cxxrtl: Convert to Mem helpers.

This *only* does conversion, but doesn't add any new functionality —
support for memory read port init/reset is still upcoming.
This commit is contained in:
Marcelina Kościelnicka 2021-07-10 03:55:51 +02:00
parent 7f12820b26
commit d5c9595668
1 changed files with 276 additions and 206 deletions

View File

@ -216,7 +216,7 @@ bool is_internal_cell(RTLIL::IdString type)
bool is_effectful_cell(RTLIL::IdString type)
{
return type == ID($memwr) || type.isPublic();
return type.isPublic();
}
bool is_cxxrtl_blackbox_cell(const RTLIL::Cell *cell)
@ -274,12 +274,16 @@ struct FlowGraph {
CELL_EVAL,
PROCESS_SYNC,
PROCESS_CASE,
MEM_RDPORT,
MEM_WRPORTS,
};
Type type;
RTLIL::SigSig connect = {};
const RTLIL::Cell *cell = NULL;
const RTLIL::Process *process = NULL;
const RTLIL::Cell *cell = nullptr;
const RTLIL::Process *process = nullptr;
const Mem *mem = nullptr;
int portidx;
};
std::vector<Node*> nodes;
@ -414,7 +418,7 @@ struct FlowGraph {
if (cell->output(conn.first)) {
if (is_inlinable_cell(cell->type))
add_defs(node, conn.second, /*is_ff=*/false, /*inlinable=*/true);
else if (is_ff_cell(cell->type) || (cell->type == ID($memrd) && cell->getParam(ID::CLK_ENABLE).as_bool()))
else if (is_ff_cell(cell->type))
add_defs(node, conn.second, /*is_ff=*/true, /*inlinable=*/false);
else if (is_internal_cell(cell->type))
add_defs(node, conn.second, /*is_ff=*/false, /*inlinable=*/false);
@ -502,6 +506,49 @@ struct FlowGraph {
add_case_rule_defs_uses(node, &process->root_case);
return node;
}
// Memories
void add_node(const Mem *mem) {
for (int i = 0; i < GetSize(mem->rd_ports); i++) {
auto &port = mem->rd_ports[i];
Node *node = new Node;
node->type = Node::Type::MEM_RDPORT;
node->mem = mem;
node->portidx = i;
nodes.push_back(node);
add_defs(node, port.data, /*is_ff=*/port.clk_enable, /*inlinable=*/false);
add_uses(node, port.clk);
add_uses(node, port.en);
add_uses(node, port.arst);
add_uses(node, port.srst);
add_uses(node, port.addr);
if (port.transparent && port.clk_enable) {
// Our implementation of transparent read ports reads en, addr and data from every write port
// in the same domain.
for (auto &wrport : mem->wr_ports) {
if (wrport.clk_enable && wrport.clk == port.clk && wrport.clk_polarity == port.clk_polarity) {
add_uses(node, wrport.en);
add_uses(node, wrport.addr);
add_uses(node, wrport.data);
}
}
// Also we read the address twice in this case (prevent inlining).
add_uses(node, port.addr);
}
}
if (!mem->wr_ports.empty()) {
Node *node = new Node;
node->type = Node::Type::MEM_WRPORTS;
node->mem = mem;
nodes.push_back(node);
for (auto &port : mem->wr_ports) {
add_uses(node, port.clk);
add_uses(node, port.en);
add_uses(node, port.addr);
add_uses(node, port.data);
}
}
}
};
std::vector<std::string> split_by(const std::string &str, const std::string &sep)
@ -637,10 +684,9 @@ struct CxxrtlWorker {
int temporary = 0;
dict<const RTLIL::Module*, SigMap> sigmaps;
dict<const RTLIL::Module*, std::vector<Mem>> mod_memories;
pool<const RTLIL::Wire*> edge_wires;
dict<RTLIL::SigBit, RTLIL::SyncType> edge_types;
pool<const RTLIL::Memory*> writable_memories;
dict<const RTLIL::Cell*, pool<const RTLIL::Cell*>> transparent_for;
dict<const RTLIL::Module*, std::vector<FlowGraph::Node>> schedule, debug_schedule;
dict<const RTLIL::Wire*, WireType> wire_types, debug_wire_types;
dict<RTLIL::SigBit, bool> bit_has_state;
@ -724,9 +770,9 @@ struct CxxrtlWorker {
return mangle_module_name(module->name, /*is_blackbox=*/module->get_bool_attribute(ID(cxxrtl_blackbox)));
}
std::string mangle(const RTLIL::Memory *memory)
std::string mangle(const Mem *mem)
{
return mangle_memory_name(memory->name);
return mangle_memory_name(mem->memid);
}
std::string mangle(const RTLIL::Cell *cell)
@ -1216,114 +1262,6 @@ struct CxxrtlWorker {
dump_sigspec_rhs(cell->getPort(ID::CLR));
f << (cell->getParam(ID::CLR_POLARITY).as_bool() ? "" : ".bit_not()") << ");\n";
}
// Memory ports
} else if (cell->type.in(ID($memrd), ID($memwr))) {
if (cell->getParam(ID::CLK_ENABLE).as_bool()) {
log_assert(!for_debug);
RTLIL::SigBit clk_bit = cell->getPort(ID::CLK)[0];
clk_bit = sigmaps[clk_bit.wire->module](clk_bit);
if (clk_bit.wire) {
f << indent << "if (" << (cell->getParam(ID::CLK_POLARITY).as_bool() ? "posedge_" : "negedge_")
<< mangle(clk_bit) << ") {\n";
} else {
f << indent << "if (false) {\n";
}
inc_indent();
}
RTLIL::Memory *memory = cell->module->memories[cell->getParam(ID::MEMID).decode_string()];
std::string valid_index_temp = fresh_temporary();
f << indent << "auto " << valid_index_temp << " = memory_index(";
// Almost all non-elidable cells cannot appear in debug_eval(), but $memrd is an exception; asynchronous
// memory read ports can.
dump_sigspec_rhs(cell->getPort(ID::ADDR), for_debug);
f << ", " << memory->start_offset << ", " << memory->size << ");\n";
if (cell->type == ID($memrd)) {
bool has_enable = cell->getParam(ID::CLK_ENABLE).as_bool() && !cell->getPort(ID::EN).is_fully_ones();
if (has_enable) {
f << indent << "if (";
dump_sigspec_rhs(cell->getPort(ID::EN));
f << ") {\n";
inc_indent();
}
// The generated code has two bounds checks; one in an assertion, and another that guards the read.
// This is done so that the code does not invoke undefined behavior under any conditions, but nevertheless
// loudly crashes if an illegal condition is encountered. The assert may be turned off with -DCXXRTL_NDEBUG
// not only for release builds, but also to make sure the simulator (which is presumably embedded in some
// larger program) will never crash the code that calls into it.
//
// If assertions are disabled, out of bounds reads are defined to return zero.
f << indent << "CXXRTL_ASSERT(" << valid_index_temp << ".valid && \"out of bounds read\");\n";
f << indent << "if(" << valid_index_temp << ".valid) {\n";
inc_indent();
if (writable_memories[memory]) {
std::string lhs_temp = fresh_temporary();
f << indent << "value<" << memory->width << "> " << lhs_temp << " = "
<< mangle(memory) << "[" << valid_index_temp << ".index];\n";
std::vector<const RTLIL::Cell*> memwr_cells(transparent_for[cell].begin(), transparent_for[cell].end());
if (!memwr_cells.empty()) {
std::string addr_temp = fresh_temporary();
f << indent << "const value<" << cell->getPort(ID::ADDR).size() << "> &" << addr_temp << " = ";
dump_sigspec_rhs(cell->getPort(ID::ADDR));
f << ";\n";
std::sort(memwr_cells.begin(), memwr_cells.end(),
[](const RTLIL::Cell *a, const RTLIL::Cell *b) {
return a->getParam(ID::PRIORITY).as_int() < b->getParam(ID::PRIORITY).as_int();
});
for (auto memwr_cell : memwr_cells) {
f << indent << "if (" << addr_temp << " == ";
dump_sigspec_rhs(memwr_cell->getPort(ID::ADDR));
f << ") {\n";
inc_indent();
f << indent << lhs_temp << " = " << lhs_temp;
f << ".update(";
dump_sigspec_rhs(memwr_cell->getPort(ID::DATA));
f << ", ";
dump_sigspec_rhs(memwr_cell->getPort(ID::EN));
f << ");\n";
dec_indent();
f << indent << "}\n";
}
}
f << indent;
dump_sigspec_lhs(cell->getPort(ID::DATA));
f << " = " << lhs_temp << ";\n";
} else {
f << indent;
dump_sigspec_lhs(cell->getPort(ID::DATA));
f << " = " << mangle(memory) << "[" << valid_index_temp << ".index];\n";
}
dec_indent();
f << indent << "} else {\n";
inc_indent();
f << indent;
dump_sigspec_lhs(cell->getPort(ID::DATA));
f << " = value<" << memory->width << "> {};\n";
dec_indent();
f << indent << "}\n";
if (has_enable) {
dec_indent();
f << indent << "}\n";
}
} else /*if (cell->type == ID($memwr))*/ {
log_assert(writable_memories[memory]);
// See above for rationale of having both the assert and the condition.
//
// If assertions are disabled, out of bounds writes are defined to do nothing.
f << indent << "CXXRTL_ASSERT(" << valid_index_temp << ".valid && \"out of bounds write\");\n";
f << indent << "if (" << valid_index_temp << ".valid) {\n";
inc_indent();
f << indent << mangle(memory) << ".update(" << valid_index_temp << ".index, ";
dump_sigspec_rhs(cell->getPort(ID::DATA));
f << ", ";
dump_sigspec_rhs(cell->getPort(ID::EN));
f << ", " << cell->getParam(ID::PRIORITY).as_int() << ");\n";
dec_indent();
f << indent << "}\n";
}
if (cell->getParam(ID::CLK_ENABLE).as_bool()) {
dec_indent();
f << indent << "}\n";
}
// Internal cells
} else if (is_internal_cell(cell->type)) {
log_cmd_error("Unsupported internal cell `%s'.\n", cell->type.c_str());
@ -1567,6 +1505,161 @@ struct CxxrtlWorker {
}
}
void dump_mem_rdport(const Mem *mem, int portidx, bool for_debug = false)
{
auto &port = mem->rd_ports[portidx];
dump_attrs(&port);
f << indent << "// memory " << mem->memid.str() << " read port " << portidx << "\n";
if (port.clk_enable) {
log_assert(!for_debug);
RTLIL::SigBit clk_bit = port.clk[0];
clk_bit = sigmaps[clk_bit.wire->module](clk_bit);
if (clk_bit.wire) {
f << indent << "if (" << (port.clk_polarity ? "posedge_" : "negedge_")
<< mangle(clk_bit) << ") {\n";
} else {
f << indent << "if (false) {\n";
}
inc_indent();
}
std::vector<const RTLIL::Cell*> inlined_cells_addr;
collect_sigspec_rhs(port.addr, for_debug, inlined_cells_addr);
if (!inlined_cells_addr.empty())
dump_inlined_cells(inlined_cells_addr);
std::string valid_index_temp = fresh_temporary();
f << indent << "auto " << valid_index_temp << " = memory_index(";
// Almost all non-elidable cells cannot appear in debug_eval(), but $memrd is an exception; asynchronous
// memory read ports can.
dump_sigspec_rhs(port.addr, for_debug);
f << ", " << mem->start_offset << ", " << mem->size << ");\n";
bool has_enable = port.clk_enable && !port.en.is_fully_ones();
if (has_enable) {
std::vector<const RTLIL::Cell*> inlined_cells_en;
collect_sigspec_rhs(port.en, for_debug, inlined_cells_en);
if (!inlined_cells_en.empty())
dump_inlined_cells(inlined_cells_en);
f << indent << "if (";
dump_sigspec_rhs(port.en);
f << ") {\n";
inc_indent();
}
// The generated code has two bounds checks; one in an assertion, and another that guards the read.
// This is done so that the code does not invoke undefined behavior under any conditions, but nevertheless
// loudly crashes if an illegal condition is encountered. The assert may be turned off with -DCXXRTL_NDEBUG
// not only for release builds, but also to make sure the simulator (which is presumably embedded in some
// larger program) will never crash the code that calls into it.
//
// If assertions are disabled, out of bounds reads are defined to return zero.
f << indent << "CXXRTL_ASSERT(" << valid_index_temp << ".valid && \"out of bounds read\");\n";
f << indent << "if(" << valid_index_temp << ".valid) {\n";
inc_indent();
if (!mem->wr_ports.empty()) {
std::string lhs_temp = fresh_temporary();
f << indent << "value<" << mem->width << "> " << lhs_temp << " = "
<< mangle(mem) << "[" << valid_index_temp << ".index];\n";
if (port.transparent && port.clk_enable) {
std::string addr_temp = fresh_temporary();
f << indent << "const value<" << port.addr.size() << "> &" << addr_temp << " = ";
dump_sigspec_rhs(port.addr);
f << ";\n";
for (auto &wrport : mem->wr_ports) {
if (!wrport.clk_enable)
continue;
if (wrport.clk != port.clk)
continue;
if (wrport.clk_polarity != port.clk_polarity)
continue;
f << indent << "if (" << addr_temp << " == ";
dump_sigspec_rhs(wrport.addr);
f << ") {\n";
inc_indent();
f << indent << lhs_temp << " = " << lhs_temp;
f << ".update(";
dump_sigspec_rhs(wrport.data);
f << ", ";
dump_sigspec_rhs(wrport.en);
f << ");\n";
dec_indent();
f << indent << "}\n";
}
}
f << indent;
dump_sigspec_lhs(port.data);
f << " = " << lhs_temp << ";\n";
} else {
f << indent;
dump_sigspec_lhs(port.data);
f << " = " << mangle(mem) << "[" << valid_index_temp << ".index];\n";
}
dec_indent();
f << indent << "} else {\n";
inc_indent();
f << indent;
dump_sigspec_lhs(port.data);
f << " = value<" << mem->width << "> {};\n";
dec_indent();
f << indent << "}\n";
if (has_enable) {
dec_indent();
f << indent << "}\n";
}
if (port.clk_enable) {
dec_indent();
f << indent << "}\n";
}
}
void dump_mem_wrports(const Mem *mem, bool for_debug = false)
{
log_assert(!for_debug);
for (int portidx = 0; portidx < GetSize(mem->wr_ports); portidx++) {
auto &port = mem->wr_ports[portidx];
dump_attrs(&port);
f << indent << "// memory " << mem->memid.str() << " write port " << portidx << "\n";
if (port.clk_enable) {
RTLIL::SigBit clk_bit = port.clk[0];
clk_bit = sigmaps[clk_bit.wire->module](clk_bit);
if (clk_bit.wire) {
f << indent << "if (" << (port.clk_polarity ? "posedge_" : "negedge_")
<< mangle(clk_bit) << ") {\n";
} else {
f << indent << "if (false) {\n";
}
inc_indent();
}
std::vector<const RTLIL::Cell*> inlined_cells_addr;
collect_sigspec_rhs(port.addr, for_debug, inlined_cells_addr);
if (!inlined_cells_addr.empty())
dump_inlined_cells(inlined_cells_addr);
std::string valid_index_temp = fresh_temporary();
f << indent << "auto " << valid_index_temp << " = memory_index(";
dump_sigspec_rhs(port.addr);
f << ", " << mem->start_offset << ", " << mem->size << ");\n";
// See above for rationale of having both the assert and the condition.
//
// If assertions are disabled, out of bounds writes are defined to do nothing.
f << indent << "CXXRTL_ASSERT(" << valid_index_temp << ".valid && \"out of bounds write\");\n";
f << indent << "if (" << valid_index_temp << ".valid) {\n";
inc_indent();
std::vector<const RTLIL::Cell*> inlined_cells;
collect_sigspec_rhs(port.data, for_debug, inlined_cells);
collect_sigspec_rhs(port.en, for_debug, inlined_cells);
if (!inlined_cells.empty())
dump_inlined_cells(inlined_cells);
f << indent << mangle(mem) << ".update(" << valid_index_temp << ".index, ";
dump_sigspec_rhs(port.data);
f << ", ";
dump_sigspec_rhs(port.en);
f << ", " << portidx << ");\n";
dec_indent();
f << indent << "}\n";
if (port.clk_enable) {
dec_indent();
f << indent << "}\n";
}
}
}
void dump_wire(const RTLIL::Wire *wire, bool is_local)
{
const auto &wire_type = wire_types[wire];
@ -1650,41 +1743,28 @@ struct CxxrtlWorker {
f << "value<" << wire->width << "> " << mangle(wire) << ";\n";
}
void dump_memory(RTLIL::Module *module, const RTLIL::Memory *memory)
void dump_memory(Mem *mem)
{
vector<const RTLIL::Cell*> init_cells;
for (auto cell : module->cells())
if (cell->type == ID($meminit) && cell->getParam(ID::MEMID).decode_string() == memory->name.str())
init_cells.push_back(cell);
std::sort(init_cells.begin(), init_cells.end(), [](const RTLIL::Cell *a, const RTLIL::Cell *b) {
int a_addr = a->getPort(ID::ADDR).as_int(), b_addr = b->getPort(ID::ADDR).as_int();
int a_prio = a->getParam(ID::PRIORITY).as_int(), b_prio = b->getParam(ID::PRIORITY).as_int();
return a_prio > b_prio || (a_prio == b_prio && a_addr < b_addr);
});
dump_attrs(memory);
f << indent << "memory<" << memory->width << "> " << mangle(memory)
<< " { " << memory->size << "u";
if (init_cells.empty()) {
dump_attrs(mem);
f << indent << "memory<" << mem->width << "> " << mangle(mem)
<< " { " << mem->size << "u";
if (!GetSize(mem->inits)) {
f << " };\n";
} else {
f << ",\n";
inc_indent();
for (auto cell : init_cells) {
dump_attrs(cell);
RTLIL::Const data = cell->getPort(ID::DATA).as_const();
size_t width = cell->getParam(ID::WIDTH).as_int();
size_t words = cell->getParam(ID::WORDS).as_int();
f << indent << "memory<" << memory->width << ">::init<" << words << "> { "
<< stringf("%#x", cell->getPort(ID::ADDR).as_int()) << ", {";
for (auto &init : mem->inits) {
dump_attrs(&init);
int words = GetSize(init.data) / mem->width;
f << indent << "memory<" << mem->width << ">::init<" << words << "> { "
<< stringf("%#x", init.addr.as_int()) << ", {";
inc_indent();
for (size_t n = 0; n < words; n++) {
for (int n = 0; n < words; n++) {
if (n % 4 == 0)
f << "\n" << indent;
else
f << " ";
dump_const(data, width, n * width, /*fixed_width=*/true);
dump_const(init.data, mem->width, n * mem->width, /*fixed_width=*/true);
f << ",";
}
dec_indent();
@ -1735,6 +1815,12 @@ struct CxxrtlWorker {
case FlowGraph::Node::Type::PROCESS_SYNC:
dump_process_syncs(node.process);
break;
case FlowGraph::Node::Type::MEM_RDPORT:
dump_mem_rdport(node.mem, node.portidx);
break;
case FlowGraph::Node::Type::MEM_WRPORTS:
dump_mem_wrports(node.mem);
break;
}
}
}
@ -1764,6 +1850,12 @@ struct CxxrtlWorker {
case FlowGraph::Node::Type::PROCESS_SYNC:
dump_process_syncs(node.process, /*for_debug=*/true);
break;
case FlowGraph::Node::Type::MEM_RDPORT:
dump_mem_rdport(node.mem, node.portidx, /*for_debug=*/true);
break;
case FlowGraph::Node::Type::MEM_WRPORTS:
dump_mem_wrports(node.mem, /*for_debug=*/true);
break;
default:
log_abort();
}
@ -1783,10 +1875,10 @@ struct CxxrtlWorker {
f << indent << "if (" << mangle(wire) << ".commit()) changed = true;\n";
}
if (!module->get_bool_attribute(ID(cxxrtl_blackbox))) {
for (auto memory : module->memories) {
if (!writable_memories[memory.second])
for (auto &mem : mod_memories[module]) {
if (!GetSize(mem.wr_ports))
continue;
f << indent << "if (" << mangle(memory.second) << ".commit()) changed = true;\n";
f << indent << "if (" << mangle(&mem) << ".commit()) changed = true;\n";
}
for (auto cell : module->cells()) {
if (is_internal_cell(cell->type))
@ -1928,12 +2020,12 @@ struct CxxrtlWorker {
}
}
if (!module->get_bool_attribute(ID(cxxrtl_blackbox))) {
for (auto &memory_it : module->memories) {
if (!memory_it.first.isPublic())
for (auto &mem : mod_memories[module]) {
if (!mem.memid.isPublic())
continue;
f << indent << "items.add(path + " << escape_cxx_string(get_hdl_name(memory_it.second));
f << ", debug_item(" << mangle(memory_it.second) << ", ";
f << memory_it.second->start_offset << "));\n";
f << indent << "items.add(path + " << escape_cxx_string(mem.packed ? get_hdl_name(mem.cell) : get_hdl_name(mem.mem));
f << ", debug_item(" << mangle(&mem) << ", ";
f << mem.start_offset << "));\n";
}
for (auto cell : module->cells()) {
if (is_internal_cell(cell->type))
@ -2048,8 +2140,8 @@ struct CxxrtlWorker {
for (auto wire : module->wires())
dump_debug_wire(wire, /*is_local=*/false);
bool has_memories = false;
for (auto memory : module->memories) {
dump_memory(module, memory.second);
for (auto &mem : mod_memories[module]) {
dump_memory(&mem);
has_memories = true;
}
if (has_memories)
@ -2313,6 +2405,11 @@ struct CxxrtlWorker {
SigMap &sigmap = sigmaps[module];
sigmap.set(module);
std::vector<Mem> &memories = mod_memories[module];
memories = Mem::get_all_memories(module);
for (auto &mem : memories)
mem.narrow();
if (module->get_bool_attribute(ID(cxxrtl_blackbox))) {
for (auto port : module->ports) {
RTLIL::Wire *wire = module->wire(port);
@ -2357,13 +2454,13 @@ struct CxxrtlWorker {
for (auto conn : module->connections())
flow.add_node(conn);
dict<const RTLIL::Cell*, FlowGraph::Node*> memrw_cell_nodes;
dict<std::pair<RTLIL::SigBit, const RTLIL::Memory*>,
pool<const RTLIL::Cell*>> memwr_per_domain;
for (auto cell : module->cells()) {
if (!cell->known())
log_cmd_error("Unknown cell `%s'.\n", log_id(cell->type));
if (cell->is_mem_cell())
continue;
RTLIL::Module *cell_module = design->module(cell->type);
if (cell_module &&
cell_module->get_blackbox_attribute() &&
@ -2375,7 +2472,7 @@ struct CxxrtlWorker {
cell_module->get_bool_attribute(ID(cxxrtl_template)))
blackbox_specializations[cell_module].insert(template_args(cell));
FlowGraph::Node *node = flow.add_node(cell);
flow.add_node(cell);
// Various DFF cells are treated like posedge/negedge processes, see above for details.
if (cell->type.in(ID($dff), ID($dffe), ID($adff), ID($adffe), ID($dffsr), ID($dffsre), ID($sdff), ID($sdffe), ID($sdffce))) {
@ -2383,43 +2480,23 @@ struct CxxrtlWorker {
register_edge_signal(sigmap, cell->getPort(ID::CLK),
cell->parameters[ID::CLK_POLARITY].as_bool() ? RTLIL::STp : RTLIL::STn);
}
// Similar for memory port cells.
if (cell->type.in(ID($memrd), ID($memwr))) {
if (cell->getParam(ID::CLK_ENABLE).as_bool()) {
if (is_valid_clock(cell->getPort(ID::CLK)))
register_edge_signal(sigmap, cell->getPort(ID::CLK),
cell->parameters[ID::CLK_POLARITY].as_bool() ? RTLIL::STp : RTLIL::STn);
}
memrw_cell_nodes[cell] = node;
}
// Optimize access to read-only memories.
if (cell->type == ID($memwr))
writable_memories.insert(module->memories[cell->getParam(ID::MEMID).decode_string()]);
// Collect groups of memory write ports in the same domain.
if (cell->type == ID($memwr) && cell->getParam(ID::CLK_ENABLE).as_bool() && is_valid_clock(cell->getPort(ID::CLK))) {
RTLIL::SigBit clk_bit = sigmap(cell->getPort(ID::CLK))[0];
const RTLIL::Memory *memory = module->memories[cell->getParam(ID::MEMID).decode_string()];
memwr_per_domain[{clk_bit, memory}].insert(cell);
}
// Handling of packed memories is delegated to the `memory_unpack` pass, so we can rely on the presence
// of RTLIL memory objects and $memrd/$memwr/$meminit cells.
if (cell->type.in(ID($mem)))
log_assert(false);
}
for (auto cell : module->cells()) {
// Collect groups of memory write ports read by every transparent read port.
if (cell->type == ID($memrd) && cell->getParam(ID::CLK_ENABLE).as_bool() && is_valid_clock(cell->getPort(ID::CLK)) &&
cell->getParam(ID::TRANSPARENT).as_bool()) {
RTLIL::SigBit clk_bit = sigmap(cell->getPort(ID::CLK))[0];
const RTLIL::Memory *memory = module->memories[cell->getParam(ID::MEMID).decode_string()];
for (auto memwr_cell : memwr_per_domain[{clk_bit, memory}]) {
transparent_for[cell].insert(memwr_cell);
// Our implementation of transparent $memrd cells reads \EN, \ADDR and \DATA from every $memwr cell
// in the same domain, which isn't directly visible in the netlist. Add these uses explicitly.
flow.add_uses(memrw_cell_nodes[cell], memwr_cell->getPort(ID::EN));
flow.add_uses(memrw_cell_nodes[cell], memwr_cell->getPort(ID::ADDR));
flow.add_uses(memrw_cell_nodes[cell], memwr_cell->getPort(ID::DATA));
}
for (auto &mem : memories) {
flow.add_node(&mem);
// Clocked memory cells are treated like posedge/negedge processes as well.
for (auto &port : mem.rd_ports) {
if (port.clk_enable)
if (is_valid_clock(port.clk))
register_edge_signal(sigmap, port.clk,
port.clk_polarity ? RTLIL::STp : RTLIL::STn);
}
for (auto &port : mem.wr_ports) {
if (port.clk_enable)
if (is_valid_clock(port.clk))
register_edge_signal(sigmap, port.clk,
port.clk_polarity ? RTLIL::STp : RTLIL::STn);
}
}
@ -2518,6 +2595,8 @@ struct CxxrtlWorker {
for (auto node : flow.nodes) {
if (node->type == FlowGraph::Node::Type::CELL_EVAL && is_effectful_cell(node->cell->type))
worklist.insert(node); // node has effects
else if (node->type == FlowGraph::Node::Type::MEM_WRPORTS)
worklist.insert(node); // node is memory write
else if (flow.node_sync_defs.count(node))
worklist.insert(node); // node is a flip-flop
else if (flow.node_comb_defs.count(node)) {
@ -2747,9 +2826,9 @@ struct CxxrtlWorker {
}
}
void check_design(RTLIL::Design *design, bool &has_top, bool &has_sync_init, bool &has_packed_mem)
void check_design(RTLIL::Design *design, bool &has_top, bool &has_sync_init)
{
has_sync_init = has_packed_mem = has_top = false;
has_sync_init = has_top = false;
for (auto module : design->modules()) {
if (module->get_blackbox_attribute() && !module->has_attribute(ID(cxxrtl_blackbox)))
@ -2768,20 +2847,15 @@ struct CxxrtlWorker {
for (auto sync : proc.second->syncs)
if (sync->type == RTLIL::STi)
has_sync_init = true;
// The Mem constructor also checks for well-formedness of $meminit cells, if any.
for (auto &mem : Mem::get_all_memories(module))
if (mem.packed)
has_packed_mem = true;
}
}
void prepare_design(RTLIL::Design *design)
{
bool did_anything = false;
bool has_top, has_sync_init, has_packed_mem;
bool has_top, has_sync_init;
log_push();
check_design(design, has_top, has_sync_init, has_packed_mem);
check_design(design, has_top, has_sync_init);
if (run_hierarchy && !has_top) {
Pass::call(design, "hierarchy -auto-top");
did_anything = true;
@ -2801,14 +2875,10 @@ struct CxxrtlWorker {
Pass::call(design, "proc_init");
did_anything = true;
}
if (has_packed_mem) {
Pass::call(design, "memory_unpack");
did_anything = true;
}
// Recheck the design if it was modified.
if (did_anything)
check_design(design, has_top, has_sync_init, has_packed_mem);
log_assert(!has_sync_init && !has_packed_mem);
check_design(design, has_top, has_sync_init);
log_assert(!has_sync_init);
log_pop();
if (did_anything)
log_spacer();