mirror of https://github.com/YosysHQ/yosys.git
Merge remote-tracking branch 'origin/master' into eddie/deferred_top
This commit is contained in:
commit
d6a84a78a7
|
@ -36,6 +36,8 @@ Yosys 0.9 .. Yosys 0.9-dev
|
|||
- Added "ice40_wrapcarry" to encapsulate SB_LUT+SB_CARRY pairs for techmapping
|
||||
- Removed "ice40_unlut"
|
||||
- Improvements in pmgen: slices, choices, define, generate
|
||||
- Added "xilinx_srl" for Xilinx shift register extraction
|
||||
- Removed "shregmap -tech xilinx" (superseded by "xilinx_srl")
|
||||
|
||||
Yosys 0.8 .. Yosys 0.9
|
||||
----------------------
|
||||
|
|
3
Makefile
3
Makefile
|
@ -115,7 +115,7 @@ LDFLAGS += -rdynamic
|
|||
LDLIBS += -lrt
|
||||
endif
|
||||
|
||||
YOSYS_VER := 0.9+1
|
||||
YOSYS_VER := 0.9+36
|
||||
GIT_REV := $(shell cd $(YOSYS_SRC) && git rev-parse --short HEAD 2> /dev/null || echo UNKNOWN)
|
||||
OBJS = kernel/version_$(GIT_REV).o
|
||||
|
||||
|
@ -709,6 +709,7 @@ test: $(TARGETS) $(EXTRA_TARGETS)
|
|||
+cd tests/opt && bash run-test.sh
|
||||
+cd tests/aiger && bash run-test.sh $(ABCOPT)
|
||||
+cd tests/arch && bash run-test.sh
|
||||
+cd tests/ice40 && bash run-test.sh $(SEEDOPT)
|
||||
@echo ""
|
||||
@echo " Passed \"make test\"."
|
||||
@echo ""
|
||||
|
|
36
README.md
36
README.md
|
@ -330,7 +330,7 @@ Verilog Attributes and non-standard features
|
|||
|
||||
- The ``parameter`` and ``localparam`` attributes are used to mark wires
|
||||
that represent module parameters or localparams (when the HDL front-end
|
||||
is run in -pwires mode).
|
||||
is run in ``-pwires`` mode).
|
||||
|
||||
- The ``clkbuf_driver`` attribute can be set on an output port of a blackbox
|
||||
module to mark it as a clock buffer output, and thus prevent ``clkbufmap``
|
||||
|
@ -347,6 +347,23 @@ Verilog Attributes and non-standard features
|
|||
it as the external-facing pin of an I/O pad, and prevents ``iopadmap``
|
||||
from inserting another pad cell on it.
|
||||
|
||||
- The module attribute ``abc_box_id`` specifies a positive integer linking a
|
||||
blackbox or whitebox definition to a corresponding entry in a `abc9`
|
||||
box-file.
|
||||
|
||||
- The port attribute ``abc_scc_break`` indicates a module input port that will
|
||||
be treated as a primary output during `abc9` techmapping. Doing so eliminates
|
||||
the possibility of a strongly-connected component (i.e. a combinatorial loop)
|
||||
existing. Typically, this is specified for sequential inputs on otherwise
|
||||
combinatorial boxes -- for example, applying ``abc_scc_break`` onto the `D`
|
||||
port of a LUTRAM cell prevents `abc9` from interpreting any `Q` -> `D` paths
|
||||
as a combinatorial loop.
|
||||
|
||||
- The port attribute ``abc_carry`` marks the carry-in (if an input port) and
|
||||
carry-out (if output port) ports of a box. This information is necessary for
|
||||
`abc9` to preserve the integrity of carry-chains. Specifying this attribute
|
||||
onto a bus port will affect only its most significant bit.
|
||||
|
||||
- In addition to the ``(* ... *)`` attribute syntax, Yosys supports
|
||||
the non-standard ``{* ... *}`` attribute syntax to set default attributes
|
||||
for everything that comes after the ``{* ... *}`` statement. (Reset
|
||||
|
@ -423,23 +440,6 @@ Verilog Attributes and non-standard features
|
|||
blackboxes and whiteboxes. Use ``read_verilog -specify`` to enable this
|
||||
functionality. (By default specify .. endspecify blocks are ignored.)
|
||||
|
||||
- The module attribute ``abc_box_id`` specifies a positive integer linking a
|
||||
blackbox or whitebox definition to a corresponding entry in a `abc9`
|
||||
box-file.
|
||||
|
||||
- The port attribute ``abc_scc_break`` indicates a module input port that will
|
||||
be treated as a primary output during `abc9` techmapping. Doing so eliminates
|
||||
the possibility of a strongly-connected component (i.e. a combinatorial loop)
|
||||
existing. Typically, this is specified for sequential inputs on otherwise
|
||||
combinatorial boxes -- for example, applying ``abc_scc_break`` onto the `D`
|
||||
port of a LUTRAM cell prevents `abc9` from interpreting any `Q` -> `D` paths
|
||||
as a combinatorial loop.
|
||||
|
||||
- The port attribute ``abc_carry`` marks the carry-in (if an input port) and
|
||||
carry-out (if output port) ports of a box. This information is necessary for
|
||||
`abc9` to preserve the integrity of carry-chains. Specifying this attribute
|
||||
onto a bus port will affect only its most significant bit.
|
||||
|
||||
|
||||
Non-standard or SystemVerilog features for formal verification
|
||||
==============================================================
|
||||
|
|
|
@ -261,11 +261,12 @@ struct XAigerWriter
|
|||
}
|
||||
}
|
||||
else {
|
||||
bool cell_known = cell->known();
|
||||
bool cell_known = inst_module || cell->known();
|
||||
for (const auto &c : cell->connections()) {
|
||||
if (c.second.is_fully_const()) continue;
|
||||
auto is_input = !cell_known || cell->input(c.first);
|
||||
auto is_output = !cell_known || cell->output(c.first);
|
||||
auto port_wire = inst_module ? inst_module->wire(c.first) : nullptr;
|
||||
auto is_input = (port_wire && port_wire->port_input) || !cell_known || cell->input(c.first);
|
||||
auto is_output = (port_wire && port_wire->port_output) || !cell_known || cell->output(c.first);
|
||||
if (!is_input && !is_output)
|
||||
log_error("Connection '%s' on cell '%s' (type '%s') not recognised!\n", log_id(c.first), log_id(cell), log_id(cell->type));
|
||||
|
||||
|
|
|
@ -974,7 +974,7 @@ void AigerReader::post_process()
|
|||
// operate (and run checks on) this one module
|
||||
RTLIL::Design *mapped_design = new RTLIL::Design;
|
||||
mapped_design->add(module);
|
||||
Pass::call(mapped_design, "clean");
|
||||
Pass::call(mapped_design, "clean -purge");
|
||||
mapped_design->modules_.erase(module->name);
|
||||
delete mapped_design;
|
||||
|
||||
|
|
|
@ -664,7 +664,7 @@ static void select_stmt(RTLIL::Design *design, std::string arg)
|
|||
} else
|
||||
if (arg == "%D") {
|
||||
if (work_stack.size() < 2)
|
||||
log_cmd_error("Must have at least two elements on the stack for operator %%d.\n");
|
||||
log_cmd_error("Must have at least two elements on the stack for operator %%D.\n");
|
||||
select_op_diff(design, work_stack[work_stack.size()-1], work_stack[work_stack.size()-2]);
|
||||
work_stack[work_stack.size()-2] = work_stack[work_stack.size()-1];
|
||||
work_stack.pop_back();
|
||||
|
@ -693,7 +693,7 @@ static void select_stmt(RTLIL::Design *design, std::string arg)
|
|||
} else
|
||||
if (arg == "%C") {
|
||||
if (work_stack.size() < 1)
|
||||
log_cmd_error("Must have at least one element on the stack for operator %%M.\n");
|
||||
log_cmd_error("Must have at least one element on the stack for operator %%C.\n");
|
||||
select_op_module_to_cells(design, work_stack[work_stack.size()-1]);
|
||||
} else
|
||||
if (arg == "%c") {
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
# --------------------------------------
|
||||
|
||||
OBJS += passes/pmgen/test_pmgen.o
|
||||
passes/pmgen/test_pmgen.o: passes/pmgen/test_pmgen_pm.h passes/pmgen/ice40_dsp_pm.h passes/pmgen/peepopt_pm.h
|
||||
passes/pmgen/test_pmgen.o: passes/pmgen/test_pmgen_pm.h passes/pmgen/ice40_dsp_pm.h passes/pmgen/peepopt_pm.h passes/pmgen/xilinx_srl_pm.h
|
||||
$(eval $(call add_extra_objs,passes/pmgen/test_pmgen_pm.h))
|
||||
|
||||
# --------------------------------------
|
||||
|
@ -30,3 +30,9 @@ PEEPOPT_PATTERN += passes/pmgen/peepopt_muldiv.pmg
|
|||
|
||||
passes/pmgen/peepopt_pm.h: passes/pmgen/pmgen.py $(PEEPOPT_PATTERN)
|
||||
$(P) mkdir -p passes/pmgen && python3 $< -o $@ -p peepopt $(filter-out $<,$^)
|
||||
|
||||
# --------------------------------------
|
||||
|
||||
OBJS += passes/pmgen/xilinx_srl.o
|
||||
passes/pmgen/xilinx_srl.o: passes/pmgen/xilinx_srl_pm.h
|
||||
$(eval $(call add_extra_objs,passes/pmgen/xilinx_srl_pm.h))
|
||||
|
|
|
@ -64,11 +64,6 @@ void create_ice40_dsp(ice40_dsp_pm &pm)
|
|||
|
||||
bool mul_signed = st.mul->getParam("\\A_SIGNED").as_bool();
|
||||
|
||||
if (mul_signed) {
|
||||
log(" inference of signed iCE40 DSP arithmetic is currently not supported.\n");
|
||||
return;
|
||||
}
|
||||
|
||||
log(" replacing $mul with SB_MAC16 cell.\n");
|
||||
|
||||
Cell *cell = pm.module->addCell(NEW_ID, "\\SB_MAC16");
|
||||
|
|
|
@ -28,6 +28,7 @@ bool did_something;
|
|||
|
||||
#include "passes/pmgen/test_pmgen_pm.h"
|
||||
#include "passes/pmgen/ice40_dsp_pm.h"
|
||||
#include "passes/pmgen/xilinx_srl_pm.h"
|
||||
#include "passes/pmgen/peepopt_pm.h"
|
||||
|
||||
void reduce_chain(test_pmgen_pm &pm)
|
||||
|
@ -180,7 +181,7 @@ void generate_pattern(std::function<void(pm&,std::function<void()>)> run, const
|
|||
while (modcnt < maxmodcnt && submodcnt < maxsubcnt && itercnt++ < 1000)
|
||||
{
|
||||
if (timeout++ > 10000)
|
||||
log_error("pmgen generator is stuck: 10000 iterations an no matching module generated.\n");
|
||||
log_error("pmgen generator is stuck: 10000 iterations with no matching module generated.\n");
|
||||
|
||||
pm matcher(mod, mod->cells());
|
||||
|
||||
|
@ -216,7 +217,7 @@ void generate_pattern(std::function<void(pm&,std::function<void()>)> run, const
|
|||
run(matcher, [](){});
|
||||
}
|
||||
|
||||
if (submodcnt)
|
||||
if (submodcnt && maxsubcnt < (1 << 16))
|
||||
maxsubcnt *= 2;
|
||||
|
||||
design->remove(mod);
|
||||
|
@ -349,13 +350,18 @@ struct TestPmgenPass : public Pass {
|
|||
if (pattern == "ice40_dsp")
|
||||
return GENERATE_PATTERN(ice40_dsp_pm, ice40_dsp);
|
||||
|
||||
if (pattern == "xilinx_srl.fixed")
|
||||
return GENERATE_PATTERN(xilinx_srl_pm, fixed);
|
||||
if (pattern == "xilinx_srl.variable")
|
||||
return GENERATE_PATTERN(xilinx_srl_pm, variable);
|
||||
|
||||
if (pattern == "peepopt-muldiv")
|
||||
return GENERATE_PATTERN(peepopt_pm, muldiv);
|
||||
|
||||
if (pattern == "peepopt-shiftmul")
|
||||
return GENERATE_PATTERN(peepopt_pm, shiftmul);
|
||||
|
||||
log_cmd_error("Unkown pattern: %s\n", pattern.c_str());
|
||||
log_cmd_error("Unknown pattern: %s\n", pattern.c_str());
|
||||
}
|
||||
|
||||
void execute(std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
|
||||
|
|
|
@ -0,0 +1,258 @@
|
|||
/*
|
||||
* yosys -- Yosys Open SYnthesis Suite
|
||||
*
|
||||
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
|
||||
* (C) 2019 Eddie Hung <eddie@fpgeh.com>
|
||||
*
|
||||
* Permission to use, copy, modify, and/or distribute this software for any
|
||||
* purpose with or without fee is hereby granted, provided that the above
|
||||
* copyright notice and this permission notice appear in all copies.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||||
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||||
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
||||
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||||
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
||||
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
||||
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
||||
*
|
||||
*/
|
||||
|
||||
#include "kernel/yosys.h"
|
||||
#include "kernel/sigtools.h"
|
||||
|
||||
USING_YOSYS_NAMESPACE
|
||||
PRIVATE_NAMESPACE_BEGIN
|
||||
|
||||
#include "passes/pmgen/xilinx_srl_pm.h"
|
||||
|
||||
void run_fixed(xilinx_srl_pm &pm)
|
||||
{
|
||||
auto &st = pm.st_fixed;
|
||||
auto &ud = pm.ud_fixed;
|
||||
log("Found fixed chain of length %d (%s):\n", GetSize(ud.longest_chain), log_id(st.first->type));
|
||||
|
||||
SigSpec initval;
|
||||
for (auto cell : ud.longest_chain) {
|
||||
log_debug(" %s\n", log_id(cell));
|
||||
if (cell->type.in(ID($_DFF_N_), ID($_DFF_P_), ID($_DFFE_NN_), ID($_DFFE_NP_), ID($_DFFE_PN_), ID($_DFFE_PP_))) {
|
||||
SigBit Q = cell->getPort(ID(Q));
|
||||
log_assert(Q.wire);
|
||||
auto it = Q.wire->attributes.find(ID(init));
|
||||
if (it != Q.wire->attributes.end()) {
|
||||
auto &i = it->second[Q.offset];
|
||||
initval.append(i);
|
||||
i = State::Sx;
|
||||
}
|
||||
else
|
||||
initval.append(State::Sx);
|
||||
}
|
||||
else if (cell->type.in(ID(FDRE), ID(FDRE_1))) {
|
||||
if (cell->parameters.at(ID(INIT), State::S0).as_bool())
|
||||
initval.append(State::S1);
|
||||
else
|
||||
initval.append(State::S0);
|
||||
}
|
||||
else
|
||||
log_abort();
|
||||
pm.autoremove(cell);
|
||||
}
|
||||
|
||||
auto first_cell = ud.longest_chain.back();
|
||||
auto last_cell = ud.longest_chain.front();
|
||||
Cell *c = pm.module->addCell(NEW_ID, ID($__XILINX_SHREG_));
|
||||
pm.module->swap_names(c, first_cell);
|
||||
|
||||
if (first_cell->type.in(ID($_DFF_N_), ID($_DFF_P_), ID($_DFFE_NN_), ID($_DFFE_NP_), ID($_DFFE_PN_), ID($_DFFE_PP_), ID(FDRE), ID(FDRE_1))) {
|
||||
c->setParam(ID(DEPTH), GetSize(ud.longest_chain));
|
||||
c->setParam(ID(INIT), initval.as_const());
|
||||
if (first_cell->type.in(ID($_DFF_P_), ID($_DFFE_PN_), ID($_DFFE_PP_)))
|
||||
c->setParam(ID(CLKPOL), 1);
|
||||
else if (first_cell->type.in(ID($_DFF_N_), ID($DFFE_NN_), ID($_DFFE_NP_), ID(FDRE_1)))
|
||||
c->setParam(ID(CLKPOL), 0);
|
||||
else if (first_cell->type.in(ID(FDRE))) {
|
||||
if (!first_cell->parameters.at(ID(IS_C_INVERTED), State::S0).as_bool())
|
||||
c->setParam(ID(CLKPOL), 1);
|
||||
else
|
||||
c->setParam(ID(CLKPOL), 0);
|
||||
}
|
||||
else
|
||||
log_abort();
|
||||
if (first_cell->type.in(ID($_DFFE_NP_), ID($_DFFE_PP_)))
|
||||
c->setParam(ID(ENPOL), 1);
|
||||
else if (first_cell->type.in(ID($_DFFE_NN_), ID($_DFFE_PN_)))
|
||||
c->setParam(ID(ENPOL), 0);
|
||||
else
|
||||
c->setParam(ID(ENPOL), 2);
|
||||
|
||||
c->setPort(ID(C), first_cell->getPort(ID(C)));
|
||||
c->setPort(ID(D), first_cell->getPort(ID(D)));
|
||||
c->setPort(ID(Q), last_cell->getPort(ID(Q)));
|
||||
c->setPort(ID(L), GetSize(ud.longest_chain)-1);
|
||||
if (first_cell->type.in(ID($_DFF_N_), ID($_DFF_P_)))
|
||||
c->setPort(ID(E), State::S1);
|
||||
else if (first_cell->type.in(ID($_DFFE_NN_), ID($_DFFE_NP_), ID($_DFFE_PN_), ID($_DFFE_PP_)))
|
||||
c->setPort(ID(E), first_cell->getPort(ID(E)));
|
||||
else if (first_cell->type.in(ID(FDRE), ID(FDRE_1)))
|
||||
c->setPort(ID(E), first_cell->getPort(ID(CE)));
|
||||
else
|
||||
log_abort();
|
||||
}
|
||||
else
|
||||
log_abort();
|
||||
|
||||
log(" -> %s (%s)\n", log_id(c), log_id(c->type));
|
||||
}
|
||||
|
||||
void run_variable(xilinx_srl_pm &pm)
|
||||
{
|
||||
auto &st = pm.st_variable;
|
||||
auto &ud = pm.ud_variable;
|
||||
|
||||
log("Found variable chain of length %d (%s):\n", GetSize(ud.chain), log_id(st.first->type));
|
||||
|
||||
SigSpec initval;
|
||||
for (const auto &i : ud.chain) {
|
||||
auto cell = i.first;
|
||||
auto slice = i.second;
|
||||
log_debug(" %s\n", log_id(cell));
|
||||
if (cell->type.in(ID($_DFF_N_), ID($_DFF_P_), ID($_DFFE_NN_), ID($_DFFE_NP_), ID($_DFFE_PN_), ID($_DFFE_PP_), ID($dff), ID($dffe))) {
|
||||
SigBit Q = cell->getPort(ID(Q))[slice];
|
||||
log_assert(Q.wire);
|
||||
auto it = Q.wire->attributes.find(ID(init));
|
||||
if (it != Q.wire->attributes.end()) {
|
||||
auto &i = it->second[Q.offset];
|
||||
initval.append(i);
|
||||
i = State::Sx;
|
||||
}
|
||||
else
|
||||
initval.append(State::Sx);
|
||||
}
|
||||
else
|
||||
log_abort();
|
||||
}
|
||||
pm.autoremove(st.shiftx);
|
||||
|
||||
auto first_cell = ud.chain.back().first;
|
||||
auto first_slice = ud.chain.back().second;
|
||||
|
||||
Cell *c = pm.module->addCell(NEW_ID, ID($__XILINX_SHREG_));
|
||||
pm.module->swap_names(c, first_cell);
|
||||
|
||||
if (first_cell->type.in(ID($_DFF_N_), ID($_DFF_P_), ID($_DFFE_NN_), ID($_DFFE_NP_), ID($_DFFE_PN_), ID($_DFFE_PP_), ID($dff), ID($dffe))) {
|
||||
c->setParam(ID(DEPTH), GetSize(ud.chain));
|
||||
c->setParam(ID(INIT), initval.as_const());
|
||||
Const clkpol, enpol;
|
||||
if (first_cell->type.in(ID($_DFF_P_), ID($_DFFE_PN_), ID($_DFFE_PP_)))
|
||||
clkpol = 1;
|
||||
else if (first_cell->type.in(ID($_DFF_N_), ID($DFFE_NN_), ID($_DFFE_NP_)))
|
||||
clkpol = 0;
|
||||
else if (first_cell->type.in(ID($dff), ID($dffe)))
|
||||
clkpol = first_cell->getParam(ID(CLK_POLARITY));
|
||||
else
|
||||
log_abort();
|
||||
if (first_cell->type.in(ID($_DFFE_NP_), ID($_DFFE_PP_)))
|
||||
enpol = 1;
|
||||
else if (first_cell->type.in(ID($_DFFE_NN_), ID($_DFFE_PN_)))
|
||||
enpol = 0;
|
||||
else if (first_cell->type.in(ID($dffe)))
|
||||
enpol = first_cell->getParam(ID(EN_POLARITY));
|
||||
else
|
||||
enpol = 2;
|
||||
c->setParam(ID(CLKPOL), clkpol);
|
||||
c->setParam(ID(ENPOL), enpol);
|
||||
|
||||
if (first_cell->type.in(ID($_DFF_N_), ID($_DFF_P_), ID($_DFFE_NN_), ID($_DFFE_NP_), ID($_DFFE_PN_), ID($_DFFE_PP_)))
|
||||
c->setPort(ID(C), first_cell->getPort(ID(C)));
|
||||
else if (first_cell->type.in(ID($dff), ID($dffe)))
|
||||
c->setPort(ID(C), first_cell->getPort(ID(CLK)));
|
||||
else
|
||||
log_abort();
|
||||
c->setPort(ID(D), first_cell->getPort(ID(D))[first_slice]);
|
||||
c->setPort(ID(Q), st.shiftx->getPort(ID(Y)));
|
||||
c->setPort(ID(L), st.shiftx->getPort(ID(B)));
|
||||
if (first_cell->type.in(ID($_DFF_N_), ID($_DFF_P_), ID($dff)))
|
||||
c->setPort(ID(E), State::S1);
|
||||
else if (first_cell->type.in(ID($_DFFE_NN_), ID($_DFFE_NP_), ID($_DFFE_PN_), ID($_DFFE_PP_)))
|
||||
c->setPort(ID(E), first_cell->getPort(ID(E)));
|
||||
else if (first_cell->type.in(ID($dffe)))
|
||||
c->setPort(ID(E), first_cell->getPort(ID(EN)));
|
||||
else
|
||||
log_abort();
|
||||
}
|
||||
else
|
||||
log_abort();
|
||||
|
||||
log(" -> %s (%s)\n", log_id(c), log_id(c->type));
|
||||
}
|
||||
|
||||
struct XilinxSrlPass : public Pass {
|
||||
XilinxSrlPass() : Pass("xilinx_srl", "Xilinx shift register extraction") { }
|
||||
void help() YS_OVERRIDE
|
||||
{
|
||||
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
||||
log("\n");
|
||||
log(" xilinx_srl [options] [selection]\n");
|
||||
log("\n");
|
||||
log("This pass converts chains of built-in flops (bit-level: $_DFF_[NP]_, $_DFFE_*\n");
|
||||
log("and word-level: $dff, $dffe) as well as Xilinx flops (FDRE, FDRE_1) into a\n");
|
||||
log("$__XILINX_SHREG cell. Chains must be of the same cell type, clock, clock polarity,\n");
|
||||
log("enable, and enable polarity (where relevant).\n");
|
||||
log("Flops with resets cannot be mapped to Xilinx devices and will not be inferred.");
|
||||
log("\n");
|
||||
log(" -minlen N\n");
|
||||
log(" min length of shift register (default = 3)\n");
|
||||
log("\n");
|
||||
log(" -fixed\n");
|
||||
log(" infer fixed-length shift registers.\n");
|
||||
log("\n");
|
||||
log(" -variable\n");
|
||||
log(" infer variable-length shift registers (i.e. fixed-length shifts where\n");
|
||||
log(" each element also fans-out to a $shiftx cell).\n");
|
||||
log("\n");
|
||||
}
|
||||
|
||||
void execute(std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
|
||||
{
|
||||
log_header(design, "Executing XILINX_SRL pass (Xilinx shift register extraction).\n");
|
||||
|
||||
bool fixed = false;
|
||||
bool variable = false;
|
||||
int minlen = 3;
|
||||
|
||||
size_t argidx;
|
||||
for (argidx = 1; argidx < args.size(); argidx++)
|
||||
{
|
||||
if (args[argidx] == "-minlen" && argidx+1 < args.size()) {
|
||||
minlen = atoi(args[++argidx].c_str());
|
||||
continue;
|
||||
}
|
||||
if (args[argidx] == "-fixed") {
|
||||
fixed = true;
|
||||
continue;
|
||||
}
|
||||
if (args[argidx] == "-variable") {
|
||||
variable = true;
|
||||
continue;
|
||||
}
|
||||
break;
|
||||
}
|
||||
extra_args(args, argidx, design);
|
||||
|
||||
if (!fixed && !variable)
|
||||
log_cmd_error("'-fixed' and/or '-variable' must be specified.\n");
|
||||
|
||||
for (auto module : design->selected_modules()) {
|
||||
auto pm = xilinx_srl_pm(module, module->selected_cells());
|
||||
pm.ud_fixed.minlen = minlen;
|
||||
pm.ud_variable.minlen = minlen;
|
||||
|
||||
if (fixed)
|
||||
pm.run_fixed(run_fixed);
|
||||
if (variable)
|
||||
pm.run_variable(run_variable);
|
||||
}
|
||||
}
|
||||
} XilinxSrlPass;
|
||||
|
||||
PRIVATE_NAMESPACE_END
|
|
@ -0,0 +1,326 @@
|
|||
pattern fixed
|
||||
|
||||
state <IdString> clk_port en_port
|
||||
udata <vector<Cell*>> chain longest_chain
|
||||
udata <pool<Cell*>> non_first_cells
|
||||
udata <int> minlen
|
||||
|
||||
code
|
||||
non_first_cells.clear();
|
||||
subpattern(setup);
|
||||
endcode
|
||||
|
||||
match first
|
||||
select first->type.in($_DFF_N_, $_DFF_P_, $_DFFE_NN_, $_DFFE_NP_, $_DFFE_PN_, $_DFFE_PP_, \FDRE, \FDRE_1)
|
||||
select !first->has_keep_attr()
|
||||
select !first->type.in(\FDRE) || !first->parameters.at(\IS_R_INVERTED, State::S0).as_bool()
|
||||
select !first->type.in(\FDRE) || !first->parameters.at(\IS_D_INVERTED, State::S0).as_bool()
|
||||
select !first->type.in(\FDRE, \FDRE_1) || first->connections_.at(\R, State::S0).is_fully_zero()
|
||||
filter !non_first_cells.count(first)
|
||||
generate
|
||||
SigSpec C = module->addWire(NEW_ID);
|
||||
SigSpec D = module->addWire(NEW_ID);
|
||||
SigSpec Q = module->addWire(NEW_ID);
|
||||
auto r = rng(8);
|
||||
Cell* cell;
|
||||
switch (r)
|
||||
{
|
||||
case 0:
|
||||
case 1:
|
||||
cell = module->addCell(NEW_ID, \FDRE);
|
||||
cell->setPort(\C, C);
|
||||
cell->setPort(\D, D);
|
||||
cell->setPort(\Q, Q);
|
||||
cell->setPort(\CE, module->addWire(NEW_ID));
|
||||
if (r & 1)
|
||||
cell->setPort(\R, module->addWire(NEW_ID));
|
||||
else {
|
||||
if (rng(2) == 0)
|
||||
cell->setPort(\R, State::S0);
|
||||
}
|
||||
break;
|
||||
case 2:
|
||||
case 3:
|
||||
cell = module->addDffGate(NEW_ID, C, D, Q, r & 1);
|
||||
break;
|
||||
case 4:
|
||||
case 5:
|
||||
case 6:
|
||||
case 7:
|
||||
cell = module->addDffeGate(NEW_ID, C, module->addWire(NEW_ID), D, Q, r & 1, r & 2);
|
||||
break;
|
||||
default: log_abort();
|
||||
}
|
||||
endmatch
|
||||
|
||||
code clk_port en_port
|
||||
if (first->type.in($_DFF_N_, $_DFF_P_, $_DFFE_NN_, $_DFFE_NP_, $_DFFE_PN_, $_DFFE_PP_, \FDRE, \FDRE_1))
|
||||
clk_port = \C;
|
||||
else log_abort();
|
||||
if (first->type.in($_DFF_N_, $_DFF_P_))
|
||||
en_port = IdString();
|
||||
else if (first->type.in($_DFFE_NN_, $_DFFE_NP_, $_DFFE_PN_, $_DFFE_PP_))
|
||||
en_port = \E;
|
||||
else if (first->type.in(\FDRE, \FDRE_1))
|
||||
en_port = \CE;
|
||||
else log_abort();
|
||||
|
||||
longest_chain.clear();
|
||||
chain.push_back(first);
|
||||
subpattern(tail);
|
||||
finally
|
||||
chain.pop_back();
|
||||
log_assert(chain.empty());
|
||||
if (GetSize(longest_chain) >= minlen)
|
||||
accept;
|
||||
endcode
|
||||
|
||||
// ------------------------------------------------------------------
|
||||
|
||||
subpattern setup
|
||||
arg clk_port
|
||||
arg en_port
|
||||
|
||||
match first
|
||||
select first->type.in($_DFF_N_, $_DFF_P_, $_DFFE_NN_, $_DFFE_NP_, $_DFFE_PN_, $_DFFE_PP_, \FDRE, \FDRE_1)
|
||||
select !first->has_keep_attr()
|
||||
select !first->type.in(\FDRE) || !first->parameters.at(\IS_R_INVERTED, State::S0).as_bool()
|
||||
select !first->type.in(\FDRE) || !first->parameters.at(\IS_D_INVERTED, State::S0).as_bool()
|
||||
select !first->type.in(\FDRE, \FDRE_1) || first->connections_.at(\R, State::S0).is_fully_zero()
|
||||
endmatch
|
||||
|
||||
code clk_port en_port
|
||||
if (first->type.in($_DFF_N_, $_DFF_P_, $_DFFE_NN_, $_DFFE_NP_, $_DFFE_PN_, $_DFFE_PP_, \FDRE, \FDRE_1))
|
||||
clk_port = \C;
|
||||
else log_abort();
|
||||
if (first->type.in($_DFF_N_, $_DFF_P_))
|
||||
en_port = IdString();
|
||||
else if (first->type.in($_DFFE_NN_, $_DFFE_NP_, $_DFFE_PN_, $_DFFE_PP_))
|
||||
en_port = \E;
|
||||
else if (first->type.in(\FDRE, \FDRE_1))
|
||||
en_port = \CE;
|
||||
else log_abort();
|
||||
endcode
|
||||
|
||||
match next
|
||||
select next->type.in($_DFF_N_, $_DFF_P_, $_DFFE_NN_, $_DFFE_NP_, $_DFFE_PN_, $_DFFE_PP_, \FDRE, \FDRE_1)
|
||||
select !next->has_keep_attr()
|
||||
select port(next, \D)[0].wire && !port(next, \D)[0].wire->get_bool_attribute(\keep)
|
||||
select nusers(port(next, \Q)) == 2
|
||||
index <IdString> next->type === first->type
|
||||
index <SigBit> port(next, \Q) === port(first, \D)
|
||||
filter port(next, clk_port) == port(first, clk_port)
|
||||
filter en_port == IdString() || port(next, en_port) == port(first, en_port)
|
||||
filter !first->type.in(\FDRE) || next->parameters.at(\IS_C_INVERTED, State::S0).as_bool() == first->parameters.at(\IS_C_INVERTED, State::S0).as_bool()
|
||||
filter !first->type.in(\FDRE) || next->parameters.at(\IS_D_INVERTED, State::S0).as_bool() == first->parameters.at(\IS_D_INVERTED, State::S0).as_bool()
|
||||
filter !first->type.in(\FDRE) || next->parameters.at(\IS_R_INVERTED, State::S0).as_bool() == first->parameters.at(\IS_R_INVERTED, State::S0).as_bool()
|
||||
filter !first->type.in(\FDRE, \FDRE_1) || next->connections_.at(\R, State::S0).is_fully_zero()
|
||||
endmatch
|
||||
|
||||
code
|
||||
non_first_cells.insert(next);
|
||||
endcode
|
||||
|
||||
// ------------------------------------------------------------------
|
||||
|
||||
subpattern tail
|
||||
arg first
|
||||
arg clk_port
|
||||
arg en_port
|
||||
|
||||
match next
|
||||
semioptional
|
||||
select next->type.in($_DFF_N_, $_DFF_P_, $_DFFE_NN_, $_DFFE_NP_, $_DFFE_PN_, $_DFFE_PP_, \FDRE, \FDRE_1)
|
||||
select !next->has_keep_attr()
|
||||
select port(next, \D)[0].wire && !port(next, \D)[0].wire->get_bool_attribute(\keep)
|
||||
select nusers(port(next, \Q)) == 2
|
||||
index <IdString> next->type === chain.back()->type
|
||||
index <SigBit> port(next, \Q) === port(chain.back(), \D)
|
||||
filter port(next, clk_port) == port(first, clk_port)
|
||||
filter en_port == IdString() || port(next, en_port) == port(first, en_port)
|
||||
filter !first->type.in(\FDRE) || next->parameters.at(\IS_C_INVERTED, State::S0).as_bool() == first->parameters.at(\IS_C_INVERTED, State::S0).as_bool()
|
||||
filter !first->type.in(\FDRE) || next->parameters.at(\IS_D_INVERTED, State::S0).as_bool() == first->parameters.at(\IS_D_INVERTED, State::S0).as_bool()
|
||||
filter !first->type.in(\FDRE) || next->parameters.at(\IS_R_INVERTED, State::S0).as_bool() == first->parameters.at(\IS_R_INVERTED, State::S0).as_bool()
|
||||
filter !first->type.in(\FDRE, \FDRE_1) || next->connections_.at(\R, State::S0).is_fully_zero()
|
||||
generate
|
||||
Cell *cell = module->addCell(NEW_ID, chain.back()->type);
|
||||
cell->setPort(\C, chain.back()->getPort(\C));
|
||||
cell->setPort(\D, module->addWire(NEW_ID));
|
||||
cell->setPort(\Q, chain.back()->getPort(\D));
|
||||
if (cell->type == \FDRE) {
|
||||
if (rng(2) == 0)
|
||||
cell->setPort(\R, chain.back()->connections_.at(\R, State::S0));
|
||||
cell->setPort(\CE, chain.back()->getPort(\CE));
|
||||
}
|
||||
else if (cell->type.begins_with("$_DFFE_"))
|
||||
cell->setPort(\E, chain.back()->getPort(\E));
|
||||
endmatch
|
||||
|
||||
code
|
||||
if (next) {
|
||||
chain.push_back(next);
|
||||
subpattern(tail);
|
||||
} else {
|
||||
if (GetSize(chain) > GetSize(longest_chain))
|
||||
longest_chain = chain;
|
||||
}
|
||||
finally
|
||||
if (next)
|
||||
chain.pop_back();
|
||||
endcode
|
||||
|
||||
// -----------
|
||||
|
||||
pattern variable
|
||||
|
||||
state <IdString> clk_port en_port
|
||||
state <int> shiftx_width
|
||||
state <int> slice
|
||||
udata <int> minlen
|
||||
udata <vector<pair<Cell*,int>>> chain
|
||||
udata <pool<SigBit>> chain_bits
|
||||
|
||||
code
|
||||
chain_bits.clear();
|
||||
endcode
|
||||
|
||||
match shiftx
|
||||
select shiftx->type.in($shiftx)
|
||||
select !shiftx->has_keep_attr()
|
||||
select param(shiftx, \Y_WIDTH).as_int() == 1
|
||||
filter param(shiftx, \A_WIDTH).as_int() >= minlen
|
||||
generate
|
||||
minlen = 3;
|
||||
module->addShiftx(NEW_ID, module->addWire(NEW_ID, rng(6)+minlen), module->addWire(NEW_ID, 3), module->addWire(NEW_ID));
|
||||
endmatch
|
||||
|
||||
code shiftx_width
|
||||
shiftx_width = param(shiftx, \A_WIDTH).as_int();
|
||||
endcode
|
||||
|
||||
match first
|
||||
select first->type.in($_DFF_N_, $_DFF_P_, $_DFFE_NN_, $_DFFE_NP_, $_DFFE_PN_, $_DFFE_PP_, $dff, $dffe)
|
||||
select !first->has_keep_attr()
|
||||
select port(first, \Q)[0].wire && !port(first, \Q)[0].wire->get_bool_attribute(\keep)
|
||||
slice idx GetSize(port(first, \Q))
|
||||
select nusers(port(first, \Q)[idx]) <= 2
|
||||
index <SigBit> port(first, \Q)[idx] === port(shiftx, \A)[shiftx_width-1]
|
||||
set slice idx
|
||||
generate
|
||||
SigSpec C = module->addWire(NEW_ID);
|
||||
auto WIDTH = rng(3)+1;
|
||||
SigSpec D = module->addWire(NEW_ID, WIDTH);
|
||||
SigSpec Q = module->addWire(NEW_ID, WIDTH);
|
||||
auto r = rng(8);
|
||||
Cell *cell = nullptr;
|
||||
switch (r)
|
||||
{
|
||||
case 0:
|
||||
case 1:
|
||||
cell = module->addDff(NEW_ID, C, D, Q, r & 1);
|
||||
break;
|
||||
case 2:
|
||||
case 3:
|
||||
case 4:
|
||||
case 5:
|
||||
//cell = module->addDffe(NEW_ID, C, module->addWire(NEW_ID), D, Q, r & 1, r & 4);
|
||||
//break;
|
||||
case 6:
|
||||
case 7:
|
||||
WIDTH = 1;
|
||||
cell = module->addDffGate(NEW_ID, C, D[0], Q[0], r & 1);
|
||||
break;
|
||||
default: log_abort();
|
||||
}
|
||||
shiftx->connections_.at(\A)[shiftx_width-1] = port(cell, \Q)[rng(WIDTH)];
|
||||
endmatch
|
||||
|
||||
code clk_port en_port
|
||||
if (first->type.in($_DFF_N_, $_DFF_P_, $_DFFE_NN_, $_DFFE_NP_, $_DFFE_PN_, $_DFFE_PP_))
|
||||
clk_port = \C;
|
||||
else if (first->type.in($dff, $dffe))
|
||||
clk_port = \CLK;
|
||||
else log_abort();
|
||||
if (first->type.in($_DFF_N_, $_DFF_P_, $dff))
|
||||
en_port = IdString();
|
||||
else if (first->type.in($_DFFE_NN_, $_DFFE_NP_, $_DFFE_PN_, $_DFFE_PP_))
|
||||
en_port = \E;
|
||||
else if (first->type.in($dffe))
|
||||
en_port = \EN;
|
||||
else log_abort();
|
||||
|
||||
chain_bits.insert(port(first, \Q)[slice]);
|
||||
chain.emplace_back(first, slice);
|
||||
subpattern(tail);
|
||||
finally
|
||||
if (GetSize(chain) == shiftx_width)
|
||||
accept;
|
||||
chain.clear();
|
||||
endcode
|
||||
|
||||
// ------------------------------------------------------------------
|
||||
|
||||
subpattern tail
|
||||
arg first
|
||||
arg shiftx
|
||||
arg shiftx_width
|
||||
arg slice
|
||||
arg clk_port
|
||||
arg en_port
|
||||
|
||||
match next
|
||||
semioptional
|
||||
select next->type.in($_DFF_N_, $_DFF_P_, $_DFFE_NN_, $_DFFE_NP_, $_DFFE_PN_, $_DFFE_PP_, $dff, $dffe)
|
||||
select !next->has_keep_attr()
|
||||
select port(next, \D)[0].wire && !port(next, \D)[0].wire->get_bool_attribute(\keep)
|
||||
slice idx GetSize(port(next, \Q))
|
||||
select nusers(port(next, \Q)[idx]) <= 3
|
||||
index <IdString> next->type === chain.back().first->type
|
||||
index <SigBit> port(next, \Q)[idx] === port(chain.back().first, \D)[chain.back().second]
|
||||
index <SigBit> port(next, \Q)[idx] === port(shiftx, \A)[shiftx_width-1-GetSize(chain)]
|
||||
filter port(next, clk_port) == port(first, clk_port)
|
||||
filter en_port == IdString() || port(next, en_port) == port(first, en_port)
|
||||
filter !next->type.in($dff, $dffe) || param(next, \CLK_POLARITY).as_bool() == param(first, \CLK_POLARITY).as_bool()
|
||||
filter !next->type.in($dffe) || param(next, \EN_POLARITY).as_bool() == param(first, \EN_POLARITY).as_bool()
|
||||
filter !chain_bits.count(port(next, \D)[idx])
|
||||
set slice idx
|
||||
generate
|
||||
if (GetSize(chain) < shiftx_width) {
|
||||
auto back = chain.back().first;
|
||||
auto slice = chain.back().second;
|
||||
if (back->type.in($dff, $dffe)) {
|
||||
auto WIDTH = GetSize(port(back, \D));
|
||||
if (rng(2) == 0 && slice < WIDTH-1) {
|
||||
auto new_slice = slice + rng(WIDTH-1-slice);
|
||||
back->connections_.at(\D)[slice] = port(back, \Q)[new_slice];
|
||||
}
|
||||
else {
|
||||
auto D = module->addWire(NEW_ID, WIDTH);
|
||||
if (back->type == $dff)
|
||||
module->addDff(NEW_ID, port(back, \CLK), D, port(back, \D), param(back, \CLK_POLARITY).as_bool());
|
||||
else if (back->type == $dffe)
|
||||
module->addDffe(NEW_ID, port(back, \CLK), port(back, \EN), D, port(back, \D), param(back, \CLK_POLARITY).as_bool(), param(back, \EN_POLARITY).as_bool());
|
||||
else
|
||||
log_abort();
|
||||
}
|
||||
}
|
||||
else if (back->type.begins_with("$_DFF_")) {
|
||||
Cell *cell = module->addCell(NEW_ID, back->type);
|
||||
cell->setPort(\C, back->getPort(\C));
|
||||
cell->setPort(\D, module->addWire(NEW_ID));
|
||||
cell->setPort(\Q, back->getPort(\D));
|
||||
}
|
||||
else
|
||||
log_abort();
|
||||
shiftx->connections_.at(\A)[shiftx_width-1-GetSize(chain)] = port(back, \D)[slice];
|
||||
}
|
||||
endmatch
|
||||
|
||||
code
|
||||
if (next) {
|
||||
chain_bits.insert(port(next, \Q)[slice]);
|
||||
chain.emplace_back(next, slice);
|
||||
if (GetSize(chain) < shiftx_width)
|
||||
subpattern(tail);
|
||||
}
|
||||
endcode
|
|
@ -694,30 +694,27 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri
|
|||
int in_wires = 0, out_wires = 0;
|
||||
|
||||
// Stitch in mapped_mod's inputs/outputs into module
|
||||
for (auto &it : mapped_mod->wires_) {
|
||||
RTLIL::Wire *w = it.second;
|
||||
if (!w->port_input && !w->port_output)
|
||||
continue;
|
||||
RTLIL::Wire *wire = module->wire(w->name);
|
||||
for (auto port : mapped_mod->ports) {
|
||||
RTLIL::Wire *w = mapped_mod->wire(port);
|
||||
RTLIL::Wire *wire = module->wire(port);
|
||||
log_assert(wire);
|
||||
RTLIL::Wire *remap_wire = module->wire(remap_name(w->name));
|
||||
RTLIL::Wire *remap_wire = module->wire(remap_name(port));
|
||||
RTLIL::SigSpec signal = RTLIL::SigSpec(wire, 0, GetSize(remap_wire));
|
||||
log_assert(GetSize(signal) >= GetSize(remap_wire));
|
||||
|
||||
log_assert(w->port_input || w->port_output);
|
||||
RTLIL::SigSig conn;
|
||||
if (w->port_input) {
|
||||
conn.first = remap_wire;
|
||||
conn.second = signal;
|
||||
in_wires++;
|
||||
module->connect(conn);
|
||||
}
|
||||
if (w->port_output) {
|
||||
conn.first = signal;
|
||||
conn.second = remap_wire;
|
||||
out_wires++;
|
||||
module->connect(conn);
|
||||
}
|
||||
else if (w->port_input) {
|
||||
conn.first = remap_wire;
|
||||
conn.second = signal;
|
||||
in_wires++;
|
||||
module->connect(conn);
|
||||
}
|
||||
}
|
||||
|
||||
for (auto &it : bit_users)
|
||||
|
@ -1300,9 +1297,6 @@ struct Abc9Pass : public Pass {
|
|||
|
||||
assign_map.clear();
|
||||
|
||||
// The "clean" pass also contains a design->check() call
|
||||
Pass::call(design, "clean");
|
||||
|
||||
log_pop();
|
||||
}
|
||||
} Abc9Pass;
|
||||
|
|
|
@ -26,9 +26,7 @@ PRIVATE_NAMESPACE_BEGIN
|
|||
struct ShregmapTech
|
||||
{
|
||||
virtual ~ShregmapTech() { }
|
||||
virtual void init(const Module * /*module*/, const SigMap &/*sigmap*/) {}
|
||||
virtual void non_chain_user(const SigBit &/*bit*/, const Cell* /*cell*/, IdString /*port*/) {}
|
||||
virtual bool analyze(vector<int> &taps, const vector<SigBit> &qbits) = 0;
|
||||
virtual bool analyze(vector<int> &taps) = 0;
|
||||
virtual bool fixup(Cell *cell, dict<int, SigBit> &taps) = 0;
|
||||
};
|
||||
|
||||
|
@ -56,7 +54,7 @@ struct ShregmapOptions
|
|||
|
||||
struct ShregmapTechGreenpak4 : ShregmapTech
|
||||
{
|
||||
bool analyze(vector<int> &taps, const vector<SigBit> &/*qbits*/)
|
||||
bool analyze(vector<int> &taps)
|
||||
{
|
||||
if (GetSize(taps) > 2 && taps[0] == 0 && taps[2] < 17) {
|
||||
taps.clear();
|
||||
|
@ -93,155 +91,6 @@ struct ShregmapTechGreenpak4 : ShregmapTech
|
|||
}
|
||||
};
|
||||
|
||||
struct ShregmapTechXilinx7 : ShregmapTech
|
||||
{
|
||||
dict<SigBit, std::tuple<Cell*,int,int>> sigbit_to_shiftx_offset;
|
||||
const ShregmapOptions &opts;
|
||||
|
||||
ShregmapTechXilinx7(const ShregmapOptions &opts) : opts(opts) {}
|
||||
|
||||
virtual void init(const Module* module, const SigMap &sigmap) override
|
||||
{
|
||||
for (const auto &i : module->cells_) {
|
||||
auto cell = i.second;
|
||||
if (cell->type == ID($shiftx)) {
|
||||
if (cell->getParam(ID(Y_WIDTH)) != 1) continue;
|
||||
int j = 0;
|
||||
for (auto bit : sigmap(cell->getPort(ID::A)))
|
||||
sigbit_to_shiftx_offset[bit] = std::make_tuple(cell, j++, 0);
|
||||
log_assert(j == cell->getParam(ID(A_WIDTH)).as_int());
|
||||
}
|
||||
else if (cell->type == ID($mux)) {
|
||||
int j = 0;
|
||||
for (auto bit : sigmap(cell->getPort(ID::A)))
|
||||
sigbit_to_shiftx_offset[bit] = std::make_tuple(cell, 0, j++);
|
||||
j = 0;
|
||||
for (auto bit : sigmap(cell->getPort(ID::B)))
|
||||
sigbit_to_shiftx_offset[bit] = std::make_tuple(cell, 1, j++);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
virtual void non_chain_user(const SigBit &bit, const Cell *cell, IdString port) override
|
||||
{
|
||||
auto it = sigbit_to_shiftx_offset.find(bit);
|
||||
if (it == sigbit_to_shiftx_offset.end())
|
||||
return;
|
||||
if (cell) {
|
||||
if (cell->type == ID($shiftx) && port == ID::A)
|
||||
return;
|
||||
if (cell->type == ID($mux) && port.in(ID::A, ID::B))
|
||||
return;
|
||||
}
|
||||
sigbit_to_shiftx_offset.erase(it);
|
||||
}
|
||||
|
||||
virtual bool analyze(vector<int> &taps, const vector<SigBit> &qbits) override
|
||||
{
|
||||
if (GetSize(taps) == 1)
|
||||
return taps[0] >= opts.minlen-1 && sigbit_to_shiftx_offset.count(qbits[0]);
|
||||
|
||||
if (taps.back() < opts.minlen-1)
|
||||
return false;
|
||||
|
||||
Cell *shiftx = nullptr;
|
||||
int group = 0;
|
||||
for (int i = 0; i < GetSize(taps); ++i) {
|
||||
auto it = sigbit_to_shiftx_offset.find(qbits[i]);
|
||||
if (it == sigbit_to_shiftx_offset.end())
|
||||
return false;
|
||||
|
||||
// Check taps are sequential
|
||||
if (i != taps[i])
|
||||
return false;
|
||||
// Check taps are not connected to a shift register,
|
||||
// or sequential to the same shift register
|
||||
if (i == 0) {
|
||||
int offset;
|
||||
std::tie(shiftx,offset,group) = it->second;
|
||||
if (offset != i)
|
||||
return false;
|
||||
}
|
||||
else {
|
||||
Cell *shiftx_ = std::get<0>(it->second);
|
||||
if (shiftx_ != shiftx)
|
||||
return false;
|
||||
int offset = std::get<1>(it->second);
|
||||
if (offset != i)
|
||||
return false;
|
||||
int group_ = std::get<2>(it->second);
|
||||
if (group_ != group)
|
||||
return false;
|
||||
}
|
||||
}
|
||||
log_assert(shiftx);
|
||||
|
||||
// Only map if $shiftx exclusively covers the shift register
|
||||
if (shiftx->type == ID($shiftx)) {
|
||||
if (GetSize(taps) > shiftx->getParam(ID(A_WIDTH)).as_int())
|
||||
return false;
|
||||
// Due to padding the most significant bits of A may be 1'bx,
|
||||
// and if so, discount them
|
||||
if (GetSize(taps) < shiftx->getParam(ID(A_WIDTH)).as_int()) {
|
||||
const SigSpec A = shiftx->getPort(ID::A);
|
||||
const int A_width = shiftx->getParam(ID(A_WIDTH)).as_int();
|
||||
for (int i = GetSize(taps); i < A_width; ++i)
|
||||
if (A[i] != RTLIL::Sx) return false;
|
||||
}
|
||||
else if (GetSize(taps) != shiftx->getParam(ID(A_WIDTH)).as_int())
|
||||
return false;
|
||||
}
|
||||
else if (shiftx->type == ID($mux)) {
|
||||
if (GetSize(taps) != 2)
|
||||
return false;
|
||||
}
|
||||
else log_abort();
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
virtual bool fixup(Cell *cell, dict<int, SigBit> &taps) override
|
||||
{
|
||||
const auto &tap = *taps.begin();
|
||||
auto bit = tap.second;
|
||||
|
||||
auto it = sigbit_to_shiftx_offset.find(bit);
|
||||
log_assert(it != sigbit_to_shiftx_offset.end());
|
||||
|
||||
auto newcell = cell->module->addCell(NEW_ID, ID($__XILINX_SHREG_));
|
||||
newcell->set_src_attribute(cell->get_src_attribute());
|
||||
newcell->setParam(ID(DEPTH), cell->getParam(ID(DEPTH)));
|
||||
newcell->setParam(ID(INIT), cell->getParam(ID(INIT)));
|
||||
newcell->setParam(ID(CLKPOL), cell->getParam(ID(CLKPOL)));
|
||||
newcell->setParam(ID(ENPOL), cell->getParam(ID(ENPOL)));
|
||||
|
||||
newcell->setPort(ID(C), cell->getPort(ID(C)));
|
||||
newcell->setPort(ID(D), cell->getPort(ID(D)));
|
||||
if (cell->hasPort(ID(E)))
|
||||
newcell->setPort(ID(E), cell->getPort(ID(E)));
|
||||
|
||||
Cell* shiftx = std::get<0>(it->second);
|
||||
RTLIL::SigSpec l_wire, q_wire;
|
||||
if (shiftx->type == ID($shiftx)) {
|
||||
l_wire = shiftx->getPort(ID::B);
|
||||
q_wire = shiftx->getPort(ID::Y);
|
||||
shiftx->setPort(ID::Y, cell->module->addWire(NEW_ID));
|
||||
}
|
||||
else if (shiftx->type == ID($mux)) {
|
||||
l_wire = shiftx->getPort(ID(S));
|
||||
q_wire = shiftx->getPort(ID::Y);
|
||||
shiftx->setPort(ID::Y, cell->module->addWire(NEW_ID));
|
||||
}
|
||||
else log_abort();
|
||||
|
||||
newcell->setPort(ID(Q), q_wire);
|
||||
newcell->setPort(ID(L), l_wire);
|
||||
|
||||
return false;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
struct ShregmapWorker
|
||||
{
|
||||
Module *module;
|
||||
|
@ -264,10 +113,8 @@ struct ShregmapWorker
|
|||
for (auto wire : module->wires())
|
||||
{
|
||||
if (wire->port_output || wire->get_bool_attribute(ID::keep)) {
|
||||
for (auto bit : sigmap(wire)) {
|
||||
for (auto bit : sigmap(wire))
|
||||
sigbit_with_non_chain_users.insert(bit);
|
||||
if (opts.tech) opts.tech->non_chain_user(bit, nullptr, {});
|
||||
}
|
||||
}
|
||||
|
||||
if (wire->attributes.count(ID(init))) {
|
||||
|
@ -317,10 +164,8 @@ struct ShregmapWorker
|
|||
|
||||
for (auto conn : cell->connections())
|
||||
if (cell->input(conn.first))
|
||||
for (auto bit : sigmap(conn.second)) {
|
||||
for (auto bit : sigmap(conn.second))
|
||||
sigbit_with_non_chain_users.insert(bit);
|
||||
if (opts.tech) opts.tech->non_chain_user(bit, cell, conn.first);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -346,7 +191,7 @@ struct ShregmapWorker
|
|||
IdString q_port = opts.ffcells.at(c1->type).second;
|
||||
|
||||
auto c1_conn = c1->connections();
|
||||
auto c2_conn = c1->connections();
|
||||
auto c2_conn = c2->connections();
|
||||
|
||||
c1_conn.erase(d_port);
|
||||
c1_conn.erase(q_port);
|
||||
|
@ -425,7 +270,7 @@ struct ShregmapWorker
|
|||
if (taps.empty() || taps.back() < depth-1)
|
||||
taps.push_back(depth-1);
|
||||
|
||||
if (opts.tech->analyze(taps, qbits))
|
||||
if (opts.tech->analyze(taps))
|
||||
break;
|
||||
|
||||
taps.pop_back();
|
||||
|
@ -544,9 +389,6 @@ struct ShregmapWorker
|
|||
ShregmapWorker(Module *module, const ShregmapOptions &opts) :
|
||||
module(module), sigmap(module), opts(opts), dff_count(0), shreg_count(0)
|
||||
{
|
||||
if (opts.tech)
|
||||
opts.tech->init(module, sigmap);
|
||||
|
||||
make_sigbit_chain_next_prev();
|
||||
find_chain_start_cells();
|
||||
|
||||
|
@ -617,11 +459,6 @@ struct ShregmapPass : public Pass {
|
|||
log("\n");
|
||||
log(" -tech greenpak4\n");
|
||||
log(" map to greenpak4 shift registers.\n");
|
||||
log(" this option also implies -clkpol pos -zinit\n");
|
||||
log("\n");
|
||||
log(" -tech xilinx\n");
|
||||
log(" map to xilinx dynamic-length shift registers.\n");
|
||||
log(" this option also implies -params -init\n");
|
||||
log("\n");
|
||||
}
|
||||
void execute(std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
|
||||
|
@ -676,12 +513,6 @@ struct ShregmapPass : public Pass {
|
|||
clkpol = "pos";
|
||||
opts.zinit = true;
|
||||
opts.tech = new ShregmapTechGreenpak4;
|
||||
}
|
||||
else if (tech == "xilinx") {
|
||||
opts.init = true;
|
||||
opts.params = true;
|
||||
enpol = "any_or_none";
|
||||
opts.tech = new ShregmapTechXilinx7(opts);
|
||||
} else {
|
||||
argidx--;
|
||||
break;
|
||||
|
|
|
@ -2,6 +2,8 @@
|
|||
OBJS += techlibs/ecp5/synth_ecp5.o techlibs/ecp5/ecp5_ffinit.o \
|
||||
techlibs/ecp5/ecp5_gsr.o
|
||||
|
||||
$(eval $(call add_share_file,share/ecp5,techlibs/ecp5/cells_ff.vh))
|
||||
$(eval $(call add_share_file,share/ecp5,techlibs/ecp5/cells_io.vh))
|
||||
$(eval $(call add_share_file,share/ecp5,techlibs/ecp5/cells_map.v))
|
||||
$(eval $(call add_share_file,share/ecp5,techlibs/ecp5/cells_sim.v))
|
||||
$(eval $(call add_share_file,share/ecp5,techlibs/ecp5/cells_bb.v))
|
||||
|
|
|
@ -0,0 +1,40 @@
|
|||
// Diamond flip-flops
|
||||
module FD1P3AX(input D, SP, CK, output Q); parameter GSR = "ENABLED"; TRELLIS_FF #(.GSR(GSR), .CEMUX("CE"), .CLKMUX("CLK"), .LSRMUX("LSR"), .REGSET("RESET"), .SRMODE("ASYNC")) _TECHMAP_REPLACE_ (.CLK(CK), .LSR(0), .CE(SP), .DI(D), .Q(Q)); endmodule
|
||||
module FD1P3AY(input D, SP, CK, output Q); parameter GSR = "ENABLED"; TRELLIS_FF #(.GSR(GSR), .CEMUX("CE"), .CLKMUX("CLK"), .LSRMUX("LSR"), .REGSET("SET"), .SRMODE("ASYNC")) _TECHMAP_REPLACE_ (.CLK(CK), .LSR(0), .CE(SP), .DI(D), .Q(Q)); endmodule
|
||||
module FD1P3BX(input PD, D, SP, CK, output Q); parameter GSR = "ENABLED"; TRELLIS_FF #(.GSR(GSR), .CEMUX("CE"), .CLKMUX("CLK"), .LSRMUX("LSR"), .REGSET("SET"), .SRMODE("ASYNC")) _TECHMAP_REPLACE_ (.CLK(CK), .LSR(PD), .CE(SP), .DI(D), .Q(Q)); endmodule
|
||||
module FD1P3DX(input CD, D, SP, CK, output Q); parameter GSR = "ENABLED"; TRELLIS_FF #(.GSR(GSR), .CEMUX("CE"), .CLKMUX("CLK"), .LSRMUX("LSR"), .REGSET("RESET"), .SRMODE("ASYNC")) _TECHMAP_REPLACE_ (.CLK(CK), .LSR(CD), .CE(SP), .DI(D), .Q(Q)); endmodule
|
||||
module FD1P3IX(input CD, D, SP, CK, output Q); parameter GSR = "ENABLED"; TRELLIS_FF #(.GSR(GSR), .CEMUX("CE"), .CLKMUX("CLK"), .LSRMUX("LSR"), .REGSET("RESET"), .SRMODE("LSR_OVER_CE")) _TECHMAP_REPLACE_ (.CLK(CK), .LSR(CD), .CE(SP), .DI(D), .Q(Q)); endmodule
|
||||
module FD1P3JX(input PD, D, SP, CK, output Q); parameter GSR = "ENABLED"; TRELLIS_FF #(.GSR(GSR), .CEMUX("CE"), .CLKMUX("CLK"), .LSRMUX("LSR"), .REGSET("SET"), .SRMODE("LSR_OVER_CE")) _TECHMAP_REPLACE_ (.CLK(CK), .LSR(PD), .CE(SP), .DI(D), .Q(Q)); endmodule
|
||||
module FD1S3AX(input D, CK, output Q); parameter GSR = "ENABLED"; TRELLIS_FF #(.GSR(GSR), .CEMUX("1"), .CLKMUX("CLK"), .LSRMUX("LSR"), .REGSET("RESET"), .SRMODE("ASYNC")) _TECHMAP_REPLACE_ (.CLK(CK), .LSR(0), .DI(D), .Q(Q)); endmodule
|
||||
module FD1S3AY(input D, CK, output Q); parameter GSR = "ENABLED"; TRELLIS_FF #(.GSR(GSR), .CEMUX("1"), .CLKMUX("CLK"), .LSRMUX("LSR"), .REGSET("SET"), .SRMODE("ASYNC")) _TECHMAP_REPLACE_ (.CLK(CK), .LSR(0), .DI(D), .Q(Q)); endmodule
|
||||
module FD1S3BX(input PD, D, CK, output Q); parameter GSR = "ENABLED"; TRELLIS_FF #(.GSR(GSR), .CEMUX("1"), .CLKMUX("CLK"), .LSRMUX("LSR"), .REGSET("SET"), .SRMODE("ASYNC")) _TECHMAP_REPLACE_ (.CLK(CK), .LSR(PD), .DI(D), .Q(Q)); endmodule
|
||||
module FD1S3DX(input CD, D, CK, output Q); parameter GSR = "ENABLED"; TRELLIS_FF #(.GSR(GSR), .CEMUX("1"), .CLKMUX("CLK"), .LSRMUX("LSR"), .REGSET("RESET"), .SRMODE("ASYNC")) _TECHMAP_REPLACE_ (.CLK(CK), .LSR(CD), .DI(D), .Q(Q)); endmodule
|
||||
module FD1S3IX(input CD, D, CK, output Q); parameter GSR = "ENABLED"; TRELLIS_FF #(.GSR(GSR), .CEMUX("1"), .CLKMUX("CLK"), .LSRMUX("LSR"), .REGSET("RESET"), .SRMODE("LSR_OVER_CE")) _TECHMAP_REPLACE_ (.CLK(CK), .LSR(CD), .DI(D), .Q(Q)); endmodule
|
||||
module FD1S3JX(input PD, D, CK, output Q); parameter GSR = "ENABLED"; TRELLIS_FF #(.GSR(GSR), .CEMUX("1"), .CLKMUX("CLK"), .LSRMUX("LSR"), .REGSET("SET"), .SRMODE("LSR_OVER_CE")) _TECHMAP_REPLACE_ (.CLK(CK), .LSR(PD), .DI(D), .Q(Q)); endmodule
|
||||
|
||||
// TODO: Diamond latches
|
||||
// module FL1P3AY(); endmodule
|
||||
// module FL1P3AZ(); endmodule
|
||||
// module FL1P3BX(); endmodule
|
||||
// module FL1P3DX(); endmodule
|
||||
// module FL1P3IY(); endmodule
|
||||
// module FL1P3JY(); endmodule
|
||||
// module FL1S3AX(); endmodule
|
||||
// module FL1S3AY(); endmodule
|
||||
|
||||
// Diamond I/O registers
|
||||
module IFS1P3BX(input PD, D, SP, SCLK, output Q); parameter GSR = "ENABLED"; TRELLIS_FF #(.GSR(GSR), .CEMUX("CE"), .CLKMUX("CLK"), .LSRMUX("LSR"), .REGSET("SET"), .SRMODE("ASYNC")) _TECHMAP_REPLACE_ (.CLK(SCLK), .LSR(PD), .CE(SP), .DI(D), .Q(Q)); endmodule
|
||||
module IFS1P3DX(input CD, D, SP, SCLK, output Q); parameter GSR = "ENABLED"; TRELLIS_FF #(.GSR(GSR), .CEMUX("CE"), .CLKMUX("CLK"), .LSRMUX("LSR"), .REGSET("RESET"), .SRMODE("ASYNC")) _TECHMAP_REPLACE_ (.CLK(SCLK), .LSR(CD), .CE(SP), .DI(D), .Q(Q)); endmodule
|
||||
module IFS1P3IX(input CD, D, SP, SCLK, output Q); parameter GSR = "ENABLED"; TRELLIS_FF #(.GSR(GSR), .CEMUX("CE"), .CLKMUX("CLK"), .LSRMUX("LSR"), .REGSET("RESET"), .SRMODE("LSR_OVER_CE")) _TECHMAP_REPLACE_ (.CLK(SCLK), .LSR(CD), .CE(SP), .DI(D), .Q(Q)); endmodule
|
||||
module IFS1P3JX(input PD, D, SP, SCLK, output Q); parameter GSR = "ENABLED"; TRELLIS_FF #(.GSR(GSR), .CEMUX("CE"), .CLKMUX("CLK"), .LSRMUX("LSR"), .REGSET("SET"), .SRMODE("LSR_OVER_CE")) _TECHMAP_REPLACE_ (.CLK(SCLK), .LSR(PD), .CE(SP), .DI(D), .Q(Q)); endmodule
|
||||
|
||||
module OFS1P3BX(input PD, D, SP, SCLK, output Q); parameter GSR = "ENABLED"; TRELLIS_FF #(.GSR(GSR), .CEMUX("CE"), .CLKMUX("CLK"), .LSRMUX("LSR"), .REGSET("SET"), .SRMODE("ASYNC")) _TECHMAP_REPLACE_ (.CLK(SCLK), .LSR(PD), .CE(SP), .DI(D), .Q(Q)); endmodule
|
||||
module OFS1P3DX(input CD, D, SP, SCLK, output Q); parameter GSR = "ENABLED"; TRELLIS_FF #(.GSR(GSR), .CEMUX("CE"), .CLKMUX("CLK"), .LSRMUX("LSR"), .REGSET("RESET"), .SRMODE("ASYNC")) _TECHMAP_REPLACE_ (.CLK(SCLK), .LSR(CD), .CE(SP), .DI(D), .Q(Q)); endmodule
|
||||
module OFS1P3IX(input CD, D, SP, SCLK, output Q); parameter GSR = "ENABLED"; TRELLIS_FF #(.GSR(GSR), .CEMUX("CE"), .CLKMUX("CLK"), .LSRMUX("LSR"), .REGSET("RESET"), .SRMODE("LSR_OVER_CE")) _TECHMAP_REPLACE_ (.CLK(SCLK), .LSR(CD), .CE(SP), .DI(D), .Q(Q)); endmodule
|
||||
module OFS1P3JX(input PD, D, SP, SCLK, output Q); parameter GSR = "ENABLED"; TRELLIS_FF #(.GSR(GSR), .CEMUX("CE"), .CLKMUX("CLK"), .LSRMUX("LSR"), .REGSET("SET"), .SRMODE("LSR_OVER_CE")) _TECHMAP_REPLACE_ (.CLK(SCLK), .LSR(PD), .CE(SP), .DI(D), .Q(Q)); endmodule
|
||||
|
||||
// TODO: Diamond I/O latches
|
||||
// module IFS1S1B(input PD, D, SCLK, output Q); endmodule
|
||||
// module IFS1S1D(input CD, D, SCLK, output Q); endmodule
|
||||
// module IFS1S1I(input PD, D, SCLK, output Q); endmodule
|
||||
// module IFS1S1J(input CD, D, SCLK, output Q); endmodule
|
|
@ -0,0 +1,14 @@
|
|||
// Diamond I/O buffers
|
||||
module IB (input I, output O); (* PULLMODE="NONE" *) TRELLIS_IO #(.DIR("INPUT")) _TECHMAP_REPLACE_ (.B(I), .O(O)); endmodule
|
||||
module IBPU (input I, output O); (* PULLMODE="UP" *) TRELLIS_IO #(.DIR("INPUT")) _TECHMAP_REPLACE_ (.B(I), .O(O)); endmodule
|
||||
module IBPD (input I, output O); (* PULLMODE="DOWN" *) TRELLIS_IO #(.DIR("INPUT")) _TECHMAP_REPLACE_ (.B(I), .O(O)); endmodule
|
||||
module OB (input I, output O); (* PULLMODE="NONE" *) TRELLIS_IO #(.DIR("OUTPUT")) _TECHMAP_REPLACE_ (.B(O), .I(I)); endmodule
|
||||
module OBZ (input I, T, output O); (* PULLMODE="NONE" *) TRELLIS_IO #(.DIR("OUTPUT")) _TECHMAP_REPLACE_ (.B(O), .I(I), .T(T)); endmodule
|
||||
module OBZPU(input I, T, output O); (* PULLMODE="UP" *) TRELLIS_IO #(.DIR("OUTPUT")) _TECHMAP_REPLACE_ (.B(O), .I(I), .T(T)); endmodule
|
||||
module OBZPD(input I, T, output O); (* PULLMODE="DOWN" *) TRELLIS_IO #(.DIR("OUTPUT")) _TECHMAP_REPLACE_ (.B(O), .I(I), .T(T)); endmodule
|
||||
module OBCO (input I, output OT, OC); OLVDS olvds (.A(I), .Z(OT), .ZN(OC)); endmodule
|
||||
module BB (input I, T, output O, inout B); (* PULLMODE="NONE" *) TRELLIS_IO #(.DIR("BIDIR")) _TECHMAP_REPLACE_ (.B(B), .I(I), .O(O), .T(T)); endmodule
|
||||
module BBPU (input I, T, output O, inout B); (* PULLMODE="UP" *) TRELLIS_IO #(.DIR("BIDIR")) _TECHMAP_REPLACE_ (.B(B), .I(I), .O(O), .T(T)); endmodule
|
||||
module BBPD (input I, T, output O, inout B); (* PULLMODE="DOWN" *) TRELLIS_IO #(.DIR("BIDIR")) _TECHMAP_REPLACE_ (.B(B), .I(I), .O(O), .T(T)); endmodule
|
||||
module ILVDS(input A, AN, output Z ); TRELLIS_IO #(.DIR("INPUT")) _TECHMAP_REPLACE_ (.B(A), .O(Z)); endmodule
|
||||
module OLVDS(input A, output Z, ZN); TRELLIS_IO #(.DIR("OUTPUT")) _TECHMAP_REPLACE_ (.B(Z), .I(A)); endmodule
|
|
@ -47,59 +47,8 @@ module \$__DFFSE_NP1 (input D, C, E, R, output Q); TRELLIS_FF #(.GSR("AUTO"), .
|
|||
module \$__DFFSE_PP0 (input D, C, E, R, output Q); TRELLIS_FF #(.GSR("AUTO"), .CEMUX("CE"), .CLKMUX("CLK"), .LSRMUX("LSR"), .REGSET("RESET"), .SRMODE("LSR_OVER_CE")) _TECHMAP_REPLACE_ (.CLK(C), .CE(E), .LSR(R), .DI(D), .Q(Q)); endmodule
|
||||
module \$__DFFSE_PP1 (input D, C, E, R, output Q); TRELLIS_FF #(.GSR("AUTO"), .CEMUX("CE"), .CLKMUX("CLK"), .LSRMUX("LSR"), .REGSET("SET"), .SRMODE("LSR_OVER_CE")) _TECHMAP_REPLACE_ (.CLK(C), .CE(E), .LSR(R), .DI(D), .Q(Q)); endmodule
|
||||
|
||||
// TODO: Diamond flip-flops
|
||||
// module FD1P3AX(); endmodule
|
||||
// module FD1P3AY(); endmodule
|
||||
// module FD1P3BX(); endmodule
|
||||
// module FD1P3DX(); endmodule
|
||||
// module FD1P3IX(); endmodule
|
||||
// module FD1P3JX(); endmodule
|
||||
// module FD1S3AX(); endmodule
|
||||
// module FD1S3AY(); endmodule
|
||||
module FD1S3BX(input PD, D, CK, output Q); TRELLIS_FF #(.GSR("DISABLED"), .CEMUX("1"), .CLKMUX("CLK"), .LSRMUX("LSR"), .REGSET("SET"), .SRMODE("ASYNC")) _TECHMAP_REPLACE_ (.CLK(CK), .LSR(PD), .DI(D), .Q(Q)); endmodule
|
||||
module FD1S3DX(input CD, D, CK, output Q); TRELLIS_FF #(.GSR("DISABLED"), .CEMUX("1"), .CLKMUX("CLK"), .LSRMUX("LSR"), .REGSET("RESET"), .SRMODE("ASYNC")) _TECHMAP_REPLACE_ (.CLK(CK), .LSR(CD), .DI(D), .Q(Q)); endmodule
|
||||
module FD1S3IX(input CD, D, CK, output Q); TRELLIS_FF #(.GSR("DISABLED"), .CEMUX("1"), .CLKMUX("CLK"), .LSRMUX("LSR"), .REGSET("RESET"), .SRMODE("LSR_OVER_CE")) _TECHMAP_REPLACE_ (.CLK(CK), .LSR(CD), .DI(D), .Q(Q)); endmodule
|
||||
module FD1S3JX(input PD, D, CK, output Q); TRELLIS_FF #(.GSR("DISABLED"), .CEMUX("1"), .CLKMUX("CLK"), .LSRMUX("LSR"), .REGSET("SET"), .SRMODE("LSR_OVER_CE")) _TECHMAP_REPLACE_ (.CLK(CK), .LSR(PD), .DI(D), .Q(Q)); endmodule
|
||||
// module FL1P3AY(); endmodule
|
||||
// module FL1P3AZ(); endmodule
|
||||
// module FL1P3BX(); endmodule
|
||||
// module FL1P3DX(); endmodule
|
||||
// module FL1P3IY(); endmodule
|
||||
// module FL1P3JY(); endmodule
|
||||
// module FL1S3AX(); endmodule
|
||||
// module FL1S3AY(); endmodule
|
||||
|
||||
// Diamond I/O buffers
|
||||
module IB (input I, output O); (* PULLMODE="NONE" *) TRELLIS_IO #(.DIR("INPUT")) _TECHMAP_REPLACE_ (.B(I), .O(O)); endmodule
|
||||
module IBPU (input I, output O); (* PULLMODE="UP" *) TRELLIS_IO #(.DIR("INPUT")) _TECHMAP_REPLACE_ (.B(I), .O(O)); endmodule
|
||||
module IBPD (input I, output O); (* PULLMODE="DOWN" *) TRELLIS_IO #(.DIR("INPUT")) _TECHMAP_REPLACE_ (.B(I), .O(O)); endmodule
|
||||
module OB (input I, output O); (* PULLMODE="NONE" *) TRELLIS_IO #(.DIR("OUTPUT")) _TECHMAP_REPLACE_ (.B(O), .I(I)); endmodule
|
||||
module OBZ (input I, T, output O); (* PULLMODE="NONE" *) TRELLIS_IO #(.DIR("OUTPUT")) _TECHMAP_REPLACE_ (.B(O), .I(I), .T(T)); endmodule
|
||||
module OBZPU(input I, T, output O); (* PULLMODE="UP" *) TRELLIS_IO #(.DIR("OUTPUT")) _TECHMAP_REPLACE_ (.B(O), .I(I), .T(T)); endmodule
|
||||
module OBZPD(input I, T, output O); (* PULLMODE="DOWN" *) TRELLIS_IO #(.DIR("OUTPUT")) _TECHMAP_REPLACE_ (.B(O), .I(I), .T(T)); endmodule
|
||||
module OBCO (input I, output OT, OC); OLVDS _TECHMAP_REPLACE_ (.A(I), .Z(OT), .ZN(OC)); endmodule
|
||||
module BB (input I, T, output O, inout B); (* PULLMODE="NONE" *) TRELLIS_IO #(.DIR("BIDIR")) _TECHMAP_REPLACE_ (.B(B), .I(I), .O(O), .T(T)); endmodule
|
||||
module BBPU (input I, T, output O, inout B); (* PULLMODE="UP" *) TRELLIS_IO #(.DIR("BIDIR")) _TECHMAP_REPLACE_ (.B(B), .I(I), .O(O), .T(T)); endmodule
|
||||
module BBPD (input I, T, output O, inout B); (* PULLMODE="DOWN" *) TRELLIS_IO #(.DIR("BIDIR")) _TECHMAP_REPLACE_ (.B(B), .I(I), .O(O), .T(T)); endmodule
|
||||
module ILVDS(input A, AN, output Z); TRELLIS_IO #(.DIR("INPUT")) _TECHMAP_REPLACE_ (.B(A), .O(Z)); endmodule
|
||||
module OLVDS(input A, output Z, ZN); TRELLIS_IO #(.DIR("OUTPUT")) _TECHMAP_REPLACE_ (.B(Z), .I(A)); endmodule
|
||||
|
||||
// Diamond I/O registers
|
||||
module IFS1P3BX(input PD, D, SP, SCLK, output Q); TRELLIS_FF #(.GSR("DISABLED"), .CEMUX("1"), .CLKMUX("CLK"), .LSRMUX("LSR"), .REGSET("SET"), .SRMODE("ASYNC")) _TECHMAP_REPLACE_ (.CLK(SCLK), .LSR(PD), .CE(SP), .DI(D), .Q(Q)); endmodule
|
||||
module IFS1P3DX(input CD, D, SP, SCLK, output Q); TRELLIS_FF #(.GSR("DISABLED"), .CEMUX("1"), .CLKMUX("CLK"), .LSRMUX("LSR"), .REGSET("RESET"), .SRMODE("ASYNC")) _TECHMAP_REPLACE_ (.CLK(SCLK), .LSR(CD), .CE(SP), .DI(D), .Q(Q)); endmodule
|
||||
module IFS1P3IX(input CD, D, SP, SCLK, output Q); TRELLIS_FF #(.GSR("DISABLED"), .CEMUX("1"), .CLKMUX("CLK"), .LSRMUX("LSR"), .REGSET("RESET"), .SRMODE("LSR_OVER_CE")) _TECHMAP_REPLACE_ (.CLK(SCLK), .LSR(CD), .CE(SP), .DI(D), .Q(Q)); endmodule
|
||||
module IFS1P3JX(input PD, D, SP, SCLK, output Q); TRELLIS_FF #(.GSR("DISABLED"), .CEMUX("1"), .CLKMUX("CLK"), .LSRMUX("LSR"), .REGSET("SET"), .SRMODE("LSR_OVER_CE")) _TECHMAP_REPLACE_ (.CLK(SCLK), .LSR(PD), .CE(SP), .DI(D), .Q(Q)); endmodule
|
||||
|
||||
module OFS1P3BX(input PD, D, SP, SCLK, output Q); TRELLIS_FF #(.GSR("DISABLED"), .CEMUX("1"), .CLKMUX("CLK"), .LSRMUX("LSR"), .REGSET("SET"), .SRMODE("ASYNC")) _TECHMAP_REPLACE_ (.CLK(SCLK), .LSR(PD), .CE(SP), .DI(D), .Q(Q)); endmodule
|
||||
module OFS1P3DX(input CD, D, SP, SCLK, output Q); TRELLIS_FF #(.GSR("DISABLED"), .CEMUX("1"), .CLKMUX("CLK"), .LSRMUX("LSR"), .REGSET("RESET"), .SRMODE("ASYNC")) _TECHMAP_REPLACE_ (.CLK(SCLK), .LSR(CD), .CE(SP), .DI(D), .Q(Q)); endmodule
|
||||
module OFS1P3IX(input CD, D, SP, SCLK, output Q); TRELLIS_FF #(.GSR("DISABLED"), .CEMUX("1"), .CLKMUX("CLK"), .LSRMUX("LSR"), .REGSET("RESET"), .SRMODE("LSR_OVER_CE")) _TECHMAP_REPLACE_ (.CLK(SCLK), .LSR(CD), .CE(SP), .DI(D), .Q(Q)); endmodule
|
||||
module OFS1P3JX(input PD, D, SP, SCLK, output Q); TRELLIS_FF #(.GSR("DISABLED"), .CEMUX("1"), .CLKMUX("CLK"), .LSRMUX("LSR"), .REGSET("SET"), .SRMODE("LSR_OVER_CE")) _TECHMAP_REPLACE_ (.CLK(SCLK), .LSR(PD), .CE(SP), .DI(D), .Q(Q)); endmodule
|
||||
|
||||
// TODO: Diamond I/O latches
|
||||
// module IFS1S1B(input PD, D, SCLK, output Q); endmodule
|
||||
// module IFS1S1D(input CD, D, SCLK, output Q); endmodule
|
||||
// module IFS1S1I(input PD, D, SCLK, output Q); endmodule
|
||||
// module IFS1S1J(input CD, D, SCLK, output Q); endmodule
|
||||
`include "cells_ff.vh"
|
||||
`include "cells_io.vh"
|
||||
|
||||
`ifndef NO_LUT
|
||||
module \$lut (A, Y);
|
||||
|
|
|
@ -229,14 +229,15 @@ module TRELLIS_FF(input CLK, LSR, CE, DI, M, output reg Q);
|
|||
parameter REGSET = "RESET";
|
||||
parameter [127:0] LSRMODE = "LSR";
|
||||
|
||||
reg muxce;
|
||||
always @(*)
|
||||
wire muxce;
|
||||
generate
|
||||
case (CEMUX)
|
||||
"1": muxce = 1'b1;
|
||||
"0": muxce = 1'b0;
|
||||
"INV": muxce = ~CE;
|
||||
default: muxce = CE;
|
||||
"1": assign muxce = 1'b1;
|
||||
"0": assign muxce = 1'b0;
|
||||
"INV": assign muxce = ~CE;
|
||||
default: assign muxce = CE;
|
||||
endcase
|
||||
endgenerate
|
||||
|
||||
wire muxlsr = (LSRMUX == "INV") ? ~LSR : LSR;
|
||||
wire muxclk = (CLKMUX == "INV") ? ~CLK : CLK;
|
||||
|
@ -693,56 +694,9 @@ module DP16KD(
|
|||
parameter INITVAL_3F = 320'h00000000000000000000000000000000000000000000000000000000000000000000000000000000;
|
||||
endmodule
|
||||
|
||||
// TODO: Diamond flip-flops
|
||||
// module FD1P3AX(); endmodule
|
||||
// module FD1P3AY(); endmodule
|
||||
// module FD1P3BX(); endmodule
|
||||
// module FD1P3DX(); endmodule
|
||||
// module FD1P3IX(); endmodule
|
||||
// module FD1P3JX(); endmodule
|
||||
// module FD1S3AX(); endmodule
|
||||
// module FD1S3AY(); endmodule
|
||||
module FD1S3BX(input PD, D, CK, output Q); TRELLIS_FF #(.GSR("DISABLED"), .CEMUX("1"), .CLKMUX("CLK"), .LSRMUX("LSR"), .REGSET("SET"), .SRMODE("ASYNC")) tff (.CLK(CK), .LSR(PD), .DI(D), .Q(Q)); endmodule
|
||||
module FD1S3DX(input CD, D, CK, output Q); TRELLIS_FF #(.GSR("DISABLED"), .CEMUX("1"), .CLKMUX("CLK"), .LSRMUX("LSR"), .REGSET("RESET"), .SRMODE("ASYNC")) tff (.CLK(CK), .LSR(CD), .DI(D), .Q(Q)); endmodule
|
||||
module FD1S3IX(input CD, D, CK, output Q); TRELLIS_FF #(.GSR("DISABLED"), .CEMUX("1"), .CLKMUX("CLK"), .LSRMUX("LSR"), .REGSET("RESET"), .SRMODE("LSR_OVER_CE")) tff (.CLK(CK), .LSR(CD), .DI(D), .Q(Q)); endmodule
|
||||
module FD1S3JX(input PD, D, CK, output Q); TRELLIS_FF #(.GSR("DISABLED"), .CEMUX("1"), .CLKMUX("CLK"), .LSRMUX("LSR"), .REGSET("SET"), .SRMODE("LSR_OVER_CE")) tff (.CLK(CK), .LSR(PD), .DI(D), .Q(Q)); endmodule
|
||||
// module FL1P3AY(); endmodule
|
||||
// module FL1P3AZ(); endmodule
|
||||
// module FL1P3BX(); endmodule
|
||||
// module FL1P3DX(); endmodule
|
||||
// module FL1P3IY(); endmodule
|
||||
// module FL1P3JY(); endmodule
|
||||
// module FL1S3AX(); endmodule
|
||||
// module FL1S3AY(); endmodule
|
||||
`ifndef NO_INCLUDES
|
||||
|
||||
// Diamond I/O buffers
|
||||
module IB (input I, output O); (* PULLMODE="NONE" *) TRELLIS_IO #(.DIR("INPUT")) tio (.B(I), .O(O)); endmodule
|
||||
module IBPU (input I, output O); (* PULLMODE="UP" *) TRELLIS_IO #(.DIR("INPUT")) tio (.B(I), .O(O)); endmodule
|
||||
module IBPD (input I, output O); (* PULLMODE="DOWN" *) TRELLIS_IO #(.DIR("INPUT")) tio (.B(I), .O(O)); endmodule
|
||||
module OB (input I, output O); (* PULLMODE="NONE" *) TRELLIS_IO #(.DIR("OUTPUT")) tio (.B(O), .I(I)); endmodule
|
||||
module OBZ (input I, T, output O); (* PULLMODE="NONE" *) TRELLIS_IO #(.DIR("OUTPUT")) tio (.B(O), .I(I), .T(T)); endmodule
|
||||
module OBZPU(input I, T, output O); (* PULLMODE="UP" *) TRELLIS_IO #(.DIR("OUTPUT")) tio (.B(O), .I(I), .T(T)); endmodule
|
||||
module OBZPD(input I, T, output O); (* PULLMODE="DOWN" *) TRELLIS_IO #(.DIR("OUTPUT")) tio (.B(O), .I(I), .T(T)); endmodule
|
||||
module OBCO (input I, output OT, OC); OLVDS olvds (.A(I), .Z(OT), .ZN(OC)); endmodule
|
||||
module BB (input I, T, output O, inout B); (* PULLMODE="NONE" *) TRELLIS_IO #(.DIR("BIDIR")) tio (.B(B), .I(I), .O(O), .T(T)); endmodule
|
||||
module BBPU (input I, T, output O, inout B); (* PULLMODE="UP" *) TRELLIS_IO #(.DIR("BIDIR")) tio (.B(B), .I(I), .O(O), .T(T)); endmodule
|
||||
module BBPD (input I, T, output O, inout B); (* PULLMODE="DOWN" *) TRELLIS_IO #(.DIR("BIDIR")) tio (.B(B), .I(I), .O(O), .T(T)); endmodule
|
||||
module ILVDS(input A, AN, output Z); TRELLIS_IO #(.DIR("INPUT")) tio (.B(A), .O(Z)); endmodule
|
||||
module OLVDS(input A, output Z, ZN); TRELLIS_IO #(.DIR("OUTPUT")) tio (.B(Z), .I(A)); endmodule
|
||||
`include "cells_ff.vh"
|
||||
`include "cells_io.vh"
|
||||
|
||||
// Diamond I/O registers
|
||||
module IFS1P3BX(input PD, D, SP, SCLK, output Q); TRELLIS_FF #(.GSR("DISABLED"), .CEMUX("1"), .CLKMUX("CLK"), .LSRMUX("LSR"), .REGSET("SET"), .SRMODE("ASYNC")) tff (.CLK(SCLK), .LSR(PD), .CE(SP), .DI(D), .Q(Q)); endmodule
|
||||
module IFS1P3DX(input CD, D, SP, SCLK, output Q); TRELLIS_FF #(.GSR("DISABLED"), .CEMUX("1"), .CLKMUX("CLK"), .LSRMUX("LSR"), .REGSET("RESET"), .SRMODE("ASYNC")) tff (.CLK(SCLK), .LSR(CD), .CE(SP), .DI(D), .Q(Q)); endmodule
|
||||
module IFS1P3IX(input CD, D, SP, SCLK, output Q); TRELLIS_FF #(.GSR("DISABLED"), .CEMUX("1"), .CLKMUX("CLK"), .LSRMUX("LSR"), .REGSET("RESET"), .SRMODE("LSR_OVER_CE")) tff (.CLK(SCLK), .LSR(CD), .CE(SP), .DI(D), .Q(Q)); endmodule
|
||||
module IFS1P3JX(input PD, D, SP, SCLK, output Q); TRELLIS_FF #(.GSR("DISABLED"), .CEMUX("1"), .CLKMUX("CLK"), .LSRMUX("LSR"), .REGSET("SET"), .SRMODE("LSR_OVER_CE")) tff (.CLK(SCLK), .LSR(PD), .CE(SP), .DI(D), .Q(Q)); endmodule
|
||||
|
||||
module OFS1P3BX(input PD, D, SP, SCLK, output Q); TRELLIS_FF #(.GSR("DISABLED"), .CEMUX("1"), .CLKMUX("CLK"), .LSRMUX("LSR"), .REGSET("SET"), .SRMODE("ASYNC")) tff (.CLK(SCLK), .LSR(PD), .CE(SP), .DI(D), .Q(Q)); endmodule
|
||||
module OFS1P3DX(input CD, D, SP, SCLK, output Q); TRELLIS_FF #(.GSR("DISABLED"), .CEMUX("1"), .CLKMUX("CLK"), .LSRMUX("LSR"), .REGSET("RESET"), .SRMODE("ASYNC")) tff (.CLK(SCLK), .LSR(CD), .CE(SP), .DI(D), .Q(Q)); endmodule
|
||||
module OFS1P3IX(input CD, D, SP, SCLK, output Q); TRELLIS_FF #(.GSR("DISABLED"), .CEMUX("1"), .CLKMUX("CLK"), .LSRMUX("LSR"), .REGSET("RESET"), .SRMODE("LSR_OVER_CE")) tff (.CLK(SCLK), .LSR(CD), .CE(SP), .DI(D), .Q(Q)); endmodule
|
||||
module OFS1P3JX(input PD, D, SP, SCLK, output Q); TRELLIS_FF #(.GSR("DISABLED"), .CEMUX("1"), .CLKMUX("CLK"), .LSRMUX("LSR"), .REGSET("SET"), .SRMODE("LSR_OVER_CE")) tff (.CLK(SCLK), .LSR(PD), .CE(SP), .DI(D), .Q(Q)); endmodule
|
||||
|
||||
// TODO: Diamond I/O latches
|
||||
// module IFS1S1B(input PD, D, SCLK, output Q); endmodule
|
||||
// module IFS1S1D(input CD, D, SCLK, output Q); endmodule
|
||||
// module IFS1S1I(input PD, D, SCLK, output Q); endmodule
|
||||
// module IFS1S1J(input CD, D, SCLK, output Q); endmodule
|
||||
`endif
|
||||
|
|
|
@ -124,7 +124,7 @@ struct Ecp5GsrPass : public Pass {
|
|||
SigBit lsr = sigmap(sig_lsr[0]);
|
||||
if (!inverted_gsr.count(lsr))
|
||||
continue;
|
||||
cell->setParam(ID(SRMODE), Const("SYNC"));
|
||||
cell->setParam(ID(SRMODE), Const("LSR_OVER_CE"));
|
||||
cell->unsetPort(ID(LSR));
|
||||
}
|
||||
|
||||
|
|
|
@ -0,0 +1 @@
|
|||
work_*
|
|
@ -0,0 +1,82 @@
|
|||
import os
|
||||
import subprocess
|
||||
|
||||
if not os.path.exists("work_ff"):
|
||||
os.mkdir("work_ff")
|
||||
|
||||
modules = []
|
||||
|
||||
with open("../cells_ff.vh", "r") as f:
|
||||
with open("work_ff/cells_ff_gate.v", "w") as g:
|
||||
for line in f:
|
||||
if not line.startswith("module"):
|
||||
g.write(line)
|
||||
continue
|
||||
else:
|
||||
spidx = line.find(" ")
|
||||
bridx = line.find("(")
|
||||
modname = line[spidx+1 : bridx]
|
||||
g.write("module %s_gate" % modname)
|
||||
g.write(line[bridx:])
|
||||
inpidx = line.find("input ")
|
||||
outpidx = line.find(", output")
|
||||
modules.append((modname, [x.strip() for x in line[inpidx+6:outpidx].split(",")]))
|
||||
|
||||
with open("work_ff/testbench.v", "w") as f:
|
||||
print("""
|
||||
`timescale 1ns/ 1ps
|
||||
|
||||
module testbench;
|
||||
reg pur = 0, clk, rst, cen, d;
|
||||
|
||||
// Needed for Diamond sim models
|
||||
GSR GSR_INST (.GSR(1'b1));
|
||||
PUR PUR_INST (.PUR(pur));
|
||||
|
||||
|
||||
initial begin
|
||||
$dumpfile("work_ff/ffs.vcd");
|
||||
$dumpvars(0, testbench);
|
||||
#5;
|
||||
pur = 1;
|
||||
#95;
|
||||
repeat (2500) begin
|
||||
{clk, rst, cen, d} = $random;
|
||||
#10;
|
||||
check_outputs;
|
||||
#1;
|
||||
end
|
||||
$finish;
|
||||
end
|
||||
""", file=f)
|
||||
|
||||
for modname, inputs in modules:
|
||||
print(" wire %s_gold_q, %s_gate_q;" % (modname, modname), file=f)
|
||||
portconns = []
|
||||
for inp in inputs:
|
||||
if inp in ("SCLK", "CK"):
|
||||
portconns.append(".%s(clk)" % inp)
|
||||
elif inp in ("CD", "PD"):
|
||||
portconns.append(".%s(rst)" % inp)
|
||||
elif inp == "SP":
|
||||
portconns.append(".%s(cen)" % inp)
|
||||
elif inp == "D":
|
||||
portconns.append(".%s(d)" % inp)
|
||||
else:
|
||||
assert False
|
||||
portconns.append(".Q(%s_gold_q)" % modname)
|
||||
print(" %s %s_gold_i (%s);" % (modname, modname, ", ".join(portconns)), file=f)
|
||||
portconns[-1] = (".Q(%s_gate_q)" % modname)
|
||||
print(" %s_gate %s_gate_i (%s);" % (modname, modname, ", ".join(portconns)), file=f)
|
||||
print("", file=f)
|
||||
print(" task check_outputs;", file=f)
|
||||
print(" begin", file=f)
|
||||
print(" if (%s_gold_q != %s_gate_q) $display(\"MISMATCH at %%1t: %s_gold_q=%%b, %s_gate_q=%%b\", $time, %s_gold_q, %s_gate_q);" %
|
||||
(modname, modname, modname, modname, modname, modname), file=f)
|
||||
print(" end", file=f)
|
||||
print(" endtask", file=f)
|
||||
print("endmodule", file=f)
|
||||
|
||||
diamond_models = "/usr/local/diamond/3.10_x64/cae_library/simulation/verilog/ecp5u"
|
||||
subprocess.call(["iverilog", "-s", "testbench", "-o", "work_ff/testbench", "-Dmixed_hdl", "-DNO_INCLUDES", "-y", diamond_models, "work_ff/cells_ff_gate.v", "../cells_sim.v", "work_ff/testbench.v"])
|
||||
subprocess.call(["vvp", "work_ff/testbench"])
|
|
@ -3,11 +3,11 @@
|
|||
# NB: Inputs/Outputs must be ordered alphabetically
|
||||
# (with exceptions for carry in/out)
|
||||
|
||||
# Inputs: A B CI
|
||||
# Inputs: A B I0 I3 CI
|
||||
# Outputs: O CO
|
||||
# (NB: carry chain input/output must be last
|
||||
# input/output and have been moved there
|
||||
# overriding the alphabetical ordering)
|
||||
$__ICE40_FULL_ADDER 1 1 3 2
|
||||
400 379 316
|
||||
259 231 126
|
||||
$__ICE40_CARRY_WRAPPER 1 1 5 2
|
||||
400 379 449 316 316
|
||||
259 231 - - 126
|
||||
|
|
|
@ -3,11 +3,11 @@
|
|||
# NB: Inputs/Outputs must be ordered alphabetically
|
||||
# (with exceptions for carry in/out)
|
||||
|
||||
# Inputs: A B CI
|
||||
# Inputs: A B I0 I3 CI
|
||||
# Outputs: O CO
|
||||
# (NB: carry chain input/output must be last
|
||||
# input/output and have been moved there
|
||||
# overriding the alphabetical ordering)
|
||||
$__ICE40_FULL_ADDER 1 1 3 2
|
||||
589 558 465
|
||||
675 609 186
|
||||
$__ICE40_CARRY_WRAPPER 1 1 5 2
|
||||
589 558 661 465 465
|
||||
675 609 - - 186
|
||||
|
|
|
@ -3,11 +3,11 @@
|
|||
# NB: Inputs/Outputs must be ordered alphabetically
|
||||
# (with exceptions for carry in/out)
|
||||
|
||||
# Inputs: A B CI
|
||||
# Inputs: A B I0 I3 CI
|
||||
# Outputs: O CO
|
||||
# (NB: carry chain input/output must be last
|
||||
# input/output and have been moved there
|
||||
# overriding the alphabetical ordering)
|
||||
$__ICE40_FULL_ADDER 1 1 3 2
|
||||
1231 1205 874
|
||||
675 609 278
|
||||
$__ICE40_CARRY_WRAPPER 1 1 5 2
|
||||
1231 1205 1285 874 874
|
||||
675 609 - - 278
|
||||
|
|
|
@ -142,15 +142,16 @@ module SB_CARRY (output CO, input I0, I1, CI);
|
|||
endmodule
|
||||
|
||||
(* abc_box_id = 1, lib_whitebox *)
|
||||
module \$__ICE40_FULL_ADDER (
|
||||
module \$__ICE40_CARRY_WRAPPER (
|
||||
(* abc_carry *)
|
||||
output CO,
|
||||
output O,
|
||||
input A,
|
||||
input B,
|
||||
input A, B,
|
||||
(* abc_carry *)
|
||||
input CI
|
||||
input CI,
|
||||
input I0, I3
|
||||
);
|
||||
parameter LUT = 0;
|
||||
SB_CARRY carry (
|
||||
.I0(A),
|
||||
.I1(B),
|
||||
|
@ -158,16 +159,12 @@ module \$__ICE40_FULL_ADDER (
|
|||
.CO(CO)
|
||||
);
|
||||
SB_LUT4 #(
|
||||
// I0: 1010 1010 1010 1010
|
||||
// I1: 1100 1100 1100 1100
|
||||
// I2: 1111 0000 1111 0000
|
||||
// I3: 1111 1111 0000 0000
|
||||
.LUT_INIT(16'b 0110_1001_1001_0110)
|
||||
.LUT_INIT(LUT)
|
||||
) adder (
|
||||
.I0(1'b0),
|
||||
.I0(I0),
|
||||
.I1(A),
|
||||
.I2(B),
|
||||
.I3(CI),
|
||||
.I3(I3),
|
||||
.O(O)
|
||||
);
|
||||
endmodule
|
||||
|
|
|
@ -84,7 +84,7 @@ static void run_ice40_opts(Module *module)
|
|||
continue;
|
||||
}
|
||||
|
||||
if (cell->type == "$__ICE40_FULL_ADDER")
|
||||
if (cell->type == "$__ICE40_CARRY_WRAPPER")
|
||||
{
|
||||
SigSpec non_const_inputs, replacement_output;
|
||||
int count_zeros = 0, count_ones = 0;
|
||||
|
@ -114,16 +114,17 @@ static void run_ice40_opts(Module *module)
|
|||
optimized_co.insert(sigmap(cell->getPort("\\CO")[0]));
|
||||
module->connect(cell->getPort("\\CO")[0], replacement_output);
|
||||
module->design->scratchpad_set_bool("opt.did_something", true);
|
||||
log("Optimized $__ICE40_FULL_ADDER cell back to logic (without SB_CARRY) %s.%s: CO=%s\n",
|
||||
log("Optimized $__ICE40_CARRY_WRAPPER cell back to logic (without SB_CARRY) %s.%s: CO=%s\n",
|
||||
log_id(module), log_id(cell), log_signal(replacement_output));
|
||||
cell->type = "$lut";
|
||||
cell->setPort("\\A", { State::S0, inbit[0], inbit[1], inbit[2] });
|
||||
cell->setPort("\\A", { cell->getPort("\\I0"), inbit[0], inbit[1], cell->getPort("\\I3") });
|
||||
cell->setPort("\\Y", cell->getPort("\\O"));
|
||||
cell->unsetPort("\\B");
|
||||
cell->unsetPort("\\CI");
|
||||
cell->unsetPort("\\I0");
|
||||
cell->unsetPort("\\I3");
|
||||
cell->unsetPort("\\CO");
|
||||
cell->unsetPort("\\O");
|
||||
cell->setParam("\\LUT", RTLIL::Const::from_string("0110100110010110"));
|
||||
cell->setParam("\\WIDTH", 4);
|
||||
}
|
||||
continue;
|
||||
|
|
|
@ -303,9 +303,8 @@ struct SynthXilinxPass : public ScriptPass
|
|||
if (widemux > 0 || help_mode)
|
||||
run("muxpack", " ('-widemux' only)");
|
||||
|
||||
// shregmap -tech xilinx can cope with $shiftx and $mux
|
||||
// cells for identifying variable-length shift registers,
|
||||
// so attempt to convert $pmux-es to the former
|
||||
// xilinx_srl looks for $shiftx cells for identifying variable-length
|
||||
// shift registers, so attempt to convert $pmux-es to this
|
||||
// Also: wide multiplexer inference benefits from this too
|
||||
if (!(nosrl && widemux == 0) || help_mode) {
|
||||
run("pmux2shiftx", "(skip if '-nosrl' and '-widemux=0')");
|
||||
|
@ -387,13 +386,8 @@ struct SynthXilinxPass : public ScriptPass
|
|||
}
|
||||
run("opt -full");
|
||||
|
||||
if (!nosrl || help_mode) {
|
||||
// shregmap operates on bit-level flops, not word-level,
|
||||
// so break those down here
|
||||
run("simplemap t:$dff t:$dffe", " (skip if '-nosrl')");
|
||||
// shregmap with '-tech xilinx' infers variable length shift regs
|
||||
run("shregmap -tech xilinx -minlen 3", "(skip if '-nosrl')");
|
||||
}
|
||||
if (!nosrl || help_mode)
|
||||
run("xilinx_srl -variable -minlen 3", "(skip if '-nosrl')");
|
||||
|
||||
std::string techmap_args = " -map +/techmap.v";
|
||||
if (help_mode)
|
||||
|
@ -421,6 +415,14 @@ struct SynthXilinxPass : public ScriptPass
|
|||
run("clean");
|
||||
}
|
||||
|
||||
if (check_label("map_ffs")) {
|
||||
if (abc9 || help_mode) {
|
||||
run("techmap -map +/xilinx/ff_map.v", "('-abc9' only)");
|
||||
run("dffinit -ff FDRE Q INIT -ff FDCE Q INIT -ff FDPE Q INIT -ff FDSE Q INIT "
|
||||
"-ff FDRE_1 Q INIT -ff FDCE_1 Q INIT -ff FDPE_1 Q INIT -ff FDSE_1 Q INIT", "('-abc9' only)");
|
||||
}
|
||||
}
|
||||
|
||||
if (check_label("map_luts")) {
|
||||
run("opt_expr -mux_undef");
|
||||
if (flatten_before_abc)
|
||||
|
@ -446,10 +448,17 @@ struct SynthXilinxPass : public ScriptPass
|
|||
// This shregmap call infers fixed length shift registers after abc
|
||||
// has performed any necessary retiming
|
||||
if (!nosrl || help_mode)
|
||||
run("shregmap -minlen 3 -init -params -enpol any_or_none", "(skip if '-nosrl')");
|
||||
run("techmap -map +/xilinx/lut_map.v -map +/xilinx/ff_map.v -map +/xilinx/cells_map.v");
|
||||
run("dffinit -ff FDRE Q INIT -ff FDCE Q INIT -ff FDPE Q INIT -ff FDSE Q INIT "
|
||||
"-ff FDRE_1 Q INIT -ff FDCE_1 Q INIT -ff FDPE_1 Q INIT -ff FDSE_1 Q INIT");
|
||||
run("xilinx_srl -fixed -minlen 3", "(skip if '-nosrl')");
|
||||
|
||||
std::string techmap_args = "-map +/xilinx/lut_map.v -map +/xilinx/cells_map.v";
|
||||
if (help_mode)
|
||||
techmap_args += " [-map +/xilinx/ff_map.v]";
|
||||
else if (!abc9)
|
||||
techmap_args += " -map +/xilinx/ff_map.v";
|
||||
run("techmap " + techmap_args);
|
||||
if (!abc9)
|
||||
run("dffinit -ff FDRE Q INIT -ff FDCE Q INIT -ff FDPE Q INIT -ff FDSE Q INIT "
|
||||
"-ff FDRE_1 Q INIT -ff FDCE_1 Q INIT -ff FDPE_1 Q INIT -ff FDSE_1 Q INIT", "(without '-abc9' only)");
|
||||
run("clean");
|
||||
}
|
||||
|
||||
|
|
|
@ -0,0 +1,4 @@
|
|||
*.log
|
||||
/run-test.mk
|
||||
+*_synth.v
|
||||
+*_testbench
|
|
@ -0,0 +1,13 @@
|
|||
module top
|
||||
(
|
||||
input [3:0] x,
|
||||
input [3:0] y,
|
||||
|
||||
output [3:0] A,
|
||||
output [3:0] B
|
||||
);
|
||||
|
||||
assign A = x + y;
|
||||
assign B = x - y;
|
||||
|
||||
endmodule
|
|
@ -0,0 +1,9 @@
|
|||
read_verilog add_sub.v
|
||||
hierarchy -top top
|
||||
equiv_opt -assert -map +/ice40/cells_sim.v synth_ice40 # equivalency check
|
||||
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
|
||||
cd top # Constrain all select calls below inside the top module
|
||||
select -assert-count 11 t:SB_LUT4
|
||||
select -assert-count 6 t:SB_CARRY
|
||||
select -assert-none t:SB_LUT4 t:SB_CARRY %% t:* %D
|
||||
|
|
@ -0,0 +1,91 @@
|
|||
module adff
|
||||
( input d, clk, clr, output reg q );
|
||||
initial begin
|
||||
q = 0;
|
||||
end
|
||||
always @( posedge clk, posedge clr )
|
||||
if ( clr )
|
||||
q <= 1'b0;
|
||||
else
|
||||
q <= d;
|
||||
endmodule
|
||||
|
||||
module adffn
|
||||
( input d, clk, clr, output reg q );
|
||||
initial begin
|
||||
q = 0;
|
||||
end
|
||||
always @( posedge clk, negedge clr )
|
||||
if ( !clr )
|
||||
q <= 1'b0;
|
||||
else
|
||||
q <= d;
|
||||
endmodule
|
||||
|
||||
module dffsr
|
||||
( input d, clk, pre, clr, output reg q );
|
||||
initial begin
|
||||
q = 0;
|
||||
end
|
||||
always @( posedge clk, posedge pre, posedge clr )
|
||||
if ( clr )
|
||||
q <= 1'b0;
|
||||
else if ( pre )
|
||||
q <= 1'b1;
|
||||
else
|
||||
q <= d;
|
||||
endmodule
|
||||
|
||||
module ndffnsnr
|
||||
( input d, clk, pre, clr, output reg q );
|
||||
initial begin
|
||||
q = 0;
|
||||
end
|
||||
always @( negedge clk, negedge pre, negedge clr )
|
||||
if ( !clr )
|
||||
q <= 1'b0;
|
||||
else if ( !pre )
|
||||
q <= 1'b1;
|
||||
else
|
||||
q <= d;
|
||||
endmodule
|
||||
|
||||
module top (
|
||||
input clk,
|
||||
input clr,
|
||||
input pre,
|
||||
input a,
|
||||
output b,b1,b2,b3
|
||||
);
|
||||
|
||||
dffsr u_dffsr (
|
||||
.clk (clk ),
|
||||
.clr (clr),
|
||||
.pre (pre),
|
||||
.d (a ),
|
||||
.q (b )
|
||||
);
|
||||
|
||||
ndffnsnr u_ndffnsnr (
|
||||
.clk (clk ),
|
||||
.clr (clr),
|
||||
.pre (pre),
|
||||
.d (a ),
|
||||
.q (b1 )
|
||||
);
|
||||
|
||||
adff u_adff (
|
||||
.clk (clk ),
|
||||
.clr (clr),
|
||||
.d (a ),
|
||||
.q (b2 )
|
||||
);
|
||||
|
||||
adffn u_adffn (
|
||||
.clk (clk ),
|
||||
.clr (clr),
|
||||
.d (a ),
|
||||
.q (b3 )
|
||||
);
|
||||
|
||||
endmodule
|
|
@ -0,0 +1,12 @@
|
|||
read_verilog adffs.v
|
||||
proc
|
||||
async2sync # converts async flops to a 'sync' variant clocked by a 'super'-clock
|
||||
flatten
|
||||
equiv_opt -assert -map +/ice40/cells_sim.v synth_ice40 # equivalency check
|
||||
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
|
||||
cd top # Constrain all select calls below inside the top module
|
||||
select -assert-count 1 t:SB_DFF
|
||||
select -assert-count 1 t:SB_DFFN
|
||||
select -assert-count 2 t:SB_DFFSR
|
||||
select -assert-count 7 t:SB_LUT4
|
||||
select -assert-none t:SB_DFF t:SB_DFFN t:SB_DFFSR t:SB_LUT4 %% t:* %D
|
|
@ -0,0 +1,19 @@
|
|||
module top (
|
||||
input clock,
|
||||
input [31:0] dinA, dinB,
|
||||
input [2:0] opcode,
|
||||
output reg [31:0] dout
|
||||
);
|
||||
always @(posedge clock) begin
|
||||
case (opcode)
|
||||
0: dout <= dinA + dinB;
|
||||
1: dout <= dinA - dinB;
|
||||
2: dout <= dinA >> dinB;
|
||||
3: dout <= $signed(dinA) >>> dinB;
|
||||
4: dout <= dinA << dinB;
|
||||
5: dout <= dinA & dinB;
|
||||
6: dout <= dinA | dinB;
|
||||
7: dout <= dinA ^ dinB;
|
||||
endcase
|
||||
end
|
||||
endmodule
|
|
@ -0,0 +1,11 @@
|
|||
read_verilog alu.v
|
||||
hierarchy -top top
|
||||
proc
|
||||
flatten
|
||||
equiv_opt -assert -map +/ice40/cells_sim.v synth_ice40 # equivalency check
|
||||
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
|
||||
cd top # Constrain all select calls below inside the top module
|
||||
select -assert-count 62 t:SB_CARRY
|
||||
select -assert-count 32 t:SB_DFF
|
||||
select -assert-count 655 t:SB_LUT4
|
||||
select -assert-none t:SB_CARRY t:SB_DFF t:SB_LUT4 %% t:* %D
|
|
@ -0,0 +1,17 @@
|
|||
module top (
|
||||
out,
|
||||
clk,
|
||||
reset
|
||||
);
|
||||
output [7:0] out;
|
||||
input clk, reset;
|
||||
reg [7:0] out;
|
||||
|
||||
always @(posedge clk, posedge reset)
|
||||
if (reset) begin
|
||||
out <= 8'b0 ;
|
||||
end else
|
||||
out <= out + 1;
|
||||
|
||||
|
||||
endmodule
|
|
@ -0,0 +1,11 @@
|
|||
read_verilog counter.v
|
||||
hierarchy -top top
|
||||
proc
|
||||
flatten
|
||||
equiv_opt -map +/ice40/cells_sim.v synth_ice40 # equivalency check
|
||||
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
|
||||
cd top # Constrain all select calls below inside the top module
|
||||
select -assert-count 6 t:SB_CARRY
|
||||
select -assert-count 8 t:SB_DFFR
|
||||
select -assert-count 8 t:SB_LUT4
|
||||
select -assert-none t:SB_CARRY t:SB_DFFR t:SB_LUT4 %% t:* %D
|
|
@ -0,0 +1,37 @@
|
|||
module dff
|
||||
( input d, clk, output reg q );
|
||||
always @( posedge clk )
|
||||
q <= d;
|
||||
endmodule
|
||||
|
||||
module dffe
|
||||
( input d, clk, en, output reg q );
|
||||
initial begin
|
||||
q = 0;
|
||||
end
|
||||
always @( posedge clk )
|
||||
if ( en )
|
||||
q <= d;
|
||||
endmodule
|
||||
|
||||
module top (
|
||||
input clk,
|
||||
input en,
|
||||
input a,
|
||||
output b,b1,
|
||||
);
|
||||
|
||||
dff u_dff (
|
||||
.clk (clk ),
|
||||
.d (a ),
|
||||
.q (b )
|
||||
);
|
||||
|
||||
dffe u_ndffe (
|
||||
.clk (clk ),
|
||||
.en (en),
|
||||
.d (a ),
|
||||
.q (b1 )
|
||||
);
|
||||
|
||||
endmodule
|
|
@ -0,0 +1,10 @@
|
|||
read_verilog dffs.v
|
||||
hierarchy -top top
|
||||
proc
|
||||
flatten
|
||||
equiv_opt -assert -map +/ice40/cells_sim.v synth_ice40 # equivalency check
|
||||
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
|
||||
cd top # Constrain all select calls below inside the top module
|
||||
select -assert-count 1 t:SB_DFF
|
||||
select -assert-count 1 t:SB_DFFE
|
||||
select -assert-none t:SB_DFF t:SB_DFFE %% t:* %D
|
|
@ -0,0 +1,13 @@
|
|||
module top
|
||||
(
|
||||
input [3:0] x,
|
||||
input [3:0] y,
|
||||
|
||||
output [3:0] A,
|
||||
output [3:0] B
|
||||
);
|
||||
|
||||
assign A = x % y;
|
||||
assign B = x / y;
|
||||
|
||||
endmodule
|
|
@ -0,0 +1,9 @@
|
|||
read_verilog div_mod.v
|
||||
hierarchy -top top
|
||||
flatten
|
||||
equiv_opt -assert -map +/ice40/cells_sim.v synth_ice40 # equivalency check
|
||||
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
|
||||
cd top # Constrain all select calls below inside the top module
|
||||
select -assert-count 62 t:SB_LUT4
|
||||
select -assert-count 41 t:SB_CARRY
|
||||
select -assert-none t:SB_LUT4 t:SB_CARRY %% t:* %D
|
|
@ -0,0 +1,23 @@
|
|||
/*
|
||||
Example from: https://www.latticesemi.com/-/media/LatticeSemi/Documents/UserManuals/EI/iCEcube201701UserGuide.ashx?document_id=52071 [p. 72].
|
||||
*/
|
||||
module top (din, write_en, waddr, wclk, raddr, rclk, dout);
|
||||
parameter addr_width = 8;
|
||||
parameter data_width = 8;
|
||||
input [addr_width-1:0] waddr, raddr;
|
||||
input [data_width-1:0] din;
|
||||
input write_en, wclk, rclk;
|
||||
output [data_width-1:0] dout;
|
||||
reg [data_width-1:0] dout;
|
||||
reg [data_width-1:0] mem [(1<<addr_width)-1:0]
|
||||
/* synthesis syn_ramstyle = "no_rw_check" */ ;
|
||||
always @(posedge wclk) // Write memory.
|
||||
begin
|
||||
if (write_en)
|
||||
mem[waddr] <= din; // Using write address bus.
|
||||
end
|
||||
always @(posedge rclk) // Read memory.
|
||||
begin
|
||||
dout <= mem[raddr]; // Using read address bus.
|
||||
end
|
||||
endmodule
|
|
@ -0,0 +1,15 @@
|
|||
read_verilog dpram.v
|
||||
hierarchy -top top
|
||||
proc
|
||||
memory -nomap
|
||||
equiv_opt -run :prove -map +/ice40/cells_sim.v synth_ice40
|
||||
memory
|
||||
opt -full
|
||||
|
||||
miter -equiv -flatten -make_assert -make_outputs gold gate miter
|
||||
sat -verify -prove-asserts -seq 3 -set-init-zero -show-inputs -show-outputs miter
|
||||
|
||||
design -load postopt
|
||||
cd top
|
||||
select -assert-count 1 t:SB_RAM40_4K
|
||||
select -assert-none t:SB_RAM40_4K %% t:* %D
|
|
@ -0,0 +1,73 @@
|
|||
module fsm (
|
||||
clock,
|
||||
reset,
|
||||
req_0,
|
||||
req_1,
|
||||
gnt_0,
|
||||
gnt_1
|
||||
);
|
||||
input clock,reset,req_0,req_1;
|
||||
output gnt_0,gnt_1;
|
||||
wire clock,reset,req_0,req_1;
|
||||
reg gnt_0,gnt_1;
|
||||
|
||||
parameter SIZE = 3 ;
|
||||
parameter IDLE = 3'b001,GNT0 = 3'b010,GNT1 = 3'b100,GNT2 = 3'b101 ;
|
||||
|
||||
reg [SIZE-1:0] state;
|
||||
reg [SIZE-1:0] next_state;
|
||||
|
||||
always @ (posedge clock)
|
||||
begin : FSM
|
||||
if (reset == 1'b1) begin
|
||||
state <= #1 IDLE;
|
||||
gnt_0 <= 0;
|
||||
gnt_1 <= 0;
|
||||
end else
|
||||
case(state)
|
||||
IDLE : if (req_0 == 1'b1) begin
|
||||
state <= #1 GNT0;
|
||||
gnt_0 <= 1;
|
||||
end else if (req_1 == 1'b1) begin
|
||||
gnt_1 <= 1;
|
||||
state <= #1 GNT0;
|
||||
end else begin
|
||||
state <= #1 IDLE;
|
||||
end
|
||||
GNT0 : if (req_0 == 1'b1) begin
|
||||
state <= #1 GNT0;
|
||||
end else begin
|
||||
gnt_0 <= 0;
|
||||
state <= #1 IDLE;
|
||||
end
|
||||
GNT1 : if (req_1 == 1'b1) begin
|
||||
state <= #1 GNT2;
|
||||
gnt_1 <= req_0;
|
||||
end
|
||||
GNT2 : if (req_0 == 1'b1) begin
|
||||
state <= #1 GNT1;
|
||||
gnt_1 <= req_1;
|
||||
end
|
||||
default : state <= #1 IDLE;
|
||||
endcase
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
module top (
|
||||
input clk,
|
||||
input rst,
|
||||
input a,
|
||||
input b,
|
||||
output g0,
|
||||
output g1
|
||||
);
|
||||
|
||||
fsm u_fsm ( .clock(clk),
|
||||
.reset(rst),
|
||||
.req_0(a),
|
||||
.req_1(b),
|
||||
.gnt_0(g0),
|
||||
.gnt_1(g1));
|
||||
|
||||
endmodule
|
|
@ -0,0 +1,13 @@
|
|||
read_verilog fsm.v
|
||||
hierarchy -top top
|
||||
proc
|
||||
flatten
|
||||
equiv_opt -assert -map +/ice40/cells_sim.v synth_ice40 # equivalency check
|
||||
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
|
||||
cd top # Constrain all select calls below inside the top module
|
||||
|
||||
select -assert-count 2 t:SB_DFFESR
|
||||
select -assert-count 2 t:SB_DFFSR
|
||||
select -assert-count 1 t:SB_DFFSS
|
||||
select -assert-count 13 t:SB_LUT4
|
||||
select -assert-none t:SB_DFFESR t:SB_DFFSR t:SB_DFFSS t:SB_LUT4 %% t:* %D
|
|
@ -0,0 +1,26 @@
|
|||
read_verilog -icells -formal <<EOT
|
||||
module top(input CI, I0, output [1:0] CO, output O);
|
||||
wire A = 1'b0, B = 1'b0;
|
||||
\$__ICE40_CARRY_WRAPPER #(
|
||||
// A[0]: 1010 1010 1010 1010
|
||||
// A[1]: 1100 1100 1100 1100
|
||||
// A[2]: 1111 0000 1111 0000
|
||||
// A[3]: 1111 1111 0000 0000
|
||||
.LUT(~16'b 0110_1001_1001_0110)
|
||||
) u0 (
|
||||
.A(A),
|
||||
.B(B),
|
||||
.CI(CI),
|
||||
.I0(I0),
|
||||
.I3(CI),
|
||||
.CO(CO[0]),
|
||||
.O(O)
|
||||
);
|
||||
SB_CARRY u1 (.I0(~A), .I1(~B), .CI(CI), .CO(CO[1]));
|
||||
endmodule
|
||||
EOT
|
||||
|
||||
equiv_opt -assert -map +/ice40/cells_map.v -map +/ice40/cells_sim.v ice40_opt
|
||||
design -load postopt
|
||||
select -assert-count 1 t:*
|
||||
select -assert-count 1 t:$lut
|
|
@ -0,0 +1,58 @@
|
|||
module latchp
|
||||
( input d, clk, en, output reg q );
|
||||
always @*
|
||||
if ( en )
|
||||
q <= d;
|
||||
endmodule
|
||||
|
||||
module latchn
|
||||
( input d, clk, en, output reg q );
|
||||
always @*
|
||||
if ( !en )
|
||||
q <= d;
|
||||
endmodule
|
||||
|
||||
module latchsr
|
||||
( input d, clk, en, clr, pre, output reg q );
|
||||
always @*
|
||||
if ( clr )
|
||||
q <= 1'b0;
|
||||
else if ( pre )
|
||||
q <= 1'b1;
|
||||
else if ( en )
|
||||
q <= d;
|
||||
endmodule
|
||||
|
||||
|
||||
module top (
|
||||
input clk,
|
||||
input clr,
|
||||
input pre,
|
||||
input a,
|
||||
output b,b1,b2
|
||||
);
|
||||
|
||||
|
||||
latchp u_latchp (
|
||||
.en (clk ),
|
||||
.d (a ),
|
||||
.q (b )
|
||||
);
|
||||
|
||||
|
||||
latchn u_latchn (
|
||||
.en (clk ),
|
||||
.d (a ),
|
||||
.q (b1 )
|
||||
);
|
||||
|
||||
|
||||
latchsr u_latchsr (
|
||||
.en (clk ),
|
||||
.clr (clr),
|
||||
.pre (pre),
|
||||
.d (a ),
|
||||
.q (b2 )
|
||||
);
|
||||
|
||||
endmodule
|
|
@ -0,0 +1,15 @@
|
|||
read_verilog latches.v
|
||||
design -save read
|
||||
|
||||
proc
|
||||
async2sync # converts latches to a 'sync' variant clocked by a 'super'-clock
|
||||
flatten
|
||||
synth_ice40
|
||||
equiv_opt -assert -map +/ice40/cells_sim.v synth_ice40 # equivalency check
|
||||
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
|
||||
|
||||
design -load read
|
||||
synth_ice40
|
||||
cd top
|
||||
select -assert-count 4 t:SB_LUT4
|
||||
select -assert-none t:SB_LUT4 %% t:* %D
|
|
@ -0,0 +1,18 @@
|
|||
module top
|
||||
(
|
||||
input [0:7] in,
|
||||
output B1,B2,B3,B4,B5,B6,B7,B8,B9,B10
|
||||
);
|
||||
|
||||
assign B1 = in[0] & in[1];
|
||||
assign B2 = in[0] | in[1];
|
||||
assign B3 = in[0] ~& in[1];
|
||||
assign B4 = in[0] ~| in[1];
|
||||
assign B5 = in[0] ^ in[1];
|
||||
assign B6 = in[0] ~^ in[1];
|
||||
assign B7 = ~in[0];
|
||||
assign B8 = in[0];
|
||||
assign B9 = in[0:1] && in [2:3];
|
||||
assign B10 = in[0:1] || in [2:3];
|
||||
|
||||
endmodule
|
|
@ -0,0 +1,7 @@
|
|||
read_verilog logic.v
|
||||
hierarchy -top top
|
||||
equiv_opt -assert -map +/ice40/cells_sim.v synth_ice40 # equivalency check
|
||||
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
|
||||
cd top # Constrain all select calls below inside the top module
|
||||
select -assert-count 9 t:SB_LUT4
|
||||
select -assert-none t:SB_LUT4 %% t:* %D
|
|
@ -0,0 +1,25 @@
|
|||
/*
|
||||
Example from: https://www.latticesemi.com/-/media/LatticeSemi/Documents/UserManuals/EI/iCEcube201701UserGuide.ashx?document_id=52071 [p. 77].
|
||||
*/
|
||||
module top(clk,a,b,c,set);
|
||||
parameter A_WIDTH = 6 /*4*/;
|
||||
parameter B_WIDTH = 6 /*3*/;
|
||||
input set;
|
||||
input clk;
|
||||
input signed [(A_WIDTH - 1):0] a;
|
||||
input signed [(B_WIDTH - 1):0] b;
|
||||
output signed [(A_WIDTH + B_WIDTH - 1):0] c;
|
||||
reg [(A_WIDTH + B_WIDTH - 1):0] reg_tmp_c;
|
||||
assign c = reg_tmp_c;
|
||||
always @(posedge clk)
|
||||
begin
|
||||
if(set)
|
||||
begin
|
||||
reg_tmp_c <= 0;
|
||||
end
|
||||
else
|
||||
begin
|
||||
reg_tmp_c <= a * b + c;
|
||||
end
|
||||
end
|
||||
endmodule
|
|
@ -0,0 +1,13 @@
|
|||
read_verilog macc.v
|
||||
proc
|
||||
hierarchy -top top
|
||||
#equiv_opt -assert -map +/ice40/cells_sim.v synth_ice40 -dsp # equivalency check
|
||||
|
||||
equiv_opt -run :prove -map +/ice40/cells_sim.v synth_ice40 -dsp
|
||||
async2sync
|
||||
equiv_opt -run prove: -assert null
|
||||
|
||||
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
|
||||
cd top # Constrain all select calls below inside the top module
|
||||
select -assert-count 1 t:SB_MAC16
|
||||
select -assert-none t:SB_MAC16 %% t:* %D
|
|
@ -0,0 +1,21 @@
|
|||
module top
|
||||
(
|
||||
input [7:0] data_a,
|
||||
input [6:1] addr_a,
|
||||
input we_a, clk,
|
||||
output reg [7:0] q_a
|
||||
);
|
||||
// Declare the RAM variable
|
||||
reg [7:0] ram[63:0];
|
||||
|
||||
// Port A
|
||||
always @ (posedge clk)
|
||||
begin
|
||||
if (we_a)
|
||||
begin
|
||||
ram[addr_a] <= data_a;
|
||||
q_a <= data_a;
|
||||
end
|
||||
q_a <= ram[addr_a];
|
||||
end
|
||||
endmodule
|
|
@ -0,0 +1,15 @@
|
|||
read_verilog memory.v
|
||||
hierarchy -top top
|
||||
proc
|
||||
memory -nomap
|
||||
equiv_opt -run :prove -map +/ice40/cells_sim.v synth_ice40
|
||||
memory
|
||||
opt -full
|
||||
|
||||
miter -equiv -flatten -make_assert -make_outputs gold gate miter
|
||||
sat -verify -prove-asserts -seq 5 -set-init-zero -show-inputs -show-outputs miter
|
||||
|
||||
design -load postopt
|
||||
cd top
|
||||
select -assert-count 1 t:SB_RAM40_4K
|
||||
select -assert-none t:SB_RAM40_4K %% t:* %D
|
|
@ -0,0 +1,11 @@
|
|||
module top
|
||||
(
|
||||
input [5:0] x,
|
||||
input [5:0] y,
|
||||
|
||||
output [11:0] A,
|
||||
);
|
||||
|
||||
assign A = x * y;
|
||||
|
||||
endmodule
|
|
@ -0,0 +1,7 @@
|
|||
read_verilog mul.v
|
||||
hierarchy -top top
|
||||
equiv_opt -assert -map +/ice40/cells_sim.v synth_ice40 -dsp # equivalency check
|
||||
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
|
||||
cd top # Constrain all select calls below inside the top module
|
||||
select -assert-count 1 t:SB_MAC16
|
||||
select -assert-none t:SB_MAC16 %% t:* %D
|
|
@ -0,0 +1,100 @@
|
|||
module mux2 (S,A,B,Y);
|
||||
input S;
|
||||
input A,B;
|
||||
output reg Y;
|
||||
|
||||
always @(*)
|
||||
Y = (S)? B : A;
|
||||
endmodule
|
||||
|
||||
module mux4 ( S, D, Y );
|
||||
|
||||
input[1:0] S;
|
||||
input[3:0] D;
|
||||
output Y;
|
||||
|
||||
reg Y;
|
||||
wire[1:0] S;
|
||||
wire[3:0] D;
|
||||
|
||||
always @*
|
||||
begin
|
||||
case( S )
|
||||
0 : Y = D[0];
|
||||
1 : Y = D[1];
|
||||
2 : Y = D[2];
|
||||
3 : Y = D[3];
|
||||
endcase
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
module mux8 ( S, D, Y );
|
||||
|
||||
input[2:0] S;
|
||||
input[7:0] D;
|
||||
output Y;
|
||||
|
||||
reg Y;
|
||||
wire[2:0] S;
|
||||
wire[7:0] D;
|
||||
|
||||
always @*
|
||||
begin
|
||||
case( S )
|
||||
0 : Y = D[0];
|
||||
1 : Y = D[1];
|
||||
2 : Y = D[2];
|
||||
3 : Y = D[3];
|
||||
4 : Y = D[4];
|
||||
5 : Y = D[5];
|
||||
6 : Y = D[6];
|
||||
7 : Y = D[7];
|
||||
endcase
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
module mux16 (D, S, Y);
|
||||
input [15:0] D;
|
||||
input [3:0] S;
|
||||
output Y;
|
||||
|
||||
assign Y = D[S];
|
||||
|
||||
endmodule
|
||||
|
||||
|
||||
module top (
|
||||
input [3:0] S,
|
||||
input [15:0] D,
|
||||
output M2,M4,M8,M16
|
||||
);
|
||||
|
||||
mux2 u_mux2 (
|
||||
.S (S[0]),
|
||||
.A (D[0]),
|
||||
.B (D[1]),
|
||||
.Y (M2)
|
||||
);
|
||||
|
||||
|
||||
mux4 u_mux4 (
|
||||
.S (S[1:0]),
|
||||
.D (D[3:0]),
|
||||
.Y (M4)
|
||||
);
|
||||
|
||||
mux8 u_mux8 (
|
||||
.S (S[2:0]),
|
||||
.D (D[7:0]),
|
||||
.Y (M8)
|
||||
);
|
||||
|
||||
mux16 u_mux16 (
|
||||
.S (S[3:0]),
|
||||
.D (D[15:0]),
|
||||
.Y (M16)
|
||||
);
|
||||
|
||||
endmodule
|
|
@ -0,0 +1,8 @@
|
|||
read_verilog mux.v
|
||||
proc
|
||||
flatten
|
||||
equiv_opt -assert -map +/ice40/cells_sim.v synth_ice40 # equivalency check
|
||||
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
|
||||
cd top # Constrain all select calls below inside the top module
|
||||
select -assert-count 19 t:SB_LUT4
|
||||
select -assert-none t:SB_LUT4 %% t:* %D
|
|
@ -0,0 +1,18 @@
|
|||
/*
|
||||
Example from: https://www.latticesemi.com/-/media/LatticeSemi/Documents/UserManuals/EI/iCEcube201701UserGuide.ashx?document_id=52071 [p. 74].
|
||||
*/
|
||||
module top(data, addr);
|
||||
output [3:0] data;
|
||||
input [4:0] addr;
|
||||
always @(addr) begin
|
||||
case (addr)
|
||||
0 : data = 'h4;
|
||||
1 : data = 'h9;
|
||||
2 : data = 'h1;
|
||||
15 : data = 'h8;
|
||||
16 : data = 'h1;
|
||||
17 : data = 'h0;
|
||||
default : data = 'h0;
|
||||
endcase
|
||||
end
|
||||
endmodule
|
|
@ -0,0 +1,8 @@
|
|||
read_verilog rom.v
|
||||
proc
|
||||
flatten
|
||||
equiv_opt -assert -map +/ice40/cells_sim.v synth_ice40 # equivalency check
|
||||
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
|
||||
cd top # Constrain all select calls below inside the top module
|
||||
select -assert-count 5 t:SB_LUT4
|
||||
select -assert-none t:SB_LUT4 %% t:* %D
|
|
@ -0,0 +1,20 @@
|
|||
#!/usr/bin/env bash
|
||||
set -e
|
||||
{
|
||||
echo "all::"
|
||||
for x in *.ys; do
|
||||
echo "all:: run-$x"
|
||||
echo "run-$x:"
|
||||
echo " @echo 'Running $x..'"
|
||||
echo " @../../yosys -ql ${x%.ys}.log $x -w 'Yosys has only limited support for tri-state logic at the moment.'"
|
||||
done
|
||||
for s in *.sh; do
|
||||
if [ "$s" != "run-test.sh" ]; then
|
||||
echo "all:: run-$s"
|
||||
echo "run-$s:"
|
||||
echo " @echo 'Running $s..'"
|
||||
echo " @bash $s"
|
||||
fi
|
||||
done
|
||||
} > run-test.mk
|
||||
exec ${MAKE:-make} -f run-test.mk
|
|
@ -0,0 +1,22 @@
|
|||
module top (
|
||||
out,
|
||||
clk,
|
||||
in
|
||||
);
|
||||
output [7:0] out;
|
||||
input signed clk, in;
|
||||
reg signed [7:0] out = 0;
|
||||
|
||||
always @(posedge clk)
|
||||
begin
|
||||
`ifndef BUG
|
||||
out <= out >> 1;
|
||||
out[7] <= in;
|
||||
`else
|
||||
|
||||
out <= out << 1;
|
||||
out[7] <= in;
|
||||
`endif
|
||||
end
|
||||
|
||||
endmodule
|
|
@ -0,0 +1,9 @@
|
|||
read_verilog shifter.v
|
||||
hierarchy -top top
|
||||
proc
|
||||
flatten
|
||||
equiv_opt -assert -map +/ice40/cells_sim.v synth_ice40 # equivalency check
|
||||
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
|
||||
cd top # Constrain all select calls below inside the top module
|
||||
select -assert-count 8 t:SB_DFF
|
||||
select -assert-none t:SB_DFF %% t:* %D
|
|
@ -0,0 +1,23 @@
|
|||
module tristate (en, i, o);
|
||||
input en;
|
||||
input i;
|
||||
output o;
|
||||
|
||||
assign o = en ? i : 1'bz;
|
||||
|
||||
endmodule
|
||||
|
||||
|
||||
module top (
|
||||
input en,
|
||||
input a,
|
||||
output b
|
||||
);
|
||||
|
||||
tristate u_tri (
|
||||
.en (en ),
|
||||
.i (a ),
|
||||
.o (b )
|
||||
);
|
||||
|
||||
endmodule
|
|
@ -0,0 +1,9 @@
|
|||
read_verilog tribuf.v
|
||||
hierarchy -top top
|
||||
proc
|
||||
flatten
|
||||
equiv_opt -assert -map +/ice40/cells_sim.v -map +/simcells.v synth_ice40 # equivalency check
|
||||
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
|
||||
cd top # Constrain all select calls below inside the top module
|
||||
select -assert-count 1 t:$_TBUF_
|
||||
select -assert-none t:$_TBUF_ %% t:* %D
|
|
@ -12,7 +12,7 @@ done
|
|||
shift "$((OPTIND-1))"
|
||||
|
||||
# check for Icarus Verilog
|
||||
if ! which iverilog > /dev/null ; then
|
||||
if ! command -v iverilog > /dev/null ; then
|
||||
echo "$0: Error: Icarus Verilog 'iverilog' not found."
|
||||
exit 1
|
||||
fi
|
||||
|
|
|
@ -12,7 +12,7 @@ done
|
|||
shift "$((OPTIND-1))"
|
||||
|
||||
# check for Icarus Verilog
|
||||
if ! which iverilog > /dev/null ; then
|
||||
if ! command -v iverilog > /dev/null ; then
|
||||
echo "$0: Error: Icarus Verilog 'iverilog' not found."
|
||||
exit 1
|
||||
fi
|
||||
|
@ -20,4 +20,10 @@ fi
|
|||
cp ../simple/*.v .
|
||||
cp ../simple/*.sv .
|
||||
DOLLAR='?'
|
||||
exec ${MAKE:-make} -f ../tools/autotest.mk $seed *.v EXTRA_FLAGS="-n 300 -p 'hierarchy; synth -run coarse; opt -full; techmap; abc9 -lut 4 -box ../abc.box; stat; check -assert; select -assert-none t:${DOLLAR}_NOT_ t:${DOLLAR}_AND_ %%'"
|
||||
exec ${MAKE:-make} -f ../tools/autotest.mk $seed *.v EXTRA_FLAGS="-n 300 -p '\
|
||||
hierarchy; \
|
||||
synth -run coarse; \
|
||||
opt -full; \
|
||||
techmap; abc9 -lut 4 -box ../abc.box; \
|
||||
check -assert; \
|
||||
select -assert-none t:${DOLLAR}_NOT_ t:${DOLLAR}_AND_ %%'"
|
||||
|
|
|
@ -31,36 +31,3 @@ sat -verify -prove-asserts -show-ports -seq 5 miter
|
|||
|
||||
#design -load gate
|
||||
#stat
|
||||
|
||||
##########
|
||||
|
||||
design -load read
|
||||
design -copy-to model $__XILINX_SHREG_
|
||||
hierarchy -top shregmap_variable_test
|
||||
prep
|
||||
design -save gold
|
||||
|
||||
simplemap t:$dff t:$dffe
|
||||
shregmap -tech xilinx
|
||||
|
||||
#stat
|
||||
# show -width
|
||||
# write_verilog -noexpr -norename
|
||||
select -assert-count 1 t:$_DFF_P_
|
||||
select -assert-count 2 t:$__XILINX_SHREG_
|
||||
|
||||
design -stash gate
|
||||
|
||||
design -import gold -as gold
|
||||
design -import gate -as gate
|
||||
design -copy-from model -as $__XILINX_SHREG_ \$__XILINX_SHREG_
|
||||
prep
|
||||
|
||||
miter -equiv -flatten -make_assert -make_outputs gold gate miter
|
||||
sat -verify -prove-asserts -show-ports -seq 5 miter
|
||||
|
||||
# design -load gold
|
||||
# stat
|
||||
|
||||
# design -load gate
|
||||
# stat
|
||||
|
|
|
@ -0,0 +1,3 @@
|
|||
/*.log
|
||||
/*.out
|
||||
/run-test.mk
|
|
@ -0,0 +1,57 @@
|
|||
read_verilog -icells <<EOT
|
||||
module \$__XILINX_SHREG_ (input C, input D, input [31:0] L, input E, output Q, output SO);
|
||||
parameter DEPTH = 1;
|
||||
parameter [DEPTH-1:0] INIT = 0;
|
||||
parameter CLKPOL = 1;
|
||||
parameter ENPOL = 2;
|
||||
|
||||
wire pos_clk = C == CLKPOL;
|
||||
reg pos_en;
|
||||
always @(E)
|
||||
if (ENPOL == 2) pos_en = 1'b1;
|
||||
else pos_en = (E == ENPOL[0]);
|
||||
|
||||
reg [DEPTH-1:0] r;
|
||||
always @(posedge pos_clk)
|
||||
if (pos_en)
|
||||
r <= {r[DEPTH-2:0], D};
|
||||
|
||||
assign Q = r[L];
|
||||
assign SO = r[DEPTH-1];
|
||||
endmodule
|
||||
EOT
|
||||
read_verilog +/xilinx/cells_sim.v
|
||||
proc
|
||||
design -save model
|
||||
|
||||
test_pmgen -generate xilinx_srl.fixed
|
||||
hierarchy -top pmtest_xilinx_srl_pm_fixed
|
||||
flatten; opt_clean
|
||||
|
||||
design -save gold
|
||||
xilinx_srl -fixed
|
||||
techmap -autoproc -map %model
|
||||
design -stash gate
|
||||
|
||||
design -copy-from gold -as gold pmtest_xilinx_srl_pm_fixed
|
||||
design -copy-from gate -as gate pmtest_xilinx_srl_pm_fixed
|
||||
dff2dffe -unmap # sat does not support flops-with-enable yet
|
||||
miter -equiv -flatten -make_assert gold gate miter
|
||||
sat -set-init-zero -seq 5 -verify -prove-asserts miter
|
||||
|
||||
design -load model
|
||||
|
||||
test_pmgen -generate xilinx_srl.variable
|
||||
hierarchy -top pmtest_xilinx_srl_pm_variable
|
||||
flatten; opt_clean
|
||||
|
||||
design -save gold
|
||||
xilinx_srl -variable
|
||||
techmap -autoproc -map %model
|
||||
design -stash gate
|
||||
|
||||
design -copy-from gold -as gold pmtest_xilinx_srl_pm_variable
|
||||
design -copy-from gate -as gate pmtest_xilinx_srl_pm_variable
|
||||
dff2dffe -unmap # sat does not support flops-with-enable yet
|
||||
miter -equiv -flatten -make_assert gold gate miter
|
||||
sat -set-init-zero -seq 5 -verify -prove-asserts miter
|
|
@ -0,0 +1,20 @@
|
|||
#!/usr/bin/env bash
|
||||
set -e
|
||||
{
|
||||
echo "all::"
|
||||
for x in *.ys; do
|
||||
echo "all:: run-$x"
|
||||
echo "run-$x:"
|
||||
echo " @echo 'Running $x..'"
|
||||
echo " @../../yosys -ql ${x%.ys}.log $x"
|
||||
done
|
||||
for s in *.sh; do
|
||||
if [ "$s" != "run-test.sh" ]; then
|
||||
echo "all:: run-$s"
|
||||
echo "run-$s:"
|
||||
echo " @echo 'Running $s..'"
|
||||
echo " @bash $s"
|
||||
fi
|
||||
done
|
||||
} > run-test.mk
|
||||
exec ${MAKE:-make} -f run-test.mk
|
|
@ -0,0 +1,40 @@
|
|||
module xilinx_srl_static_test(input i, clk, output [1:0] q);
|
||||
reg head = 1'b0;
|
||||
reg [3:0] shift1 = 4'b0000;
|
||||
reg [3:0] shift2 = 4'b0000;
|
||||
|
||||
always @(posedge clk) begin
|
||||
head <= i;
|
||||
shift1 <= {shift1[2:0], head};
|
||||
shift2 <= {shift2[2:0], head};
|
||||
end
|
||||
|
||||
assign q = {shift2[3], shift1[3]};
|
||||
endmodule
|
||||
|
||||
module xilinx_srl_variable_test(input i, clk, input [1:0] l1, l2, output [1:0] q);
|
||||
reg head = 1'b0;
|
||||
reg [3:0] shift1 = 4'b0000;
|
||||
reg [3:0] shift2 = 4'b0000;
|
||||
|
||||
always @(posedge clk) begin
|
||||
head <= i;
|
||||
shift1 <= {shift1[2:0], head};
|
||||
shift2 <= {shift2[2:0], head};
|
||||
end
|
||||
|
||||
assign q = {shift2[l2], shift1[l1]};
|
||||
endmodule
|
||||
|
||||
module $__XILINX_SHREG_(input C, D, E, input [1:0] L, output Q);
|
||||
parameter CLKPOL = 1;
|
||||
parameter ENPOL = 1;
|
||||
parameter DEPTH = 1;
|
||||
parameter [DEPTH-1:0] INIT = {DEPTH{1'b0}};
|
||||
reg [DEPTH-1:0] r = INIT;
|
||||
wire clk = C ^ CLKPOL;
|
||||
always @(posedge C)
|
||||
if (E)
|
||||
r <= { r[DEPTH-2:0], D };
|
||||
assign Q = r[L];
|
||||
endmodule
|
|
@ -0,0 +1,67 @@
|
|||
read_verilog xilinx_srl.v
|
||||
design -save read
|
||||
|
||||
design -copy-to model $__XILINX_SHREG_
|
||||
hierarchy -top xilinx_srl_static_test
|
||||
prep
|
||||
design -save gold
|
||||
|
||||
techmap
|
||||
xilinx_srl -fixed
|
||||
opt
|
||||
|
||||
# stat
|
||||
# show -width
|
||||
select -assert-count 1 t:$_DFF_P_
|
||||
select -assert-count 2 t:$__XILINX_SHREG_
|
||||
|
||||
design -stash gate
|
||||
|
||||
design -import gold -as gold
|
||||
design -import gate -as gate
|
||||
design -copy-from model -as $__XILINX_SHREG_ \$__XILINX_SHREG_
|
||||
prep
|
||||
|
||||
miter -equiv -flatten -make_assert -make_outputs gold gate miter
|
||||
dump gate
|
||||
sat -verify -prove-asserts -show-ports -seq 5 miter
|
||||
|
||||
#design -load gold
|
||||
#stat
|
||||
|
||||
#design -load gate
|
||||
#stat
|
||||
|
||||
##########
|
||||
|
||||
design -load read
|
||||
design -copy-to model $__XILINX_SHREG_
|
||||
hierarchy -top xilinx_srl_variable_test
|
||||
prep
|
||||
design -save gold
|
||||
|
||||
xilinx_srl -variable
|
||||
opt
|
||||
|
||||
#stat
|
||||
# show -width
|
||||
# write_verilog -noexpr -norename
|
||||
select -assert-count 1 t:$dff
|
||||
select -assert-count 1 t:$dff r:WIDTH=1 %i
|
||||
select -assert-count 2 t:$__XILINX_SHREG_
|
||||
|
||||
design -stash gate
|
||||
|
||||
design -import gold -as gold
|
||||
design -import gate -as gate
|
||||
design -copy-from model -as $__XILINX_SHREG_ \$__XILINX_SHREG_
|
||||
prep
|
||||
|
||||
miter -equiv -flatten -make_assert -make_outputs gold gate miter
|
||||
sat -verify -prove-asserts -show-ports -seq 5 miter
|
||||
|
||||
# design -load gold
|
||||
# stat
|
||||
|
||||
# design -load gate
|
||||
# stat
|
Loading…
Reference in New Issue