Merge pull request #782 from whitequark/flowmap_dfs

flowmap: construct a max-volume max-flow min-cut, not just any one
This commit is contained in:
Clifford Wolf 2019-01-07 09:47:57 +01:00 committed by GitHub
commit dbd51d7bda
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 249 additions and 130 deletions

View File

@ -19,7 +19,7 @@
// [[CITE]]
// Jason Cong; Yuzheng Ding, "An Optimal Technology Mapping Algorithm for Delay Optimization in Lookup-Table Based FPGA Designs,"
// Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 13, no. 1, Jan 1994
// Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, Vol. 13, pp. 1-12, Jan. 1994.
// doi: 10.1109/43.273754
// Required reading material:
@ -27,7 +27,8 @@
// Min-cut max-flow theorem:
// https://www.coursera.org/lecture/algorithms-part2/maxflow-mincut-theorem-beb9G
// FlowMap paper:
// http://cadlab.cs.ucla.edu/~cong/papers/iccad92.pdf
// http://cadlab.cs.ucla.edu/~cong/papers/iccad92.pdf (short version)
// https://limsk.ece.gatech.edu/book/papers/flowmap.pdf (long version)
// Notes on implementation:
//
@ -50,7 +51,8 @@
// 3. The paper ambiguously states: "Moreover, we can find such a cut (X, X̅) by performing a depth first search starting at the source s,
// and including in X all the nodes which are reachable from s." This actually refers to a specific kind of search, mincut computation.
// Mincut computation involves computing the set of nodes reachable from s by an undirected path with no full (i.e. zero capacity) forward
// edges or empty (i.e. no flow) backward edges.
// edges or empty (i.e. no flow) backward edges. In addition, the depth first search is required to compute a max-volume max-flow min-cut
// specifically, because a max-flow min-cut is not, in general, unique.
#include "kernel/yosys.h"
#include "kernel/sigtools.h"
@ -63,10 +65,10 @@ PRIVATE_NAMESPACE_BEGIN
struct GraphStyle
{
string label;
string color;
string color, fillcolor;
GraphStyle(string label = "", string color = "black") :
label(label), color(color) {}
GraphStyle(string label = "", string color = "black", string fillcolor = "") :
label(label), color(color), fillcolor(fillcolor) {}
};
static string dot_escape(string value)
@ -109,13 +111,11 @@ static void dump_dot_graph(string filename,
if (outputs[node])
shape = "octagon";
auto prop = node_style(node);
string id;
if (node == SigBit())
id = "(source)";
else
id = log_signal(node);
fprintf(f, " n%d [ shape=%s, fontname=\"Monospace\", label=\"%s%s\", color=\"%s\" ];\n",
ids[node], shape.c_str(), dot_escape(id).c_str(), dot_escape(prop.label.c_str()).c_str(), prop.color.c_str());
string style = "";
if (!prop.fillcolor.empty())
style = "filled";
fprintf(f, " n%d [ shape=%s, fontname=\"Monospace\", label=\"%s\", color=\"%s\", fillcolor=\"%s\", style=\"%s\" ];\n",
ids[node], shape.c_str(), dot_escape(prop.label.c_str()).c_str(), prop.color.c_str(), prop.fillcolor.c_str(), style.c_str());
}
fprintf(f, " { rank=\"source\"; ");
@ -137,8 +137,8 @@ static void dump_dot_graph(string filename,
if (nodes[source] && nodes[sink])
{
auto prop = edge_style(source, sink);
fprintf(f, " n%d -> n%d [ label=\"%s\", color=\"%s\" ];\n",
ids[source], ids[sink], dot_escape(prop.label.c_str()).c_str(), prop.color.c_str());
fprintf(f, " n%d -> n%d [ label=\"%s\", color=\"%s\", fillcolor=\"%s\" ];\n",
ids[source], ids[sink], dot_escape(prop.label.c_str()).c_str(), prop.color.c_str(), prop.fillcolor.c_str());
}
}
}
@ -163,7 +163,7 @@ struct FlowGraph
void dump_dot_graph(string filename)
{
auto node_style = [&](RTLIL::SigBit node) {
string label;
string label = (node == source) ? "(source)" : log_signal(node);
for (auto collapsed_node : collapsed[node])
label += stringf(" %s", log_signal(collapsed_node));
int flow = node_flow[node];
@ -357,10 +357,12 @@ struct FlowGraph
NodePrime source_prime = {source, true};
NodePrime sink_prime = {sink, false};
pool<NodePrime> worklist = {source_prime}, visited;
pool<NodePrime> visited;
vector<NodePrime> worklist = {source_prime};
while (!worklist.empty())
{
auto node_prime = worklist.pop();
auto node_prime = worklist.back();
worklist.pop_back();
if (visited[node_prime])
continue;
visited.insert(node_prime);
@ -373,18 +375,18 @@ struct FlowGraph
if (!node_prime.is_bottom) // top
{
if (node_flow[node_prime.node] < MAX_NODE_FLOW)
worklist.insert(node_prime.as_bottom());
worklist.push_back(node_prime.as_bottom());
for (auto node_pred : edges_bw[node_prime.node])
if (edge_flow[{node_pred, node_prime.node}] > 0)
worklist.insert(NodePrime::bottom(node_pred));
worklist.push_back(NodePrime::bottom(node_pred));
}
else // bottom
{
if (node_flow[node_prime.node] > 0)
worklist.insert(node_prime.as_top());
worklist.push_back(node_prime.as_top());
for (auto node_succ : edges_fw[node_prime.node])
if (true /* edge_flow[...] < ∞ */)
worklist.insert(NodePrime::top(node_succ));
worklist.push_back(NodePrime::top(node_succ));
}
}
@ -403,47 +405,73 @@ struct FlowGraph
struct FlowmapWorker
{
int order;
pool<IdString> cell_types;
bool debug;
RTLIL::Module *module;
SigMap sigmap;
ModIndex index;
pool<RTLIL::Cell*> cells;
dict<RTLIL::SigBit, ModIndex::PortInfo> node_origins;
pool<RTLIL::SigBit> nodes, inputs, outputs;
dict<RTLIL::SigBit, pool<RTLIL::SigBit>> edges_fw, edges_bw;
dict<RTLIL::SigBit, int> labels;
dict<RTLIL::SigBit, pool<RTLIL::SigBit>> lut_gates, lut_inputs;
pool<RTLIL::SigBit> lut_nodes;
dict<RTLIL::SigBit, pool<RTLIL::SigBit>> lut_gates;
dict<RTLIL::SigBit, pool<RTLIL::SigBit>> lut_edges_fw, lut_edges_bw;
dict<RTLIL::SigBit, ModIndex::PortInfo> node_origins;
dict<RTLIL::Cell*, pool<RTLIL::SigBit>> cell_fanout;
int gate_count = 0, lut_count = 0, packed_count = 0;
int gate_area = 0, lut_area = 0;
int mapped_count = 0, packed_count = 0, unique_packed_count = 0;
enum class GraphMode {
Label,
Cut,
};
void dump_dot_graph(string filename, pool<RTLIL::SigBit> subgraph = {}, pair<pool<RTLIL::SigBit>, pool<RTLIL::SigBit>> cut = {})
void dump_dot_graph(string filename, GraphMode mode,
pool<RTLIL::SigBit> subgraph_nodes = {}, dict<RTLIL::SigBit, pool<RTLIL::SigBit>> subgraph_edges = {},
dict<RTLIL::SigBit, pool<RTLIL::SigBit>> collapsed = {},
pair<pool<RTLIL::SigBit>, pool<RTLIL::SigBit>> cut = {})
{
if (subgraph.empty())
subgraph = nodes;
if (subgraph_nodes.empty())
subgraph_nodes = nodes;
if (subgraph_edges.empty())
subgraph_edges = edges_fw;
auto node_style = [&](RTLIL::SigBit node) {
string label, color;
if (labels[node] == -1)
label = string("\n<unlabeled>");
else
label = stringf("\nl=%d", labels[node]);
color = "black";
if (cut.first[node])
color = "blue";
if (cut.second[node])
color = "red";
return GraphStyle{label, color};
string label = log_signal(node);
for (auto collapsed_node : collapsed[node])
if (collapsed_node != node)
label += stringf(" %s", log_signal(collapsed_node));
switch (mode)
{
case GraphMode::Label:
if (labels[node] == -1)
{
label += "\nl=?";
return GraphStyle{label};
}
else
{
label += stringf("\nl=%d", labels[node]);
string fillcolor = stringf("/set311/%d", 1 + labels[node] % 11);
return GraphStyle{label, "", fillcolor};
}
case GraphMode::Cut:
if (cut.first[node])
return GraphStyle{label, "blue"};
if (cut.second[node])
return GraphStyle{label, "red"};
return GraphStyle{label};
}
return GraphStyle{label};
};
auto edge_style = [&](RTLIL::SigBit, RTLIL::SigBit) {
return GraphStyle{};
};
::dump_dot_graph(filename, subgraph, edges_fw, inputs, outputs, node_style, edge_style, module->name.str());
::dump_dot_graph(filename, subgraph_nodes, subgraph_edges, inputs, outputs, node_style, edge_style, module->name.str());
}
pool<RTLIL::SigBit> find_subgraph(RTLIL::SigBit sink)
@ -502,57 +530,56 @@ struct FlowmapWorker
return flow_graph;
}
FlowmapWorker(int order, pool<IdString> cell_types, bool debug, RTLIL::Module *module) :
order(order), cell_types(cell_types), debug(debug), module(module), sigmap(module), index(module)
void discover_nodes(pool<IdString> cell_types)
{
log("Labeling cells.\n");
for (auto cell : module->selected_cells())
{
if (cell_types[cell->type])
if (!cell_types[cell->type])
continue;
if (!cell->known())
log_error("Cell %s (%s.%s) is unknown.\n", cell->type.c_str(), log_id(module), log_id(cell));
pool<RTLIL::SigBit> fanout;
for (auto conn : cell->connections())
{
if (!cell->known())
if (!cell->output(conn.first)) continue;
int offset = -1;
for (auto bit : conn.second)
{
log_error("Cell %s (%s.%s) is unknown.\n", cell->type.c_str(), log_id(module), log_id(cell));
offset++;
if (!bit.wire) continue;
auto mapped_bit = sigmap(bit);
if (nodes[mapped_bit])
log_error("Multiple drivers found for wire %s.\n", log_signal(mapped_bit));
nodes.insert(mapped_bit);
node_origins[mapped_bit] = ModIndex::PortInfo(cell, conn.first, offset);
fanout.insert(mapped_bit);
}
cells.insert(cell);
for (auto conn : cell->connections())
{
if (!cell->output(conn.first)) continue;
int offset = -1;
for (auto bit : conn.second)
{
offset++;
if (!bit.wire) continue;
auto mapped_bit = sigmap(bit);
if (nodes[mapped_bit])
log_error("Multiple drivers found for wire %s.\n", log_signal(mapped_bit));
nodes.insert(mapped_bit);
node_origins[mapped_bit] = ModIndex::PortInfo(cell, conn.first, offset);
cell_fanout[cell].insert(mapped_bit);
}
}
int fanin = 0;
for (auto conn : cell->connections())
{
if (!cell->input(conn.first)) continue;
for (auto bit : sigmap(conn.second))
{
if (!bit.wire) continue;
for (auto fanout_bit : cell_fanout[cell])
{
edges_fw[bit].insert(fanout_bit);
edges_bw[fanout_bit].insert(bit);
}
fanin++;
}
}
if (fanin > order)
log_error("Cell %s (%s.%s) with fan-in %d cannot be mapped to a %d-LUT.\n",
cell->type.c_str(), log_id(module), log_id(cell), fanin, order);
}
int fanin = 0;
for (auto conn : cell->connections())
{
if (!cell->input(conn.first)) continue;
for (auto bit : sigmap(conn.second))
{
if (!bit.wire) continue;
for (auto fanout_bit : fanout)
{
edges_fw[bit].insert(fanout_bit);
edges_bw[fanout_bit].insert(bit);
}
fanin++;
}
}
if (fanin > order)
log_error("Cell %s (%s.%s) with fan-in %d cannot be mapped to a %d-LUT.\n",
cell->type.c_str(), log_id(module), log_id(cell), fanin, order);
gate_count++;
gate_area += 1 << fanin;
}
for (auto edge : edges_fw)
@ -574,15 +601,23 @@ struct FlowmapWorker
outputs.insert(node);
}
if (debug)
{
dump_dot_graph("flowmap-initial.dot", GraphMode::Label);
log("Dumped initial graph to `flowmap-initial.dot`.\n");
}
}
void label_nodes()
{
for (auto node : nodes)
labels[node] = -1;
for (auto input : inputs)
labels[input] = 0;
if (debug)
{
dump_dot_graph("flowmap-init.dot");
log("Dumped complete combinatorial graph to `flowmap-init.dot`.\n");
if (input.wire->attributes.count("\\$flowmap_level"))
labels[input] = input.wire->attributes["\\$flowmap_level"].as_int();
else
labels[input] = 0;
}
pool<RTLIL::SigBit> worklist = nodes;
@ -644,23 +679,25 @@ struct FlowmapWorker
k.insert(xi_node_pred);
}
log_assert((int)k.size() <= order);
lut_inputs[sink] = k;
lut_edges_bw[sink] = k;
for (auto k_node : k)
lut_edges_fw[k_node].insert(sink);
if (debug)
{
log(" Maximum flow: %d. Assigned label %d.\n", flow, labels[sink]);
dump_dot_graph(stringf("flowmap-%d-sub.dot", debug_num), subgraph, {x, xi});
dump_dot_graph(stringf("flowmap-%d-sub.dot", debug_num), GraphMode::Cut, subgraph, {}, {}, {x, xi});
log(" Dumped subgraph to `flowmap-%d-sub.dot`.\n", debug_num);
flow_graph.dump_dot_graph(stringf("flowmap-%d-flow.dot", debug_num));
log(" Dumped flow graph to `flowmap-%d-flow.dot`.\n", debug_num);
log(" LUT packed:");
for (auto xi_node : xi)
log(" %s", log_signal(xi_node));
log(".\n");
log(" LUT inputs:");
for (auto k_node : k)
log(" %s", log_signal(k_node));
log(".\n");
log(" LUT packed gates:");
for (auto xi_node : xi)
log(" %s", log_signal(xi_node));
log(".\n");
}
for (auto sink_succ : edges_fw[sink])
@ -669,27 +706,49 @@ struct FlowmapWorker
if (debug)
{
dump_dot_graph("flowmap-done.dot");
log("Dumped complete combinatorial graph to `flowmap-done.dot`.\n");
dump_dot_graph("flowmap-labeled.dot", GraphMode::Label);
log("Dumped labeled graph to `flowmap-labeled.dot`.\n");
}
}
int pack_luts()
{
pool<RTLIL::SigBit> worklist = outputs;
while (!worklist.empty())
{
auto lut_node = worklist.pop();
lut_nodes.insert(lut_node);
for (auto input_node : lut_edges_bw[lut_node])
if (!lut_nodes[input_node] && !inputs[input_node])
worklist.insert(input_node);
}
int depth = 0;
for (auto label : labels)
depth = max(depth, label.second);
log("Maximum depth: %d levels.\n", depth);
log("Solved to %d LUTs in %d levels.\n", (int)lut_nodes.size(), depth);
if (debug)
{
pool<RTLIL::SigBit> lut_and_input_nodes;
lut_and_input_nodes.insert(lut_nodes.begin(), lut_nodes.end());
lut_and_input_nodes.insert(inputs.begin(), inputs.end());
dump_dot_graph("flowmap-packed.dot", GraphMode::Label, lut_and_input_nodes, lut_edges_fw, lut_gates);
log("Dumped packed graph to `flowmap-packed.dot`.\n");
}
return depth;
}
void map_cells(int minlut)
{
ConstEval ce(module);
for (auto input_node : inputs)
ce.stop(input_node);
log("\n");
log("Mapping cells.\n");
pool<RTLIL::SigBit> mapped_nodes;
worklist = outputs;
while (!worklist.empty())
for (auto node : lut_nodes)
{
auto node = worklist.pop();
if (node_origins.count(node))
{
auto origin = node_origins[node];
@ -721,8 +780,8 @@ struct FlowmapWorker
log_id(module), log_id(gate_origin.cell), gate_origin.port.c_str(), gate_origin.offset, log_signal(gate_node));
}
vector<RTLIL::SigBit> input_nodes(lut_inputs[node].begin(), lut_inputs[node].end());
RTLIL::Const lut_table(State::Sx, 1 << input_nodes.size());
vector<RTLIL::SigBit> input_nodes(lut_edges_bw[node].begin(), lut_edges_bw[node].end());
RTLIL::Const lut_table(State::Sx, max(1 << input_nodes.size(), 1 << minlut));
for (unsigned i = 0; i < (1 << input_nodes.size()); i++)
{
ce.push();
@ -746,29 +805,25 @@ struct FlowmapWorker
RTLIL::SigSpec lut_a, lut_y = node;
for (auto input_node : input_nodes)
lut_a.append_bit(input_node);
lut_a.append(RTLIL::Const(State::Sx, minlut - input_nodes.size()));
RTLIL::Cell *lut = module->addLut(NEW_ID, lut_a, lut_y, lut_table);
mapped_count++;
mapped_nodes.insert(node);
for (auto gate_node : lut_gates[node])
{
auto gate_origin = node_origins[gate_node];
lut->add_strpool_attribute("\\src", gate_origin.cell->get_strpool_attribute("\\src"));
packed_count++;
}
lut_count++;
lut_area += lut_table.size();
log(" Packed into a %d-LUT %s.%s.\n", (int)input_nodes.size(), log_id(module), log_id(lut));
mapped_nodes.insert(node);
for (auto input_node : input_nodes)
{
if (!mapped_nodes[input_node] && !inputs[input_node])
worklist.insert(input_node);
}
if ((int)input_nodes.size() >= minlut)
log(" Packed into a %d-LUT %s.%s.\n", (int)input_nodes.size(), log_id(module), log_id(lut));
else
log(" Packed into a %d-LUT %s.%s (implemented as %d-LUT).\n", (int)input_nodes.size(), log_id(module), log_id(lut), minlut);
}
unique_packed_count += nodes.size();
for (auto node : mapped_nodes)
{
auto origin = node_origins[node];
@ -777,6 +832,19 @@ struct FlowmapWorker
origin.cell->setPort(origin.port, driver);
}
}
FlowmapWorker(int order, int minlut, pool<IdString> cell_types, bool debug, RTLIL::Module *module) :
order(order), debug(debug), module(module), sigmap(module), index(module)
{
log("Labeling cells.\n");
discover_nodes(cell_types);
label_nodes();
pack_luts();
log("\n");
log("Mapping cells.\n");
map_cells(minlut);
}
};
static void split(std::vector<std::string> &tokens, const std::string &text, char sep)
@ -802,10 +870,13 @@ struct FlowmapPass : public Pass {
log("be evaluated with the `eval` pass, including cells with multiple output ports\n");
log("and multi-bit input and output ports.\n");
log("\n");
log(" -maxlut <k>\n");
log(" -maxlut k\n");
log(" perform technology mapping for a k-LUT architecture. if not specified,\n");
log(" defaults to 3.\n");
log("\n");
log(" -minlut n\n");
log(" only produce n-input or larger LUTs. if not specified, defaults to 1.\n");
log("\n");
log(" -cells <cell>[,<cell>,...]\n");
log(" map specified cells. if not specified, maps $_NOT_, $_AND_, $_OR_,\n");
log(" $_XOR_ and $_MUX_, which are the outputs of the `simplemap` pass.\n");
@ -816,9 +887,8 @@ struct FlowmapPass : public Pass {
}
void execute(std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
{
log_header(design, "Executing FLOWMAP pass (pack LUTs with FlowMap).\n");
int order = 3;
int minlut = 1;
vector<string> cells;
bool debug = false;
@ -830,6 +900,11 @@ struct FlowmapPass : public Pass {
order = atoi(args[++argidx].c_str());
continue;
}
if (args[argidx] == "-minlut" && argidx + 1 < args.size())
{
minlut = atoi(args[++argidx].c_str());
continue;
}
if (args[argidx] == "-cells" && argidx + 1 < args.size())
{
split(cells, args[++argidx], ',');
@ -855,18 +930,24 @@ struct FlowmapPass : public Pass {
cell_types = {"$_NOT_", "$_AND_", "$_OR_", "$_XOR_", "$_MUX_"};
}
int mapped_count = 0, packed_count = 0, unique_packed_count = 0;
log_header(design, "Executing FLOWMAP pass (pack LUTs with FlowMap).\n");
int gate_count = 0, lut_count = 0, packed_count = 0;
int gate_area = 0, lut_area = 0;
for (auto module : design->selected_modules())
{
FlowmapWorker worker(order, cell_types, debug, module);
mapped_count += worker.mapped_count;
FlowmapWorker worker(order, minlut, cell_types, debug, module);
gate_count += worker.gate_count;
lut_count += worker.lut_count;
packed_count += worker.packed_count;
unique_packed_count += worker.unique_packed_count;
gate_area += worker.gate_area;
lut_area += worker.lut_area;
}
log("\n");
log("Mapped %d LUTs.\n", mapped_count);
log("Packed %d cells %d times.\n", unique_packed_count, packed_count);
log("Mapped %d LUTs.\n", lut_count);
log("Packed %d cells; duplicated %d cells.\n", packed_count, packed_count - gate_count);
log("Solution has %.1f%% area overhead.\n", (lut_area - gate_area) * 100.0 / gate_area);
}
} FlowmapPass;

View File

@ -0,0 +1,22 @@
// Exact reproduction of Figure 2(a) from 10.1109/43.273754.
module top(...);
input a,b,c,d,e,f;
wire nA = b&c;
wire A = !nA;
wire nB = c|d;
wire B = !nB;
wire nC = e&f;
wire C = !nC;
wire D = A|B;
wire E = a&D;
wire nF = D&C;
wire F = !nF;
wire nG = F|B;
wire G = !nG;
wire H = a&F;
wire I = E|G;
wire J = G&C;
wire np = H&I;
output p = !np;
output q = A|J;
endmodule

View File

@ -0,0 +1,16 @@
// Like flow.v, but results in a network identical to Figure 2(b).
module top(...);
input a,b,c,d,e,f;
wire A = b&c;
wire B = c|d;
wire C = e&f;
wire D = A|B;
wire E = a&D;
wire F = D&C;
wire G = F|B;
wire H = a&F;
wire I = E|G;
wire J = G&C;
output p = H&I;
output q = A|J;
endmodule