proc_dff: respect sync rule priorities when generating complex dffsrs

* This fixes #4560, where previously the order that sync rules were
  processed in depended on the order they were pulled out of a std::map.
  This PR changes this to process them in the order they are found in,
  respecting the priorities among the async signals
This commit is contained in:
George Rennie 2024-08-28 15:38:27 +01:00
parent 0fc5812dcd
commit bdb5d45591
1 changed files with 73 additions and 132 deletions

View File

@ -54,90 +54,35 @@ RTLIL::SigSpec find_any_lvalue(const RTLIL::Process *proc)
} }
void gen_dffsr_complex(RTLIL::Module *mod, RTLIL::SigSpec sig_d, RTLIL::SigSpec sig_q, RTLIL::SigSpec clk, bool clk_polarity, void gen_dffsr_complex(RTLIL::Module *mod, RTLIL::SigSpec sig_d, RTLIL::SigSpec sig_q, RTLIL::SigSpec clk, bool clk_polarity,
std::map<RTLIL::SigSpec, std::set<RTLIL::SyncRule*>> &async_rules, RTLIL::Process *proc) std::vector<std::pair<RTLIL::SigSpec, RTLIL::SyncRule*>> &async_rules, RTLIL::Process *proc)
{ {
// A signal should be set/cleared if there is a load trigger that is enabled
// such that the load value is 1/0 and it is the highest priority trigger
RTLIL::SigSpec sig_sr_set = RTLIL::SigSpec(0, sig_d.size()); RTLIL::SigSpec sig_sr_set = RTLIL::SigSpec(0, sig_d.size());
RTLIL::SigSpec sig_sr_clr = RTLIL::SigSpec(0, sig_d.size()); RTLIL::SigSpec sig_sr_clr = RTLIL::SigSpec(0, sig_d.size());
for (auto &it : async_rules) // Reverse iterate through the rules as the first ones are the highest priority
// so need to be at the top of the mux trees
for (auto it = async_rules.crbegin(); it != async_rules.crend(); it++)
{ {
RTLIL::SigSpec sync_value = it.first; const auto& [sync_value, rule] = *it;
RTLIL::SigSpec sync_value_inv; const auto pos_trig = rule->type == RTLIL::SyncType::ST1 ? rule->signal : mod->Not(NEW_ID, rule->signal);
RTLIL::SigSpec sync_high_signals;
RTLIL::SigSpec sync_low_signals;
for (auto &it2 : it.second) // If pos_trig is true, we have priority at this point in the tree so
if (it2->type == RTLIL::SyncType::ST0) // set a bit if sync_value has a set bit. Otherwise, defer to the rest
sync_low_signals.append(it2->signal); // of the priority tree
else if (it2->type == RTLIL::SyncType::ST1) sig_sr_set = mod->Mux(NEW_ID, sig_sr_set, sync_value, pos_trig);
sync_high_signals.append(it2->signal);
else
log_abort();
if (sync_low_signals.size() > 1) { // Same deal with clear bit
RTLIL::Cell *cell = mod->addCell(NEW_ID, ID($reduce_or)); const auto sync_value_inv = mod->Not(NEW_ID, sync_value);
cell->parameters[ID::A_SIGNED] = RTLIL::Const(0); sig_sr_clr = mod->Mux(NEW_ID, sig_sr_clr, sync_value_inv, pos_trig);
cell->parameters[ID::A_WIDTH] = RTLIL::Const(sync_low_signals.size());
cell->parameters[ID::Y_WIDTH] = RTLIL::Const(1);
cell->setPort(ID::A, sync_low_signals);
cell->setPort(ID::Y, sync_low_signals = mod->addWire(NEW_ID));
}
if (sync_low_signals.size() > 0) {
RTLIL::Cell *cell = mod->addCell(NEW_ID, ID($not));
cell->parameters[ID::A_SIGNED] = RTLIL::Const(0);
cell->parameters[ID::A_WIDTH] = RTLIL::Const(sync_low_signals.size());
cell->parameters[ID::Y_WIDTH] = RTLIL::Const(1);
cell->setPort(ID::A, sync_low_signals);
cell->setPort(ID::Y, mod->addWire(NEW_ID));
sync_high_signals.append(cell->getPort(ID::Y));
}
if (sync_high_signals.size() > 1) {
RTLIL::Cell *cell = mod->addCell(NEW_ID, ID($reduce_or));
cell->parameters[ID::A_SIGNED] = RTLIL::Const(0);
cell->parameters[ID::A_WIDTH] = RTLIL::Const(sync_high_signals.size());
cell->parameters[ID::Y_WIDTH] = RTLIL::Const(1);
cell->setPort(ID::A, sync_high_signals);
cell->setPort(ID::Y, sync_high_signals = mod->addWire(NEW_ID));
}
RTLIL::Cell *inv_cell = mod->addCell(NEW_ID, ID($not));
inv_cell->parameters[ID::A_SIGNED] = RTLIL::Const(0);
inv_cell->parameters[ID::A_WIDTH] = RTLIL::Const(sig_d.size());
inv_cell->parameters[ID::Y_WIDTH] = RTLIL::Const(sig_d.size());
inv_cell->setPort(ID::A, sync_value);
inv_cell->setPort(ID::Y, sync_value_inv = mod->addWire(NEW_ID, sig_d.size()));
RTLIL::Cell *mux_set_cell = mod->addCell(NEW_ID, ID($mux));
mux_set_cell->parameters[ID::WIDTH] = RTLIL::Const(sig_d.size());
mux_set_cell->setPort(ID::A, sig_sr_set);
mux_set_cell->setPort(ID::B, sync_value);
mux_set_cell->setPort(ID::S, sync_high_signals);
mux_set_cell->setPort(ID::Y, sig_sr_set = mod->addWire(NEW_ID, sig_d.size()));
RTLIL::Cell *mux_clr_cell = mod->addCell(NEW_ID, ID($mux));
mux_clr_cell->parameters[ID::WIDTH] = RTLIL::Const(sig_d.size());
mux_clr_cell->setPort(ID::A, sig_sr_clr);
mux_clr_cell->setPort(ID::B, sync_value_inv);
mux_clr_cell->setPort(ID::S, sync_high_signals);
mux_clr_cell->setPort(ID::Y, sig_sr_clr = mod->addWire(NEW_ID, sig_d.size()));
} }
std::stringstream sstr; std::stringstream sstr;
sstr << "$procdff$" << (autoidx++); sstr << "$procdff$" << (autoidx++);
RTLIL::Cell *cell = mod->addCell(sstr.str(), ID($dffsr)); RTLIL::Cell *cell = mod->addDffsr(sstr.str(), clk, sig_sr_set, sig_sr_clr, sig_d, sig_q, clk_polarity);
cell->attributes = proc->attributes; cell->attributes = proc->attributes;
cell->parameters[ID::WIDTH] = RTLIL::Const(sig_d.size());
cell->parameters[ID::CLK_POLARITY] = RTLIL::Const(clk_polarity, 1);
cell->parameters[ID::SET_POLARITY] = RTLIL::Const(true, 1);
cell->parameters[ID::CLR_POLARITY] = RTLIL::Const(true, 1);
cell->setPort(ID::D, sig_d);
cell->setPort(ID::Q, sig_q);
cell->setPort(ID::CLK, clk);
cell->setPort(ID::SET, sig_sr_set);
cell->setPort(ID::CLR, sig_sr_clr);
log(" created %s cell `%s' with %s edge clock and multiple level-sensitive resets.\n", log(" created %s cell `%s' with %s edge clock and multiple level-sensitive resets.\n",
cell->type.c_str(), cell->name.c_str(), clk_polarity ? "positive" : "negative"); cell->type.c_str(), cell->name.c_str(), clk_polarity ? "positive" : "negative");
@ -204,7 +149,6 @@ void proc_dff(RTLIL::Module *mod, RTLIL::Process *proc, ConstEval &ce)
while (1) while (1)
{ {
RTLIL::SigSpec sig = find_any_lvalue(proc); RTLIL::SigSpec sig = find_any_lvalue(proc);
bool free_sync_level = false;
if (sig.size() == 0) if (sig.size() == 0)
break; break;
@ -213,13 +157,17 @@ void proc_dff(RTLIL::Module *mod, RTLIL::Process *proc, ConstEval &ce)
mod->name.c_str(), log_signal(sig), mod->name.c_str(), proc->name.c_str()); mod->name.c_str(), log_signal(sig), mod->name.c_str(), proc->name.c_str());
RTLIL::SigSpec insig = RTLIL::SigSpec(RTLIL::State::Sz, sig.size()); RTLIL::SigSpec insig = RTLIL::SigSpec(RTLIL::State::Sz, sig.size());
RTLIL::SigSpec rstval = RTLIL::SigSpec(RTLIL::State::Sz, sig.size());
RTLIL::SyncRule *sync_level = NULL;
RTLIL::SyncRule *sync_edge = NULL; RTLIL::SyncRule *sync_edge = NULL;
RTLIL::SyncRule *sync_always = NULL; RTLIL::SyncRule *sync_always = NULL;
bool global_clock = false; bool global_clock = false;
std::map<RTLIL::SigSpec, std::set<RTLIL::SyncRule*>> many_async_rules; // A priority ordered set of rules, pairing the value to be assigned for
// that rule to the rule
std::vector<std::pair<RTLIL::SigSpec, RTLIL::SyncRule*>> async_rules;
// Needed when the async rules are collapsed into one as async_rules
// works with pointers to SyncRule
RTLIL::SyncRule single_async_rule;
for (auto sync : proc->syncs) for (auto sync : proc->syncs)
for (auto &action : sync->actions) for (auto &action : sync->actions)
@ -228,14 +176,9 @@ void proc_dff(RTLIL::Module *mod, RTLIL::Process *proc, ConstEval &ce)
continue; continue;
if (sync->type == RTLIL::SyncType::ST0 || sync->type == RTLIL::SyncType::ST1) { if (sync->type == RTLIL::SyncType::ST0 || sync->type == RTLIL::SyncType::ST1) {
if (sync_level != NULL && sync_level != sync) { RTLIL::SigSpec rstval = RTLIL::SigSpec(RTLIL::State::Sz, sig.size());
// log_error("Multiple level sensitive events found for this signal!\n");
many_async_rules[rstval].insert(sync_level);
rstval = RTLIL::SigSpec(RTLIL::State::Sz, sig.size());
}
rstval = RTLIL::SigSpec(RTLIL::State::Sz, sig.size());
sig.replace(action.first, action.second, &rstval); sig.replace(action.first, action.second, &rstval);
sync_level = sync; async_rules.emplace_back(rstval, sync);
} }
else if (sync->type == RTLIL::SyncType::STp || sync->type == RTLIL::SyncType::STn) { else if (sync->type == RTLIL::SyncType::STp || sync->type == RTLIL::SyncType::STn) {
if (sync_edge != NULL && sync_edge != sync) if (sync_edge != NULL && sync_edge != sync)
@ -260,59 +203,51 @@ void proc_dff(RTLIL::Module *mod, RTLIL::Process *proc, ConstEval &ce)
action.first.remove2(sig, &action.second); action.first.remove2(sig, &action.second);
} }
if (many_async_rules.size() > 0) // If all async rules assign the same value, priority ordering between
// them doesn't matter so they can be collapsed together into one rule
// with the disjunction of triggers
if (!async_rules.empty() &&
std::all_of(async_rules.begin(), async_rules.end(), [&](auto& p) {
return p.first == async_rules.front().first;
}))
{ {
many_async_rules[rstval].insert(sync_level); const auto rstval = async_rules.front().first;
if (many_async_rules.size() == 1)
{
sync_level = new RTLIL::SyncRule;
sync_level->type = RTLIL::SyncType::ST1;
sync_level->signal = mod->addWire(NEW_ID);
sync_level->actions.push_back(RTLIL::SigSig(sig, rstval));
free_sync_level = true;
RTLIL::SigSpec inputs, compare; // The trigger is the disjunction of existing triggers
for (auto &it : many_async_rules[rstval]) { // (with appropriate negation)
inputs.append(it->signal); RTLIL::SigSpec triggers;
compare.append(it->type == RTLIL::SyncType::ST0 ? RTLIL::State::S1 : RTLIL::State::S0); for (const auto &[_, it] : async_rules)
} triggers.append(it->type == RTLIL::SyncType::ST1 ? it->signal : mod->Not(NEW_ID, it->signal));
log_assert(inputs.size() == compare.size());
RTLIL::Cell *cell = mod->addCell(NEW_ID, ID($ne)); // Put this into the dummy sync rule so it can be treated the same
cell->parameters[ID::A_SIGNED] = RTLIL::Const(false, 1); // as ones coming from the module
cell->parameters[ID::B_SIGNED] = RTLIL::Const(false, 1); single_async_rule.type = RTLIL::SyncType::ST1;
cell->parameters[ID::A_WIDTH] = RTLIL::Const(inputs.size()); single_async_rule.signal = mod->ReduceOr(NEW_ID, triggers);
cell->parameters[ID::B_WIDTH] = RTLIL::Const(inputs.size()); single_async_rule.actions.push_back(RTLIL::SigSig(sig, rstval));
cell->parameters[ID::Y_WIDTH] = RTLIL::Const(1);
cell->setPort(ID::A, inputs);
cell->setPort(ID::B, compare);
cell->setPort(ID::Y, sync_level->signal);
many_async_rules.clear(); // Replace existing rules with this new rule
} async_rules.clear();
else async_rules.emplace_back(rstval, &single_async_rule);
{
rstval = RTLIL::SigSpec(RTLIL::State::Sz, sig.size());
sync_level = NULL;
}
} }
SigSpec sig_q = sig; SigSpec sig_q = sig;
ce.assign_map.apply(insig); ce.assign_map.apply(insig);
ce.assign_map.apply(rstval);
ce.assign_map.apply(sig); ce.assign_map.apply(sig);
if (rstval == sig && sync_level) { // If the reset value assigns the reg to itself, add this as part of
if (sync_level->type == RTLIL::SyncType::ST1) // the input signal and delete the rule
insig = mod->Mux(NEW_ID, insig, sig, sync_level->signal); if (async_rules.size() == 1 && async_rules.front().first == sig) {
const auto& [_, rule] = async_rules.front();
if (rule->type == RTLIL::SyncType::ST1)
insig = mod->Mux(NEW_ID, insig, sig, rule->signal);
else else
insig = mod->Mux(NEW_ID, sig, insig, sync_level->signal); insig = mod->Mux(NEW_ID, sig, insig, rule->signal);
rstval = RTLIL::SigSpec(RTLIL::State::Sz, sig.size());
sync_level = NULL; async_rules.clear();
} }
if (sync_always) { if (sync_always) {
if (sync_edge || sync_level || many_async_rules.size() > 0) if (sync_edge || !async_rules.empty())
log_error("Mixed always event with edge and/or level sensitive events!\n"); log_error("Mixed always event with edge and/or level sensitive events!\n");
log(" created direct connection (no actual register cell created).\n"); log(" created direct connection (no actual register cell created).\n");
mod->connect(RTLIL::SigSig(sig, insig)); mod->connect(RTLIL::SigSig(sig, insig));
@ -322,28 +257,34 @@ void proc_dff(RTLIL::Module *mod, RTLIL::Process *proc, ConstEval &ce)
if (!sync_edge && !global_clock) if (!sync_edge && !global_clock)
log_error("Missing edge-sensitive event for this signal!\n"); log_error("Missing edge-sensitive event for this signal!\n");
if (many_async_rules.size() > 0) // More than one reset value so we derive a dffsr formulation
if (async_rules.size() > 1)
{ {
log_warning("Complex async reset for dff `%s'.\n", log_signal(sig)); log_warning("Complex async reset for dff `%s'.\n", log_signal(sig));
gen_dffsr_complex(mod, insig, sig, sync_edge->signal, sync_edge->type == RTLIL::SyncType::STp, many_async_rules, proc); gen_dffsr_complex(mod, insig, sig, sync_edge->signal, sync_edge->type == RTLIL::SyncType::STp, async_rules, proc);
return;
} }
else if (!rstval.is_fully_const() && !ce.eval(rstval))
// If there is a reset condition in the async rules, use it
SigSpec rstval = async_rules.empty() ? RTLIL::SigSpec(RTLIL::State::Sz, sig.size()) : async_rules.front().first;
RTLIL::SyncRule* sync_level = async_rules.empty() ? nullptr : async_rules.front().second;
ce.assign_map.apply(rstval);
if (!rstval.is_fully_const() && !ce.eval(rstval))
{ {
log_warning("Async reset value `%s' is not constant!\n", log_signal(rstval)); log_warning("Async reset value `%s' is not constant!\n", log_signal(rstval));
gen_aldff(mod, insig, rstval, sig_q, gen_aldff(mod, insig, rstval, sig_q,
sync_edge->type == RTLIL::SyncType::STp, sync_edge->type == RTLIL::SyncType::STp,
sync_level && sync_level->type == RTLIL::SyncType::ST1, sync_level && sync_level->type == RTLIL::SyncType::ST1,
sync_edge->signal, sync_level->signal, proc); sync_edge->signal, sync_level->signal, proc);
return;
} }
else
gen_dff(mod, insig, rstval.as_const(), sig_q, gen_dff(mod, insig, rstval.as_const(), sig_q,
sync_edge && sync_edge->type == RTLIL::SyncType::STp, sync_edge && sync_edge->type == RTLIL::SyncType::STp,
sync_level && sync_level->type == RTLIL::SyncType::ST1, sync_level && sync_level->type == RTLIL::SyncType::ST1,
sync_edge ? sync_edge->signal : SigSpec(), sync_edge ? sync_edge->signal : SigSpec(),
sync_level ? &sync_level->signal : NULL, proc); sync_level ? &sync_level->signal : NULL, proc);
if (free_sync_level)
delete sync_level;
} }
} }