].empty()) {
{
if (analyze_loops) if (analyze_loops)
active_stack.push_back(n); active_stack.push_back(root_index);
active_cells.insert(n); active_cells[root_index] = true;
for (auto &left_n : database.at(n)) for (int left_n : edges[root_index])
sort_worker(left_n, marked_cells, active_cells, active_stack); sort_worker(left_n, marked_cells, active_cells, active_stack);
if (analyze_loops) if (analyze_loops)
active_stack.pop_back(); active_stack.pop_back();
active_cells.erase(n); active_cells[root_index] = false;
} }
marked_cells.insert(n); marked_cells[root_index] = true;
sorted.push_back(n); sorted.push_back(nodes[root_index]);
}
bool sort()
{
loops.clear();
sorted.clear();
found_loops = false;
std::set<T, C> marked_cells;
std::set<T, C> active_cells;
std::vector<T> active_stack;
for (auto &it : database)
sort_worker(it.first, marked_cells, active_cells, active_stack);
log_assert(GetSize(sorted) == GetSize(database));
return !found_loops;
} }
}; };

View File

@ -582,7 +582,7 @@ struct GliftPass : public Pass {
for (auto cell : module->selected_cells()) { for (auto cell : module->selected_cells()) {
RTLIL::Module *tpl = design->module(cell->type); RTLIL::Module *tpl = design->module(cell->type);
if (tpl != nullptr) { if (tpl != nullptr) {
if (topo_modules.database.count(tpl) == 0) if (!topo_modules.has_edges(tpl))
worklist.push_back(tpl); worklist.push_back(tpl);
topo_modules.edge(tpl, module); topo_modules.edge(tpl, module);
non_top_modules.insert(cell->type); non_top_modules.insert(cell->type);

View File

@ -424,13 +424,18 @@ void replace_const_cells(RTLIL::Design *design, RTLIL::Module *module, bool cons
for (auto &bit : sig) for (auto &bit : sig)
outbit_to_cell[bit].insert(cell); outbit_to_cell[bit].insert(cell);
} }
cells.node(cell);
} }
for (auto &it_right : cell_to_inbit) // Build the graph for the topological sort.
for (auto &it_sigbit : it_right.second) for (auto &it_right : cell_to_inbit) {
for (auto &it_left : outbit_to_cell[it_sigbit]) const int r_index = cells.node(it_right.first);
cells.edge(it_left, it_right.first); for (auto &it_sigbit : it_right.second) {
for (auto &it_left : outbit_to_cell[it_sigbit]) {
const int l_index = cells.node(it_left);
cells.edge(l_index, r_index);
}
}
}
cells.sort(); cells.sort();

View File

@ -1032,7 +1032,7 @@ struct ShareWorker
} }
bool found_scc = !toposort.sort(); bool found_scc = !toposort.sort();
topo_cell_drivers = std::move(toposort.database); topo_cell_drivers = toposort.get_database();
if (found_scc && toposort.analyze_loops) if (found_scc && toposort.analyze_loops)
for (auto &loop : toposort.loops) { for (auto &loop : toposort.loops) {

View File

@ -312,7 +312,7 @@ struct FlattenPass : public Pass {
for (auto cell : module->selected_cells()) { for (auto cell : module->selected_cells()) {
RTLIL::Module *tpl = design->module(cell->type); RTLIL::Module *tpl = design->module(cell->type);
if (tpl != nullptr) { if (tpl != nullptr) {
if (topo_modules.database.count(tpl) == 0) if (!topo_modules.has_edges(tpl))
worklist.insert(tpl); worklist.insert(tpl);
topo_modules.edge(tpl, module); topo_modules.edge(tpl, module);
} }