ComputeGraph datatype for the upcoming functional backend

This commit is contained in:
Jannis Harder 2024-04-11 13:48:25 +02:00 committed by Emily Schmidt
parent f29422f745
commit d4e3daa9d0
2 changed files with 515 additions and 32 deletions

369
kernel/functional.h Normal file
View File

@ -0,0 +1,369 @@
/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2024 Jannis Harder <jix@yosyshq.com> <me@jix.one>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#ifndef FUNCTIONAL_H
#define FUNCTIONAL_H
#include <tuple>
#include "kernel/yosys.h"
YOSYS_NAMESPACE_BEGIN
template<
typename Fn, // Function type (deduplicated across whole graph)
typename Attr = std::tuple<>, // Call attributes (present in every node)
typename SparseAttr = std::tuple<>, // Sparse call attributes (optional per node)
typename Key = std::tuple<> // Stable keys to refer to nodes
>
struct ComputeGraph
{
struct Ref;
private:
// Functions are deduplicated by assigning unique ids
idict<Fn> functions;
struct Node {
int fn_index;
int arg_offset;
int arg_count;
Attr attr;
Node(int fn_index, Attr &&attr, int arg_offset, int arg_count = 0)
: fn_index(fn_index), arg_offset(arg_offset), arg_count(arg_count), attr(std::move(attr)) {}
Node(int fn_index, Attr const &attr, int arg_offset, int arg_count = 0)
: fn_index(fn_index), arg_offset(arg_offset), arg_count(arg_count), attr(attr) {}
};
std::vector<Node> nodes;
std::vector<int> args;
dict<Key, int> keys_;
dict<int, SparseAttr> sparse_attrs;
public:
template<typename Graph>
struct BaseRef
{
protected:
friend struct ComputeGraph;
Graph *graph_;
int index_;
BaseRef(Graph *graph, int index) : graph_(graph), index_(index) {
log_assert(index_ >= 0);
check();
}
void check() const { log_assert(index_ < graph_->size()); }
Node const &deref() const { check(); return graph_->nodes[index_]; }
public:
ComputeGraph const &graph() const { return graph_; }
int index() const { return index_; }
int size() const { return deref().arg_count; }
BaseRef arg(int n) const
{
Node const &node = deref();
log_assert(n >= 0 && n < node.arg_count);
return BaseRef(graph_, graph_->args[node.arg_offset + n]);
}
std::vector<int>::const_iterator arg_indices_cbegin() const
{
Node const &node = deref();
return graph_->args.cbegin() + node.arg_offset;
}
std::vector<int>::const_iterator arg_indices_cend() const
{
Node const &node = deref();
return graph_->args.cbegin() + node.arg_offset + node.arg_count;
}
Fn const &function() const { return graph_->functions[deref().fn_index]; }
Attr const &attr() const { return deref().attr; }
bool has_sparse_attr() const { return graph_->sparse_attrs.count(index_); }
SparseAttr const &sparse_attr() const
{
auto found = graph_->sparse_attrs.find(index_);
log_assert(found != graph_->sparse_attrs.end());
return *found;
}
};
using ConstRef = BaseRef<ComputeGraph const>;
struct Ref : public BaseRef<ComputeGraph>
{
private:
friend struct ComputeGraph;
Ref(ComputeGraph *graph, int index) : BaseRef<ComputeGraph>(graph, index) {}
Node &deref() const { this->check(); return this->graph_->nodes[this->index_]; }
public:
void set_function(Fn const &function) const
{
deref().fn_index = this->graph_->functions(function);
}
Attr &attr() const { return deref().attr; }
void append_arg(ConstRef arg) const
{
log_assert(arg.graph_ == this->graph_);
append_arg(arg.index());
}
void append_arg(int arg) const
{
log_assert(arg >= 0 && arg < this->graph_->size());
Node &node = deref();
if (node.arg_offset + node.arg_count != GetSize(this->graph_->args))
move_args(node);
this->graph_->args.push_back(arg);
node.arg_count++;
}
operator ConstRef() const
{
return ConstRef(this->graph_, this->index_);
}
SparseAttr &sparse_attr() const
{
return this->graph_->sparse_attrs[this->index_];
}
void clear_sparse_attr() const
{
this->graph_->sparse_attrs.erase(this->index_);
}
void assign_key(Key const &key) const
{
this->graph_->keys_.emplace(key, this->index_);
}
private:
void move_args(Node &node) const
{
auto &args = this->graph_->args;
int old_offset = node.arg_offset;
node.arg_offset = GetSize(args);
for (int i = 0; i != node.arg_count; ++i)
args.push_back(args[old_offset + i]);
}
};
bool has_key(Key const &key) const
{
return keys_.count(key);
}
dict<Key, int> const &keys() const
{
return keys_;
}
ConstRef operator()(Key const &key) const
{
auto it = keys_.find(key);
log_assert(it != keys_.end());
return (*this)[it->second];
}
Ref operator()(Key const &key)
{
auto it = keys_.find(key);
log_assert(it != keys_.end());
return (*this)[it->second];
}
int size() const { return GetSize(nodes); }
ConstRef operator[](int index) const { return ConstRef(this, index); }
Ref operator[](int index) { return Ref(this, index); }
Ref add(Fn const &function, Attr &&attr)
{
int index = GetSize(nodes);
int fn_index = functions(function);
nodes.emplace_back(fn_index, std::move(attr), GetSize(args));
return Ref(this, index);
}
Ref add(Fn const &function, Attr const &attr)
{
int index = GetSize(nodes);
int fn_index = functions(function);
nodes.emplace_back(fn_index, attr, GetSize(args));
return Ref(this, index);
}
template<typename T>
Ref add(Fn const &function, Attr const &attr, T const &args)
{
Ref added = add(function, attr);
for (auto arg : args)
added.append_arg(arg);
return added;
}
template<typename T>
Ref add(Fn const &function, Attr &&attr, T const &args)
{
Ref added = add(function, std::move(attr));
for (auto arg : args)
added.append_arg(arg);
return added;
}
template<typename T>
Ref add(Fn const &function, Attr const &attr, T begin, T end)
{
Ref added = add(function, attr);
for (; begin != end; ++begin)
added.append_arg(*begin);
return added;
}
void permute(std::vector<int> const &perm)
{
log_assert(perm.size() <= nodes.size());
std::vector<int> inv_perm;
inv_perm.resize(nodes.size(), -1);
for (int i = 0; i < GetSize(perm); ++i)
{
int j = perm[i];
log_assert(j >= 0 && j < GetSize(perm));
log_assert(inv_perm[j] == -1);
inv_perm[j] = i;
}
permute(perm, inv_perm);
}
void permute(std::vector<int> const &perm, std::vector<int> const &inv_perm)
{
log_assert(inv_perm.size() == nodes.size());
std::vector<Node> new_nodes;
new_nodes.reserve(perm.size());
dict<int, SparseAttr> new_sparse_attrs;
for (int i : perm)
{
int j = GetSize(new_nodes);
new_nodes.emplace_back(std::move(nodes[i]));
auto found = sparse_attrs.find(i);
if (found != sparse_attrs.end())
new_sparse_attrs.emplace(j, std::move(found->second));
}
std::swap(nodes, new_nodes);
std::swap(sparse_attrs, new_sparse_attrs);
for (int &arg : args)
{
log_assert(arg < GetSize(inv_perm));
arg = inv_perm[arg];
}
for (auto &key : keys_)
{
log_assert(key.second < GetSize(inv_perm));
key.second = inv_perm[key.second];
}
}
struct SccAdaptor
{
private:
ComputeGraph const &graph_;
std::vector<int> indices_;
public:
SccAdaptor(ComputeGraph const &graph) : graph_(graph)
{
indices_.resize(graph.size(), -1);
}
typedef int node_type;
struct node_enumerator {
private:
friend struct SccAdaptor;
int current, end;
node_enumerator(int current, int end) : current(current), end(end) {}
public:
bool finished() const { return current == end; }
node_type next() {
log_assert(!finished());
node_type result = current;
++current;
return result;
}
};
node_enumerator enumerate_nodes() {
return node_enumerator(0, GetSize(indices_));
}
struct successor_enumerator {
private:
friend struct SccAdaptor;
std::vector<int>::const_iterator current, end;
successor_enumerator(std::vector<int>::const_iterator current, std::vector<int>::const_iterator end) :
current(current), end(end) {}
public:
bool finished() const { return current == end; }
node_type next() {
log_assert(!finished());
node_type result = *current;
++current;
return result;
}
};
successor_enumerator enumerate_successors(int index) const {
auto const &ref = graph_[index];
return successor_enumerator(ref.arg_indices_cbegin(), ref.arg_indices_cend());
}
int &dfs_index(node_type const &node) { return indices_[node]; }
std::vector<int> const &dfs_indices() { return indices_; }
};
};
YOSYS_NAMESPACE_END
#endif

View File

@ -1,6 +1,7 @@
#include "kernel/yosys.h"
#include "kernel/drivertools.h"
#include "kernel/topo_scc.h"
#include "kernel/functional.h"
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
@ -38,86 +39,137 @@ struct ExampleDtPass : public Pass
ExampleWorker worker(module);
DriverMap dm;
struct ExampleFn {
IdString name;
dict<IdString, Const> parameters;
ExampleFn(IdString name) : name(name) {}
ExampleFn(IdString name, dict<IdString, Const> parameters) : name(name), parameters(parameters) {}
bool operator==(ExampleFn const &other) const {
return name == other.name && parameters == other.parameters;
}
unsigned int hash() const {
return mkhash(name.hash(), parameters.hash());
}
};
typedef ComputeGraph<ExampleFn, int, IdString, IdString> ExampleGraph;
ExampleGraph compute_graph;
dm.add(module);
idict<DriveSpec> queue;
idict<Cell *> cells;
IntGraph edges;
std::vector<int> graph_nodes;
auto enqueue = [&](DriveSpec const &spec) {
int index = queue(spec);
if (index == GetSize(graph_nodes))
graph_nodes.emplace_back(compute_graph.add(ID($pending), index).index());
//if (index >= GetSize(graph_nodes))
return compute_graph[graph_nodes[index]];
};
for (auto cell : module->cells()) {
if (cell->type.in(ID($assert), ID($assume), ID($cover), ID($check)))
queue(DriveBitMarker(cells(cell), 0));
enqueue(DriveBitMarker(cells(cell), 0));
}
for (auto wire : module->wires()) {
if (!wire->port_output)
continue;
queue(DriveChunk(DriveChunkWire(wire, 0, wire->width)));
enqueue(DriveChunk(DriveChunkWire(wire, 0, wire->width))).assign_key(wire->name);
}
#define emit log
// #define emit(X...) do {} while (false)
for (int i = 0; i != GetSize(queue); ++i)
{
emit("n%d: ", i);
DriveSpec spec = queue[i];
ExampleGraph::Ref node = compute_graph[i];
if (spec.chunks().size() > 1) {
emit("concat %s <-\n", log_signal(spec));
node.set_function(ID($$concat));
for (auto const &chunk : spec.chunks()) {
emit(" * %s\n", log_signal(chunk));
edges.add_edge(i, queue(chunk));
node.append_arg(enqueue(chunk));
}
} else if (spec.chunks().size() == 1) {
DriveChunk chunk = spec.chunks()[0];
if (chunk.is_wire()) {
DriveChunkWire wire_chunk = chunk.wire();
if (wire_chunk.is_whole()) {
node.sparse_attr() = wire_chunk.wire->name;
if (wire_chunk.wire->port_input) {
emit("input %s\n", log_signal(spec));
node.set_function(ExampleFn(ID($$input), {{wire_chunk.wire->name, {}}}));
} else {
DriveSpec driver = dm(DriveSpec(wire_chunk));
edges.add_edge(i, queue(driver));
emit("wire driver %s <- %s\n", log_signal(spec), log_signal(driver));
node.set_function(ID($$buf));
node.append_arg(enqueue(driver));
}
} else {
DriveChunkWire whole_wire(wire_chunk.wire, 0, wire_chunk.width);
edges.add_edge(i, queue(whole_wire));
emit("wire slice %s <- %s\n", log_signal(spec), log_signal(DriveSpec(whole_wire)));
node.set_function(ExampleFn(ID($$slice), {{ID(offset), wire_chunk.offset}, {ID(width), wire_chunk.width}}));
node.append_arg(enqueue(whole_wire));
}
} else if (chunk.is_port()) {
DriveChunkPort port_chunk = chunk.port();
if (port_chunk.is_whole()) {
if (dm.celltypes.cell_output(port_chunk.cell->type, port_chunk.port)) {
int cell_marker = queue(DriveBitMarker(cells(port_chunk.cell), 0));
if (!port_chunk.cell->type.in(ID($dff), ID($ff)))
edges.add_edge(i, cell_marker);
emit("cell output %s %s\n", log_id(port_chunk.cell), log_id(port_chunk.port));
if (port_chunk.cell->type.in(ID($dff), ID($ff)))
{
Cell *cell = port_chunk.cell;
node.set_function(ExampleFn(ID($$state), {{cell->name, {}}}));
for (auto const &conn : cell->connections()) {
if (!dm.celltypes.cell_input(cell->type, conn.first))
continue;
enqueue(DriveChunkPort(cell, conn)).assign_key(cell->name);
}
}
else
{
node.set_function(ExampleFn(ID($$cell_output), {{port_chunk.port, {}}}));
node.append_arg(enqueue(DriveBitMarker(cells(port_chunk.cell), 0)));
}
} else {
node.set_function(ID($$buf));
DriveSpec driver = dm(DriveSpec(port_chunk));
edges.add_edge(i, queue(driver));
emit("cell port driver %s <- %s\n", log_signal(spec), log_signal(driver));
node.append_arg(enqueue(driver));
}
} else {
DriveChunkPort whole_port(port_chunk.cell, port_chunk.port, 0, GetSize(port_chunk.cell->connections().at(port_chunk.port)));
edges.add_edge(i, queue(whole_port));
emit("port slice %s <- %s\n", log_signal(spec), log_signal(DriveSpec(whole_port)));
node.set_function(ID($$buf));
node.append_arg(enqueue(whole_port));
}
} else if (chunk.is_constant()) {
emit("constant %s <- %s\n", log_signal(spec), log_const(chunk.constant()));
node.set_function(ExampleFn(ID($$const), {{ID(value), chunk.constant()}}));
} else if (chunk.is_multiple()) {
node.set_function(ID($$multi));
for (auto const &driver : chunk.multiple().multiple())
node.append_arg(enqueue(driver));
} else if (chunk.is_marker()) {
Cell *cell = cells[chunk.marker().marker];
emit("cell %s %s\n", log_id(cell->type), log_id(cell));
node.set_function(ExampleFn(cell->type, cell->parameters));
for (auto const &conn : cell->connections()) {
if (!dm.celltypes.cell_input(cell->type, conn.first))
continue;
emit(" * %s <- %s\n", log_id(conn.first), log_signal(conn.second));
edges.add_edge(i, queue(DriveChunkPort(cell, conn)));
node.append_arg(enqueue(DriveChunkPort(cell, conn)));
}
} else if (chunk.is_none()) {
node.set_function(ID($$undriven));
} else {
log_error("unhandled drivespec: %s\n", log_signal(chunk));
log_abort();
}
} else {
@ -125,13 +177,75 @@ struct ExampleDtPass : public Pass
}
}
topo_sorted_sccs(edges, [&](int *begin, int *end) {
emit("scc:");
// Perform topo sort and detect SCCs
ExampleGraph::SccAdaptor compute_graph_scc(compute_graph);
std::vector<int> perm;
topo_sorted_sccs(compute_graph_scc, [&](int *begin, int *end) {
perm.insert(perm.end(), begin, end);
if (end > begin + 1)
{
log_warning("SCC:");
for (int *i = begin; i != end; ++i)
emit(" n%d", *i);
emit("\n");
});
log(" %d", *i);
log("\n");
}
}, /* sources_first */ true);
compute_graph.permute(perm);
// Forward $$buf unless we have a name in the sparse attribute
std::vector<int> alias;
perm.clear();
for (int i = 0; i < compute_graph.size(); ++i)
{
if (compute_graph[i].function().name == ID($$buf) && !compute_graph[i].has_sparse_attr() && compute_graph[i].arg(0).index() < i)
{
alias.push_back(alias[compute_graph[i].arg(0).index()]);
}
else
{
alias.push_back(GetSize(perm));
perm.push_back(i);
}
}
compute_graph.permute(perm, alias);
// Dump the compute graph
for (int i = 0; i < compute_graph.size(); ++i)
{
auto ref = compute_graph[i];
log("n%d ", i);
log("%s", log_id(ref.function().name));
for (auto const &param : ref.function().parameters)
{
if (param.second.empty())
log("[%s]", log_id(param.first));
else
log("[%s=%s]", log_id(param.first), log_const(param.second));
}
log("(");
for (int i = 0, end = ref.size(); i != end; ++i)
{
if (i > 0)
log(", ");
log("n%d", ref.arg(i).index());
}
log(")\n");
if (ref.has_sparse_attr())
log("// wire %s\n", log_id(ref.sparse_attr()));
log("// was #%d %s\n", ref.attr(), log_signal(queue[ref.attr()]));
}
for (auto const &key : compute_graph.keys())
{
log("return %d as %s \n", key.second, log_id(key.first));
}
}
log("Plugin test passed!\n");
}