Major refactoring of equiv_struct

This commit is contained in:
Clifford Wolf 2015-10-25 19:31:29 +01:00
parent 207736b4ee
commit d014ba2d0e
2 changed files with 176 additions and 99 deletions

View File

@ -162,6 +162,11 @@ struct hash_obj_ops {
} }
}; };
template<typename T>
inline unsigned int mkhash(const T &v) {
return hash_ops<T>().hash(v);
}
inline int hashtable_size(int min_size) inline int hashtable_size(int min_size)
{ {
static std::vector<int> zero_and_some_primes = { static std::vector<int> zero_and_some_primes = {

View File

@ -28,98 +28,100 @@ struct EquivStructWorker
Module *module; Module *module;
SigMap sigmap; SigMap sigmap;
SigMap equiv_bits; SigMap equiv_bits;
bool mode_fwd;
bool mode_icells; bool mode_icells;
int merge_count; int merge_count;
dict<IdString, pool<IdString>> cells_by_type; struct merge_key_t
void handle_cell_pair(Cell *cell_a, Cell *cell_b)
{ {
if (cell_a->parameters != cell_b->parameters) IdString type;
return; vector<pair<IdString, Const>> parameters;
vector<pair<IdString, int>> port_sizes;
vector<tuple<IdString, int, SigBit>> connections;
bool merge_this_cells = false; bool operator==(const merge_key_t &other) const {
bool found_diff_inputs = false; return type == other.type && connections == other.connections &&
vector<SigSpec> inputs_a, inputs_b; parameters == other.parameters && port_sizes == other.port_sizes;
}
unsigned int hash() const {
unsigned int h = mkhash_init;
h = mkhash(h, mkhash(type));
h = mkhash(h, mkhash(parameters));
h = mkhash(h, mkhash(connections));
return h;
}
};
dict<merge_key_t, pool<IdString>> merge_cache;
pool<merge_key_t> fwd_merge_cache, bwd_merge_cache;
void merge_cell_pair(Cell *cell_a, Cell *cell_b)
{
SigMap merged_map;
merge_count++;
SigSpec inputs_a, inputs_b;
vector<string> input_names;
for (auto &port_a : cell_a->connections()) for (auto &port_a : cell_a->connections())
{ {
SigSpec bits_a = equiv_bits(port_a.second); SigSpec bits_a = sigmap(port_a.second);
SigSpec bits_b = equiv_bits(cell_b->getPort(port_a.first)); SigSpec bits_b = sigmap(cell_b->getPort(port_a.first));
if (GetSize(bits_a) != GetSize(bits_b)) log_assert(GetSize(bits_a) == GetSize(bits_b));
return;
if (cell_a->output(port_a.first)) { if (!cell_a->output(port_a.first))
for (int i = 0; i < GetSize(bits_a); i++)
if (bits_a[i] == bits_b[i])
merge_this_cells = true;
} else {
SigSpec diff_bits_a, diff_bits_b;
for (int i = 0; i < GetSize(bits_a); i++) for (int i = 0; i < GetSize(bits_a); i++)
if (bits_a[i] != bits_b[i]) { if (bits_a[i] != bits_b[i]) {
diff_bits_a.append(bits_a[i]); inputs_a.append(bits_a[i]);
diff_bits_b.append(bits_b[i]); inputs_b.append(bits_b[i]);
input_names.push_back(GetSize(bits_a) == 1 ? port_a.first.str() :
stringf("%s[%d]", log_id(port_a.first), i));
} }
if (!diff_bits_a.empty()) {
inputs_a.push_back(diff_bits_a);
inputs_b.push_back(diff_bits_b);
found_diff_inputs = true;
}
}
} }
if (!found_diff_inputs) for (int i = 0; i < GetSize(inputs_a); i++) {
merge_this_cells = true; SigBit bit_a = inputs_a[i], bit_b = inputs_b[i];
SigBit bit_y = module->addWire(NEW_ID);
if (merge_this_cells) log(" New $equiv for input %s: A: %s, B: %s, Y: %s\n",
{ input_names[i].c_str(), log_signal(bit_a), log_signal(bit_b), log_signal(bit_y));
SigMap merged_map; module->addEquiv(NEW_ID, bit_a, bit_b, bit_y);
merged_map.add(bit_a, bit_y);
log(" Merging cells %s and %s.\n", log_id(cell_a), log_id(cell_b)); merged_map.add(bit_b, bit_y);
merge_count++;
for (int i = 0; i < GetSize(inputs_a); i++) {
SigSpec &sig_a = inputs_a[i], &sig_b = inputs_b[i];
SigSpec sig_y = module->addWire(NEW_ID, GetSize(sig_a));
log(" A: %s, B: %s, Y: %s\n", log_signal(sig_a), log_signal(sig_b), log_signal(sig_y));
module->addEquiv(NEW_ID, sig_a, sig_b, sig_y);
merged_map.add(sig_a, sig_y);
merged_map.add(sig_b, sig_y);
}
std::vector<IdString> outport_names, inport_names;
for (auto &port_a : cell_a->connections())
if (cell_a->output(port_a.first))
outport_names.push_back(port_a.first);
else
inport_names.push_back(port_a.first);
for (auto &pn : inport_names)
cell_a->setPort(pn, merged_map(equiv_bits(cell_a->getPort(pn))));
for (auto &pn : outport_names) {
SigSpec sig_a = cell_a->getPort(pn);
SigSpec sig_b = cell_b->getPort(pn);
module->connect(sig_b, sig_a);
sigmap.add(sig_b, sig_a);
equiv_bits.add(sig_b, sig_a);
}
auto merged_attr = cell_b->get_strpool_attribute("\\equiv_merged");
merged_attr.insert(log_id(cell_b));
cell_a->add_strpool_attribute("\\equiv_merged", merged_attr);
module->remove(cell_b);
} }
std::vector<IdString> outport_names, inport_names;
for (auto &port_a : cell_a->connections())
if (cell_a->output(port_a.first))
outport_names.push_back(port_a.first);
else
inport_names.push_back(port_a.first);
for (auto &pn : inport_names)
cell_a->setPort(pn, merged_map(sigmap(cell_a->getPort(pn))));
for (auto &pn : outport_names) {
SigSpec sig_a = cell_a->getPort(pn);
SigSpec sig_b = cell_b->getPort(pn);
module->connect(sig_b, sig_a);
}
auto merged_attr = cell_b->get_strpool_attribute("\\equiv_merged");
merged_attr.insert(log_id(cell_b));
cell_a->add_strpool_attribute("\\equiv_merged", merged_attr);
module->remove(cell_b);
} }
EquivStructWorker(Module *module, bool mode_icells) : EquivStructWorker(Module *module, bool mode_fwd, bool mode_icells) :
module(module), sigmap(module), equiv_bits(module), mode_icells(mode_icells), merge_count(0) module(module), sigmap(module), equiv_bits(module),
mode_fwd(mode_fwd), mode_icells(mode_icells), merge_count(0)
{ {
log(" Starting new iteration.\n"); log(" Starting new iteration.\n");
pool<SigBit> equiv_inputs; pool<SigBit> equiv_inputs;
pool<IdString> cells;
for (auto cell : module->selected_cells()) for (auto cell : module->selected_cells())
if (cell->type == "$equiv") { if (cell->type == "$equiv") {
@ -128,45 +130,104 @@ struct EquivStructWorker
equiv_bits.add(sig_b, sig_a); equiv_bits.add(sig_b, sig_a);
equiv_inputs.insert(sig_a); equiv_inputs.insert(sig_a);
equiv_inputs.insert(sig_b); equiv_inputs.insert(sig_b);
cells_by_type[cell->type].insert(cell->name); cells.insert(cell->name);
} else } else {
if (module->design->selected(module, cell)) {
if (mode_icells || module->design->module(cell->type)) if (mode_icells || module->design->module(cell->type))
cells_by_type[cell->type].insert(cell->name); cells.insert(cell->name);
} }
for (auto cell_name : cells_by_type["$equiv"]) { for (auto cell : module->selected_cells())
Cell *cell = module->cell(cell_name); if (cell->type == "$equiv") {
SigBit sig_a = sigmap(cell->getPort("\\A").as_bit()); SigBit sig_a = sigmap(cell->getPort("\\A").as_bit());
SigBit sig_b = sigmap(cell->getPort("\\B").as_bit()); SigBit sig_b = sigmap(cell->getPort("\\B").as_bit());
SigBit sig_y = sigmap(cell->getPort("\\Y").as_bit()); SigBit sig_y = sigmap(cell->getPort("\\Y").as_bit());
if (sig_a == sig_b && equiv_inputs.count(sig_y)) { if (sig_a == sig_b && equiv_inputs.count(sig_y)) {
log(" Purging redundant $equiv cell %s.\n", log_id(cell)); log(" Purging redundant $equiv cell %s.\n", log_id(cell));
module->remove(cell); module->remove(cell);
merge_count++; merge_count++;
}
} }
}
if (merge_count > 0) if (merge_count > 0)
return; return;
for (auto &it : cells_by_type) for (auto cell_name : cells)
{ {
if (it.second.size() <= 1) merge_key_t key;
continue; vector<tuple<IdString, int, SigBit>> fwd_connections;
log(" Merging %s cells..\n", log_id(it.first)); Cell *cell = module->cell(cell_name);
key.type = cell->type;
// FIXME: O(n^2) for (auto &it : cell->parameters)
for (auto cell_name_a : it.second) key.parameters.push_back(it);
for (auto cell_name_b : it.second) std::sort(key.parameters.begin(), key.parameters.end());
if (cell_name_a < cell_name_b) {
Cell *cell_a = module->cell(cell_name_a); for (auto &it : cell->connections())
Cell *cell_b = module->cell(cell_name_b); key.port_sizes.push_back(make_pair(it.first, GetSize(it.second)));
if (cell_a && cell_b) std::sort(key.port_sizes.begin(), key.port_sizes.end());
handle_cell_pair(cell_a, cell_b);
} for (auto &conn : cell->connections())
{
SigSpec sig = equiv_bits(conn.second);
if (cell->input(conn.first))
for (int i = 0; i < GetSize(sig); i++)
fwd_connections.push_back(make_tuple(conn.first, i, sig[i]));
if (cell->output(conn.first))
for (int i = 0; i < GetSize(sig); i++) {
key.connections.clear();
key.connections.push_back(make_tuple(conn.first, i, sig[i]));
if (merge_cache.count(key))
bwd_merge_cache.insert(key);
merge_cache[key].insert(cell_name);
}
}
std::sort(fwd_connections.begin(), fwd_connections.end());
key.connections.swap(fwd_connections);
if (merge_cache.count(key))
fwd_merge_cache.insert(key);
merge_cache[key].insert(cell_name);
} }
for (int phase = 0; phase < 2; phase++)
{
auto &queue = phase ? bwd_merge_cache : fwd_merge_cache;
for (auto &key : queue)
{
Cell *gold_cell = nullptr;
pool<Cell*> cells;
for (auto cell_name : merge_cache[key]) {
Cell *c = module->cell(cell_name);
if (c != nullptr) {
string n = cell_name.str();
if (gold_cell == nullptr || (GetSize(n) > 5 && n.substr(GetSize(n)-5) == "_gold"))
gold_cell = c;
cells.insert(c);
}
}
if (GetSize(cells) < 2)
continue;
for (auto gate_cell : cells)
if (gate_cell != gold_cell) {
log(" %s merging cells %s and %s.\n", phase ? "Bwd" : "Fwd", log_id(gold_cell), log_id(gate_cell));
merge_cell_pair(gold_cell, gate_cell);
}
}
if (merge_count > 0)
return;
}
log(" Nothing to merge.\n");
} }
}; };
@ -184,6 +245,12 @@ struct EquivStructPass : public Pass {
log("for example when analyzing circuits with cells with commutative inputs. This\n"); log("for example when analyzing circuits with cells with commutative inputs. This\n");
log("command will also de-duplicate gates.\n"); log("command will also de-duplicate gates.\n");
log("\n"); log("\n");
log(" -fwd\n");
log(" by default this command performans forward sweeps until nothing can\n");
log(" be merged by forwards sweeps, the backward sweeps until forward\n");
log(" sweeps are effective again. with this option set only forward sweeps\n");
log(" are performed.\n");
log("\n");
log(" -icells\n"); log(" -icells\n");
log(" by default, the internal RTL and gate cell types are ignored. add\n"); log(" by default, the internal RTL and gate cell types are ignored. add\n");
log(" this option to also process those cell types with this command.\n"); log(" this option to also process those cell types with this command.\n");
@ -192,11 +259,16 @@ struct EquivStructPass : public Pass {
virtual void execute(std::vector<std::string> args, Design *design) virtual void execute(std::vector<std::string> args, Design *design)
{ {
bool mode_icells = false; bool mode_icells = false;
bool mode_fwd = false;
log_header("Executing EQUIV_STRUCT pass.\n"); log_header("Executing EQUIV_STRUCT pass.\n");
size_t argidx; size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) { for (argidx = 1; argidx < args.size(); argidx++) {
if (args[argidx] == "-fwd") {
mode_fwd = true;
continue;
}
if (args[argidx] == "-icells") { if (args[argidx] == "-icells") {
mode_icells = true; mode_icells = true;
continue; continue;
@ -206,9 +278,9 @@ struct EquivStructPass : public Pass {
extra_args(args, argidx, design); extra_args(args, argidx, design);
for (auto module : design->selected_modules()) { for (auto module : design->selected_modules()) {
log("Running equiv_struct on module %s:", log_id(module)); log("Running equiv_struct on module %s:\n", log_id(module));
while (1) { while (1) {
EquivStructWorker worker(module, mode_icells); EquivStructWorker worker(module, mode_fwd, mode_icells);
if (worker.merge_count == 0) if (worker.merge_count == 0)
break; break;
} }