Add opt_dff pass.

This commit is contained in:
Marcelina Kościelnicka 2020-07-15 00:58:07 +02:00
parent 8fd43515c5
commit af6623ebb8
12 changed files with 1790 additions and 3 deletions

View File

@ -5,6 +5,7 @@ OBJS += passes/opt/opt_mem.o
OBJS += passes/opt/opt_muxtree.o
OBJS += passes/opt/opt_reduce.o
OBJS += passes/opt/opt_rmdff.o
OBJS += passes/opt/opt_dff.o
OBJS += passes/opt/opt_share.o
OBJS += passes/opt/opt_clean.o
OBJS += passes/opt/opt_expr.o

875
passes/opt/opt_dff.cc Normal file
View File

@ -0,0 +1,875 @@
/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
* Copyright (C) 2020 Marcelina Kościelnicka <mwk@0x04.net>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/log.h"
#include "kernel/register.h"
#include "kernel/rtlil.h"
#include "kernel/satgen.h"
#include "kernel/sigtools.h"
#include "kernel/ffinit.h"
#include "kernel/ff.h"
#include "passes/techmap/simplemap.h"
#include <stdio.h>
#include <stdlib.h>
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
struct OptDffOptions
{
bool nosdff;
bool nodffe;
bool simple_dffe;
bool sat;
bool keepdc;
};
struct OptDffWorker
{
const OptDffOptions &opt;
Module *module;
typedef std::pair<RTLIL::Cell*, int> cell_int_t;
SigMap sigmap;
FfInitVals initvals;
dict<SigBit, int> bitusers;
dict<SigBit, cell_int_t> bit2mux;
dict<SigBit, RTLIL::Cell*> bit2driver;
typedef std::map<RTLIL::SigBit, bool> pattern_t;
typedef std::set<pattern_t> patterns_t;
typedef std::pair<RTLIL::SigBit, bool> ctrl_t;
typedef std::set<ctrl_t> ctrls_t;
ezSatPtr ez;
SatGen satgen;
pool<Cell*> sat_cells;
// Used as a queue.
std::vector<Cell *> dff_cells;
OptDffWorker(const OptDffOptions &opt, Module *mod) : opt(opt), module(mod), sigmap(mod), initvals(&sigmap, mod), ez(), satgen(ez.get(), &sigmap) {
// Gathering three kinds of information here for every sigmapped SigBit:
//
// - bitusers: how many users it has (muxes will only be merged into FFs if this is 1, making the FF the only user)
// - bit2mux: the mux cell and bit index that drives it, if any
// - bit2driver: the cell driving it, if any
for (auto wire : module->wires())
{
if (wire->port_output)
for (auto bit : sigmap(wire))
bitusers[bit]++;
}
for (auto cell : module->cells()) {
if (cell->type.in(ID($mux), ID($pmux), ID($_MUX_))) {
RTLIL::SigSpec sig_y = sigmap(cell->getPort(ID::Y));
for (int i = 0; i < GetSize(sig_y); i++)
bit2mux[sig_y[i]] = cell_int_t(cell, i);
}
for (auto conn : cell->connections()) {
bool is_output = cell->output(conn.first);
if (is_output) {
for (auto bit : sigmap(conn.second))
bit2driver[bit] = cell;
}
if (!is_output || !cell->known()) {
for (auto bit : sigmap(conn.second))
bitusers[bit]++;
}
}
if (module->design->selected(module, cell) && RTLIL::builtin_ff_cell_types().count(cell->type))
dff_cells.push_back(cell);
}
}
std::function<void(Cell*)> sat_import_cell = [&](Cell *c) {
if (!sat_cells.insert(c).second)
return;
if (!satgen.importCell(c))
return;
for (auto &conn : c->connections()) {
if (!c->input(conn.first))
continue;
for (auto bit : sigmap(conn.second))
if (bit2driver.count(bit))
sat_import_cell(bit2driver.at(bit));
}
};
State combine_const(State a, State b) {
if (a == State::Sx && !opt.keepdc)
return b;
if (b == State::Sx && !opt.keepdc)
return a;
if (a == b)
return a;
return State::Sm;
}
patterns_t find_muxtree_feedback_patterns(RTLIL::SigBit d, RTLIL::SigBit q, pattern_t path)
{
patterns_t ret;
if (d == q) {
ret.insert(path);
return ret;
}
if (bit2mux.count(d) == 0 || bitusers[d] > 1)
return ret;
cell_int_t mbit = bit2mux.at(d);
RTLIL::SigSpec sig_a = sigmap(mbit.first->getPort(ID::A));
RTLIL::SigSpec sig_b = sigmap(mbit.first->getPort(ID::B));
RTLIL::SigSpec sig_s = sigmap(mbit.first->getPort(ID::S));
int width = GetSize(sig_a), index = mbit.second;
for (int i = 0; i < GetSize(sig_s); i++)
if (path.count(sig_s[i]) && path.at(sig_s[i]))
{
ret = find_muxtree_feedback_patterns(sig_b[i*width + index], q, path);
if (sig_b[i*width + index] == q) {
RTLIL::SigSpec s = mbit.first->getPort(ID::B);
s[i*width + index] = RTLIL::Sx;
mbit.first->setPort(ID::B, s);
}
return ret;
}
pattern_t path_else = path;
for (int i = 0; i < GetSize(sig_s); i++)
{
if (path.count(sig_s[i]))
continue;
pattern_t path_this = path;
path_else[sig_s[i]] = false;
path_this[sig_s[i]] = true;
for (auto &pat : find_muxtree_feedback_patterns(sig_b[i*width + index], q, path_this))
ret.insert(pat);
if (sig_b[i*width + index] == q) {
RTLIL::SigSpec s = mbit.first->getPort(ID::B);
s[i*width + index] = RTLIL::Sx;
mbit.first->setPort(ID::B, s);
}
}
for (auto &pat : find_muxtree_feedback_patterns(sig_a[index], q, path_else))
ret.insert(pat);
if (sig_a[index] == q) {
RTLIL::SigSpec s = mbit.first->getPort(ID::A);
s[index] = RTLIL::Sx;
mbit.first->setPort(ID::A, s);
}
return ret;
}
void simplify_patterns(patterns_t&)
{
// TBD
}
ctrl_t make_patterns_logic(const patterns_t &patterns, const ctrls_t &ctrls, bool make_gates)
{
if (patterns.empty() && GetSize(ctrls) == 1) {
return *ctrls.begin();
}
RTLIL::SigSpec or_input;
for (auto pat : patterns)
{
RTLIL::SigSpec s1, s2;
for (auto it : pat) {
s1.append(it.first);
s2.append(it.second);
}
RTLIL::SigSpec y = module->addWire(NEW_ID);
RTLIL::Cell *c = module->addNe(NEW_ID, s1, s2, y);
if (make_gates) {
simplemap(module, c);
module->remove(c);
}
or_input.append(y);
}
for (auto item : ctrls) {
if (item.second)
or_input.append(item.first);
else if (make_gates)
or_input.append(module->NotGate(NEW_ID, item.first));
else
or_input.append(module->Not(NEW_ID, item.first));
}
if (GetSize(or_input) == 0)
return ctrl_t(State::S1, true);
if (GetSize(or_input) == 1)
return ctrl_t(or_input, true);
RTLIL::SigSpec y = module->addWire(NEW_ID);
RTLIL::Cell *c = module->addReduceAnd(NEW_ID, or_input, y);
if (make_gates) {
simplemap(module, c);
module->remove(c);
}
return ctrl_t(y, true);
}
ctrl_t combine_resets(const ctrls_t &ctrls, bool make_gates)
{
if (GetSize(ctrls) == 1) {
return *ctrls.begin();
}
RTLIL::SigSpec or_input;
bool final_pol = false;
for (auto item : ctrls) {
if (item.second)
final_pol = true;
}
for (auto item : ctrls) {
if (item.second == final_pol)
or_input.append(item.first);
else if (make_gates)
or_input.append(module->NotGate(NEW_ID, item.first));
else
or_input.append(module->Not(NEW_ID, item.first));
}
RTLIL::SigSpec y = module->addWire(NEW_ID);
RTLIL::Cell *c = final_pol ? module->addReduceOr(NEW_ID, or_input, y) : module->addReduceAnd(NEW_ID, or_input, y);
if (make_gates) {
simplemap(module, c);
module->remove(c);
}
return ctrl_t(y, final_pol);
}
bool run() {
// We have all the information we need, and the list of FFs to process as well. Do it.
bool did_something = false;
while (!dff_cells.empty()) {
Cell *cell = dff_cells.back();
dff_cells.pop_back();
// Break down the FF into pieces.
FfData ff(&initvals, cell);
bool changed = false;
if (!ff.width) {
module->remove(cell);
did_something = true;
continue;
}
if (ff.has_sr) {
bool sr_removed = false;
std::vector<int> keep_bits;
// Check for always-active S/R bits.
for (int i = 0; i < ff.width; i++) {
if (ff.sig_clr[i] == (ff.pol_clr ? State::S1 : State::S0) || (!opt.keepdc && ff.sig_clr[i] == State::Sx)) {
// Always-active clear — connect Q bit to 0.
initvals.remove_init(ff.sig_q[i]);
module->connect(ff.sig_q[i], State::S0);
log("Handling always-active CLR at position %d on %s (%s) from module %s (changing to const driver).\n",
i, log_id(cell), log_id(cell->type), log_id(module));
sr_removed = true;
} else if (ff.sig_set[i] == (ff.pol_set ? State::S1 : State::S0) || (!opt.keepdc && ff.sig_set[i] == State::Sx)) {
// Always-active set — connect Q bit to 1 if clear inactive, 0 if reset active.
initvals.remove_init(ff.sig_q[i]);
if (!ff.pol_clr) {
module->connect(ff.sig_q[i], ff.sig_clr[i]);
} else if (ff.is_fine) {
module->addNotGate(NEW_ID, ff.sig_q[i], ff.sig_clr[i]);
} else {
module->addNot(NEW_ID, ff.sig_q[i], ff.sig_clr[i]);
}
log("Handling always-active SET at position %d on %s (%s) from module %s (changing to combinatorial circuit).\n",
i, log_id(cell), log_id(cell->type), log_id(module));
sr_removed = true;
} else {
keep_bits.push_back(i);
}
}
if (sr_removed) {
if (keep_bits.empty()) {
module->remove(cell);
did_something = true;
continue;
}
ff = ff.slice(keep_bits);
changed = true;
}
if (ff.pol_clr ? ff.sig_clr.is_fully_zero() : ff.sig_clr.is_fully_ones()) {
// CLR is useless, try to kill it.
bool failed = false;
for (int i = 0; i < ff.width; i++)
if (ff.sig_set[i] != ff.sig_set[0])
failed = true;
if (!failed) {
log("Removing never-active CLR on %s (%s) from module %s.\n",
log_id(cell), log_id(cell->type), log_id(module));
ff.has_sr = false;
ff.has_arst = true;
ff.pol_arst = ff.pol_set;
ff.sig_arst = ff.sig_set[0];
ff.val_arst = Const(State::S1, ff.width);
changed = true;
}
} else if (ff.pol_set ? ff.sig_set.is_fully_zero() : ff.sig_set.is_fully_ones()) {
// SET is useless, try to kill it.
bool failed = false;
for (int i = 0; i < ff.width; i++)
if (ff.sig_clr[i] != ff.sig_clr[0])
failed = true;
if (!failed) {
log("Removing never-active SET on %s (%s) from module %s.\n",
log_id(cell), log_id(cell->type), log_id(module));
ff.has_sr = false;
ff.has_arst = true;
ff.pol_arst = ff.pol_clr;
ff.sig_arst = ff.sig_clr[0];
ff.val_arst = Const(State::S0, ff.width);
changed = true;
}
} else if (ff.pol_clr == ff.pol_set) {
// Try a more complex conversion to plain async reset.
State val_neutral = ff.pol_set ? State::S0 : State::S1;
Const val_arst;
SigSpec sig_arst;
if (ff.sig_clr[0] == val_neutral)
sig_arst = ff.sig_set[0];
else
sig_arst = ff.sig_clr[0];
bool failed = false;
for (int i = 0; i < ff.width; i++) {
if (ff.sig_clr[i] == sig_arst && ff.sig_set[i] == val_neutral)
val_arst.bits.push_back(State::S0);
else if (ff.sig_set[i] == sig_arst && ff.sig_clr[i] == val_neutral)
val_arst.bits.push_back(State::S1);
else
failed = true;
}
if (!failed) {
log("Converting CLR/SET to ARST on %s (%s) from module %s.\n",
log_id(cell), log_id(cell->type), log_id(module));
ff.has_sr = false;
ff.has_arst = true;
ff.val_arst = val_arst;
ff.sig_arst = sig_arst;
ff.pol_arst = ff.pol_clr;
changed = true;
}
}
}
if (ff.has_arst) {
if (ff.sig_arst == (ff.pol_arst ? State::S0 : State::S1)) {
// Always-inactive reset — remove.
log("Removing never-active ARST on %s (%s) from module %s.\n",
log_id(cell), log_id(cell->type), log_id(module));
ff.has_arst = false;
changed = true;
} else if (ff.sig_arst == (ff.pol_arst ? State::S1 : State::S0) || (!opt.keepdc && ff.sig_arst == State::Sx)) {
// Always-active async reset — change to const driver.
log("Handling always-active ARST on %s (%s) from module %s (changing to const driver).\n",
log_id(cell), log_id(cell->type), log_id(module));
initvals.remove_init(ff.sig_q);
module->remove(cell);
module->connect(ff.sig_q, ff.val_arst);
did_something = true;
continue;
}
}
if (ff.has_srst) {
if (ff.sig_srst == (ff.pol_srst ? State::S0 : State::S1)) {
// Always-inactive reset — remove.
log("Removing never-active SRST on %s (%s) from module %s.\n",
log_id(cell), log_id(cell->type), log_id(module));
ff.has_srst = false;
changed = true;
} else if (ff.sig_srst == (ff.pol_srst ? State::S1 : State::S0) || (!opt.keepdc && ff.sig_srst == State::Sx)) {
// Always-active sync reset — connect to D instead.
log("Handling always-active SRST on %s (%s) from module %s (changing to const D).\n",
log_id(cell), log_id(cell->type), log_id(module));
ff.has_srst = false;
if (!ff.ce_over_srst)
ff.has_en = false;
ff.sig_d = ff.val_d = ff.val_srst;
ff.d_is_const = true;
changed = true;
}
}
if (ff.has_en) {
if (ff.sig_en == (ff.pol_en ? State::S0 : State::S1) || (!opt.keepdc && ff.sig_en == State::Sx)) {
// Always-inactive enable — remove.
if (ff.has_clk && ff.has_srst && !ff.ce_over_srst) {
log("Handling never-active EN on %s (%s) from module %s (connecting SRST instead).\n",
log_id(cell), log_id(cell->type), log_id(module));
// FF with sync reset — connect the sync reset to D instead.
ff.pol_en = ff.pol_srst;
ff.sig_en = ff.sig_srst;
ff.has_srst = false;
ff.sig_d = ff.val_d = ff.val_srst;
ff.d_is_const = true;
changed = true;
} else {
log("Handling never-active EN on %s (%s) from module %s (removing D path).\n",
log_id(cell), log_id(cell->type), log_id(module));
// The D input path is effectively useless, so remove it (this will be a const-input D latch, SR latch, or a const driver).
ff.has_d = ff.has_en = ff.has_clk = false;
changed = true;
}
} else if (ff.sig_en == (ff.pol_en ? State::S1 : State::S0)) {
// Always-active enable.
if (ff.has_clk) {
// For FF, just remove the useless enable.
log("Removing always-active EN on %s (%s) from module %s.\n",
log_id(cell), log_id(cell->type), log_id(module));
ff.has_en = false;
changed = true;
} else {
// For latches, make a comb circuit, nuke the latch.
log("Handling always-active EN on %s (%s) from module %s (changing to combinatorial circuit).\n",
log_id(cell), log_id(cell->type), log_id(module));
initvals.remove_init(ff.sig_q);
module->remove(cell);
if (ff.has_sr) {
SigSpec tmp;
if (ff.is_fine) {
if (ff.pol_set)
tmp = module->MuxGate(NEW_ID, ff.sig_d, State::S1, ff.sig_set);
else
tmp = module->MuxGate(NEW_ID, State::S1, ff.sig_d, ff.sig_set);
if (ff.pol_clr)
module->addMuxGate(NEW_ID, tmp, State::S0, ff.sig_clr, ff.sig_q);
else
module->addMuxGate(NEW_ID, State::S0, tmp, ff.sig_clr, ff.sig_q);
} else {
if (ff.pol_set)
tmp = module->Or(NEW_ID, ff.sig_d, ff.sig_set);
else
tmp = module->Or(NEW_ID, ff.sig_d, module->Not(NEW_ID, ff.sig_set));
if (ff.pol_clr)
module->addAnd(NEW_ID, tmp, module->Not(NEW_ID, ff.sig_clr), ff.sig_q);
else
module->addAnd(NEW_ID, tmp, ff.sig_clr, ff.sig_q);
}
} else if (ff.has_arst) {
if (ff.is_fine) {
if (ff.pol_arst)
module->addMuxGate(NEW_ID, ff.sig_d, ff.val_arst[0], ff.sig_arst, ff.sig_q);
else
module->addMuxGate(NEW_ID, ff.val_arst[0], ff.sig_d, ff.sig_arst, ff.sig_q);
} else {
if (ff.pol_arst)
module->addMux(NEW_ID, ff.sig_d, ff.val_arst, ff.sig_arst, ff.sig_q);
else
module->addMux(NEW_ID, ff.val_arst, ff.sig_d, ff.sig_arst, ff.sig_q);
}
} else {
module->connect(ff.sig_q, ff.sig_d);
}
did_something = true;
continue;
}
}
}
if (ff.has_clk) {
if (ff.sig_clk.is_fully_const()) {
// Const clock — the D input path is effectively useless, so remove it (this will be a const-input D latch, SR latch, or a const driver).
log("Handling const CLK on %s (%s) from module %s (removing D path).\n",
log_id(cell), log_id(cell->type), log_id(module));
ff.has_d = ff.has_en = ff.has_clk = ff.has_srst = false;
changed = true;
}
}
if (ff.has_d && ff.sig_d == ff.sig_q) {
// Q wrapped back to D, can be removed.
if (ff.has_clk && ff.has_srst) {
// FF with sync reset — connect the sync reset to D instead.
log("Handling D = Q on %s (%s) from module %s (conecting SRST instead).\n",
log_id(cell), log_id(cell->type), log_id(module));
if (ff.has_en && ff.ce_over_srst) {
if (!ff.pol_en) {
if (ff.is_fine)
ff.sig_en = module->NotGate(NEW_ID, ff.sig_en);
else
ff.sig_en = module->Not(NEW_ID, ff.sig_en);
}
if (!ff.pol_srst) {
if (ff.is_fine)
ff.sig_srst = module->NotGate(NEW_ID, ff.sig_srst);
else
ff.sig_srst = module->Not(NEW_ID, ff.sig_srst);
}
if (ff.is_fine)
ff.sig_en = module->AndGate(NEW_ID, ff.sig_en, ff.sig_srst);
else
ff.sig_en = module->And(NEW_ID, ff.sig_en, ff.sig_srst);
ff.pol_en = true;
} else {
ff.pol_en = ff.pol_srst;
ff.sig_en = ff.sig_srst;
}
ff.has_en = true;
ff.has_srst = false;
ff.sig_d = ff.val_d = ff.val_srst;
ff.d_is_const = true;
changed = true;
} else {
// The D input path is effectively useless, so remove it (this will be a const-input D latch, SR latch, or a const driver).
log("Handling D = Q on %s (%s) from module %s (removing D path).\n",
log_id(cell), log_id(cell->type), log_id(module));
ff.has_d = ff.has_en = ff.has_clk = false;
changed = true;
}
}
// Now check if any bit can be replaced by a constant.
pool<int> removed_sigbits;
for (int i = 0; i < ff.width; i++) {
State val = ff.val_init[i];
if (ff.has_arst)
val = combine_const(val, ff.val_arst[i]);
if (ff.has_srst)
val = combine_const(val, ff.val_srst[i]);
if (ff.has_sr) {
if (ff.sig_clr[i] != (ff.pol_clr ? State::S0 : State::S1))
val = combine_const(val, State::S0);
if (ff.sig_set[i] != (ff.pol_set ? State::S0 : State::S1))
val = combine_const(val, State::S1);
}
if (val == State::Sm)
continue;
if (ff.has_d) {
if (!ff.sig_d[i].wire) {
val = combine_const(val, ff.sig_d[i].data);
if (val == State::Sm)
continue;
} else {
if (!opt.sat)
continue;
// For each register bit, try to prove that it cannot change from the initial value. If so, remove it
if (!bit2driver.count(ff.sig_d[i]))
continue;
if (val != State::S0 && val != State::S1)
continue;
sat_import_cell(bit2driver.at(ff.sig_d[i]));
int init_sat_pi = satgen.importSigSpec(val).front();
int q_sat_pi = satgen.importSigBit(ff.sig_q[i]);
int d_sat_pi = satgen.importSigBit(ff.sig_d[i]);
// Try to find out whether the register bit can change under some circumstances
bool counter_example_found = ez->solve(ez->IFF(q_sat_pi, init_sat_pi), ez->NOT(ez->IFF(d_sat_pi, init_sat_pi)));
// If the register bit cannot change, we can replace it with a constant
if (counter_example_found)
continue;
}
}
log("Setting constant %d-bit at position %d on %s (%s) from module %s.\n", val ? 1 : 0,
i, log_id(cell), log_id(cell->type), log_id(module));
initvals.remove_init(ff.sig_q[i]);
module->connect(ff.sig_q[i], val);
removed_sigbits.insert(i);
}
if (!removed_sigbits.empty()) {
std::vector<int> keep_bits;
for (int i = 0; i < ff.width; i++)
if (!removed_sigbits.count(i))
keep_bits.push_back(i);
if (keep_bits.empty()) {
module->remove(cell);
did_something = true;
continue;
}
ff = ff.slice(keep_bits);
changed = true;
}
// The cell has been simplified as much as possible already. Now try to spice it up with enables / sync resets.
if (ff.has_clk) {
if (!ff.has_arst && !ff.has_sr && (!ff.has_srst || !ff.has_en || ff.ce_over_srst) && !opt.nosdff) {
// Try to merge sync resets.
std::map<ctrls_t, std::vector<int>> groups;
std::vector<int> remaining_indices;
Const val_srst;
for (int i = 0 ; i < ff.width; i++) {
ctrls_t resets;
State reset_val = State::Sx;
if (ff.has_srst)
reset_val = ff.val_srst[i];
while (bit2mux.count(ff.sig_d[i]) && bitusers[ff.sig_d[i]] == 1) {
cell_int_t mbit = bit2mux.at(ff.sig_d[i]);
if (GetSize(mbit.first->getPort(ID::S)) != 1)
break;
SigBit s = mbit.first->getPort(ID::S);
SigBit a = mbit.first->getPort(ID::A)[mbit.second];
SigBit b = mbit.first->getPort(ID::B)[mbit.second];
// Workaround for funny memory WE pattern.
if ((a == State::S0 || a == State::S1) && (b == State::S0 || b == State::S1))
break;
if ((b == State::S0 || b == State::S1) && (b == reset_val || reset_val == State::Sx)) {
// This is better handled by CE pattern.
if (a == ff.sig_q[i])
break;
reset_val = b.data;
resets.insert(ctrl_t(s, true));
ff.sig_d[i] = a;
} else if ((a == State::S0 || a == State::S1) && (a == reset_val || reset_val == State::Sx)) {
// This is better handled by CE pattern.
if (b == ff.sig_q[i])
break;
reset_val = a.data;
resets.insert(ctrl_t(s, false));
ff.sig_d[i] = b;
} else {
break;
}
}
if (!resets.empty()) {
if (ff.has_srst)
resets.insert(ctrl_t(ff.sig_srst, ff.pol_srst));
groups[resets].push_back(i);
} else
remaining_indices.push_back(i);
val_srst.bits.push_back(reset_val);
}
for (auto &it : groups) {
FfData new_ff = ff.slice(it.second);
new_ff.val_srst = Const();
for (int i = 0; i < new_ff.width; i++) {
int j = it.second[i];
new_ff.val_srst.bits.push_back(val_srst[j]);
}
ctrl_t srst = combine_resets(it.first, ff.is_fine);
new_ff.has_srst = true;
new_ff.sig_srst = srst.first;
new_ff.pol_srst = srst.second;
if (new_ff.has_en)
new_ff.ce_over_srst = true;
Cell *new_cell = new_ff.emit(module, NEW_ID);
if (new_cell)
dff_cells.push_back(new_cell);
log("Adding SRST signal on %s (%s) from module %s (D = %s, Q = %s, rval = %s).\n",
log_id(cell), log_id(cell->type), log_id(module), log_signal(new_ff.sig_d), log_signal(new_ff.sig_q), log_signal(new_ff.val_srst));
}
if (remaining_indices.empty()) {
module->remove(cell);
did_something = true;
continue;
} else if (GetSize(remaining_indices) != ff.width) {
ff = ff.slice(remaining_indices);
changed = true;
}
}
if ((!ff.has_srst || !ff.has_en || !ff.ce_over_srst) && !opt.nodffe) {
// Try to merge enables.
std::map<std::pair<patterns_t, ctrls_t>, std::vector<int>> groups;
std::vector<int> remaining_indices;
for (int i = 0 ; i < ff.width; i++) {
// First, eat up as many simple muxes as possible.
ctrls_t enables;
while (bit2mux.count(ff.sig_d[i]) && bitusers[ff.sig_d[i]] == 1) {
cell_int_t mbit = bit2mux.at(ff.sig_d[i]);
if (GetSize(mbit.first->getPort(ID::S)) != 1)
break;
SigBit s = mbit.first->getPort(ID::S);
SigBit a = mbit.first->getPort(ID::A)[mbit.second];
SigBit b = mbit.first->getPort(ID::B)[mbit.second];
if (a == ff.sig_q[i]) {
enables.insert(ctrl_t(s, true));
ff.sig_d[i] = b;
} else if (b == ff.sig_q[i]) {
enables.insert(ctrl_t(s, false));
ff.sig_d[i] = a;
} else {
break;
}
}
patterns_t patterns;
if (!opt.simple_dffe)
patterns = find_muxtree_feedback_patterns(ff.sig_d[i], ff.sig_q[i], pattern_t());
if (!patterns.empty() || !enables.empty()) {
if (ff.has_en)
enables.insert(ctrl_t(ff.sig_en, ff.pol_en));
simplify_patterns(patterns);
groups[std::make_pair(patterns, enables)].push_back(i);
} else
remaining_indices.push_back(i);
}
for (auto &it : groups) {
FfData new_ff = ff.slice(it.second);
ctrl_t en = make_patterns_logic(it.first.first, it.first.second, ff.is_fine);
new_ff.has_en = true;
new_ff.sig_en = en.first;
new_ff.pol_en = en.second;
new_ff.ce_over_srst = false;
Cell *new_cell = new_ff.emit(module, NEW_ID);
if (new_cell)
dff_cells.push_back(new_cell);
log("Adding EN signal on %s (%s) from module %s (D = %s, Q = %s).\n",
log_id(cell), log_id(cell->type), log_id(module), log_signal(new_ff.sig_d), log_signal(new_ff.sig_q));
}
if (remaining_indices.empty()) {
module->remove(cell);
did_something = true;
continue;
} else if (GetSize(remaining_indices) != ff.width) {
ff = ff.slice(remaining_indices);
changed = true;
}
}
}
if (changed) {
// Rebuild the FF.
IdString name = cell->name;
module->remove(cell);
ff.emit(module, name);
did_something = true;
}
}
return did_something;
}
};
struct OptDffPass : public Pass {
OptDffPass() : Pass("opt_dff", "perform DFF optimizations") { }
void help() override
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" opt_dff [-nodffe] [-nosdff] [-keepdc] [-sat] [selection]\n");
log("\n");
log("This pass converts flip-flops to a more suitable type by merging clock enables\n");
log("and synchronous reset multiplexers, removing unused control inputs, or potentially\n");
log("removes the flip-flop altogether, converting it to a constant driver.\n");
log("\n");
log(" -nodffe\n");
log(" disables dff -> dffe conversion, and other transforms recognizing clock enable\n");
log("\n");
log(" -nosdff\n");
log(" disables dff -> sdff conversion, and other transforms recognizing sync resets\n");
log("\n");
log(" -simple-dffe\n");
log(" only enables clock enable recognition transform for obvious cases\n");
log("\n");
log(" -sat\n");
log(" additionally invoke SAT solver to detect and remove flip-flops (with\n");
log(" non-constant inputs) that can also be replaced with a constant driver\n");
log("\n");
log(" -keepdc\n");
log(" some optimizations change the behavior of the circuit with respect to\n");
log(" don't-care bits. for example in 'a+0' a single x-bit in 'a' will cause\n");
log(" all result bits to be set to x. this behavior changes when 'a+0' is\n");
log(" replaced by 'a'. the -keepdc option disables all such optimizations.\n");
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) override
{
log_header(design, "Executing OPT_DFF pass (perform DFF optimizations).\n");
OptDffOptions opt;
opt.nodffe = false;
opt.nosdff = false;
opt.simple_dffe = false;
opt.keepdc = false;
opt.sat = false;
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) {
if (args[argidx] == "-nodffe") {
opt.nodffe = true;
continue;
}
if (args[argidx] == "-nosdff") {
opt.nosdff = true;
continue;
}
if (args[argidx] == "-simple-dffe") {
opt.simple_dffe = true;
continue;
}
if (args[argidx] == "-keepdc") {
opt.keepdc = true;
continue;
}
if (args[argidx] == "-sat") {
opt.sat = true;
continue;
}
break;
}
extra_args(args, argidx, design);
bool did_something = false;
for (auto mod : design->selected_modules()) {
OptDffWorker worker(opt, mod);
if (worker.run())
did_something = true;
}
if (did_something)
design->scratchpad_set_bool("opt.did_something", true);
}
} OptDffPass;
PRIVATE_NAMESPACE_END

101
tests/opt/opt_dff_arst.ys Normal file
View File

@ -0,0 +1,101 @@
### Always-active ARST removal.
read_verilog -icells <<EOT
module top(...);
input CLK;
input [1:0] D;
output [11:0] Q;
input ARST;
input EN;
$adff #(.CLK_POLARITY(1'b1), .ARST_POLARITY(1'b1), .ARST_VALUE(2'h2), .WIDTH(2)) ff0 (.CLK(CLK), .ARST(1'b1), .D(D), .Q(Q[1:0]));
$adffe #(.CLK_POLARITY(1'b1), .EN_POLARITY(1'b1), .ARST_POLARITY(1'b0), .ARST_VALUE(2'h2), .WIDTH(2)) ff1 (.CLK(CLK), .ARST(1'b0), .EN(EN), .D(D), .Q(Q[3:2]));
$adlatch #(.EN_POLARITY(1'b1), .ARST_POLARITY(1'b1), .ARST_VALUE(2'h2), .WIDTH(2)) ff2 (.EN(EN), .ARST(1'b1), .D(D), .Q(Q[5:4]));
$adff #(.CLK_POLARITY(1'b1), .ARST_POLARITY(1'b1), .ARST_VALUE(2'h2), .WIDTH(2)) ff3 (.CLK(CLK), .ARST(1'bx), .D(D), .Q(Q[7:6]));
$adffe #(.CLK_POLARITY(1'b1), .EN_POLARITY(1'b1), .ARST_POLARITY(1'b0), .ARST_VALUE(2'h2), .WIDTH(2)) ff4 (.CLK(CLK), .ARST(1'bx), .EN(EN), .D(D), .Q(Q[9:8]));
$adlatch #(.EN_POLARITY(1'b1), .ARST_POLARITY(1'b1), .ARST_VALUE(2'h2), .WIDTH(2)) ff5 (.EN(EN), .ARST(1'bx), .D(D), .Q(Q[11:10]));
endmodule
EOT
design -save orig
equiv_opt -undef -assert -multiclock opt_dff
design -load postopt
select -assert-none t:*
design -load orig
equiv_opt -undef -assert -multiclock opt_dff -keepdc
design -load postopt
select -assert-count 1 t:$adff
select -assert-count 1 t:$adffe
select -assert-count 1 t:$adlatch
design -load orig
simplemap
equiv_opt -undef -assert -multiclock opt_dff
design -load postopt
select -assert-none t:*
design -load orig
simplemap
equiv_opt -undef -assert -multiclock opt_dff -keepdc
design -load postopt
select -assert-count 2 t:$_DFF_???_
select -assert-count 2 t:$_DFFE_????_
select -assert-count 2 t:$_DLATCH_???_
design -reset
### Never-active ARST removal.
read_verilog -icells <<EOT
module top(...);
input CLK;
input [1:0] D;
output [5:0] Q;
input ARST;
input EN;
$adff #(.CLK_POLARITY(1'b1), .ARST_POLARITY(1'b1), .ARST_VALUE(2'h2), .WIDTH(2)) ff0 (.CLK(CLK), .ARST(1'b0), .D(D), .Q(Q[1:0]));
$adffe #(.CLK_POLARITY(1'b1), .EN_POLARITY(1'b1), .ARST_POLARITY(1'b0), .ARST_VALUE(2'h2), .WIDTH(2)) ff1 (.CLK(CLK), .ARST(1'b1), .EN(EN), .D(D), .Q(Q[3:2]));
$adlatch #(.EN_POLARITY(1'b1), .ARST_POLARITY(1'b1), .ARST_VALUE(2'h2), .WIDTH(2)) ff2 (.EN(EN), .ARST(1'b0), .D(D), .Q(Q[5:4]));
endmodule
EOT
design -save orig
equiv_opt -undef -assert -multiclock opt_dff
design -load postopt
select -assert-none t:$adff
select -assert-none t:$adffe
select -assert-none t:$adlatch
select -assert-count 1 t:$dff
select -assert-count 1 t:$dffe
select -assert-count 1 t:$dlatch
design -load orig
simplemap
equiv_opt -undef -assert -multiclock opt_dff
design -load postopt
select -assert-none t:$_DFF_???_
select -assert-none t:$_DFFE_????_
select -assert-none t:$_DLATCH_???_
select -assert-count 2 t:$_DFF_P_
select -assert-count 2 t:$_DFFE_PP_
select -assert-count 2 t:$_DLATCH_P_
design -reset

45
tests/opt/opt_dff_clk.ys Normal file
View File

@ -0,0 +1,45 @@
### Never-toggling CLK removal.
read_verilog -icells <<EOT
module top(...);
input EN;
input [1:0] D;
(* init = 18'h15555 *)
output [17:0] Q;
input SRST;
input ARST;
input [1:0] CLR;
input [1:0] SET;
$dff #(.CLK_POLARITY(1'b1), .WIDTH(2)) ff0 (.CLK(1'b0), .D(D), .Q(Q[1:0]));
$dffe #(.CLK_POLARITY(1'b1), .EN_POLARITY(1'b1), .WIDTH(2)) ff1 (.CLK(1'b1), .EN(EN), .D(D), .Q(Q[3:2]));
$adff #(.CLK_POLARITY(1'b1), .ARST_POLARITY(1'b1), .ARST_VALUE(2'h2), .WIDTH(2)) ff2 (.CLK(1'bx), .ARST(ARST), .D(D), .Q(Q[5:4]));
$adffe #(.CLK_POLARITY(1'b1), .EN_POLARITY(1'b0), .ARST_POLARITY(1'b1), .ARST_VALUE(2'h2), .WIDTH(2)) ff3 (.CLK(1'b0), .EN(EN), .ARST(ARST), .D(D), .Q(Q[7:6]));
$sdff #(.CLK_POLARITY(1'b1), .SRST_POLARITY(1'b1), .SRST_VALUE(2'h2), .WIDTH(2)) ff4 (.CLK(1'b1), .SRST(SRST), .D(D), .Q(Q[9:8]));
$sdffe #(.CLK_POLARITY(1'b1), .EN_POLARITY(1'b1), .SRST_POLARITY(1'b1), .SRST_VALUE(2'h2), .WIDTH(2)) ff5 (.CLK(1'bx), .EN(EN), .SRST(SRST), .D(D), .Q(Q[11:10]));
$sdffce #(.CLK_POLARITY(1'b1), .EN_POLARITY(1'b1), .SRST_POLARITY(1'b1), .SRST_VALUE(2'h2), .WIDTH(2)) ff6 (.CLK(1'bx), .EN(EN), .SRST(SRST), .D(D), .Q(Q[13:12]));
$dffsr #(.CLK_POLARITY(1'b1), .CLR_POLARITY(1'b1), .SET_POLARITY(1'b0), .WIDTH(2)) ff7 (.CLK(1'b1), .SET(SET), .CLR(CLR), .D(D), .Q(Q[15:14]));
$dffsre #(.CLK_POLARITY(1'b1), .EN_POLARITY(1'b0), .CLR_POLARITY(1'b1), .SET_POLARITY(1'b0), .WIDTH(2)) ff8 (.CLK(1'bx), .EN(EN), .SET(SET), .CLR(CLR), .D(D), .Q(Q[17:16]));
endmodule
EOT
design -save orig
equiv_opt -undef -assert -multiclock opt_dff -keepdc
design -load postopt
select -assert-count 2 t:$dlatch
select -assert-count 2 t:$sr
select -assert-none t:$dlatch t:$sr %% %n t:* %i
design -load orig
simplemap
equiv_opt -undef -assert -multiclock opt_dff -keepdc
design -load postopt
select -assert-count 4 t:$_DLATCH_?_
select -assert-count 4 t:$_SR_??_
select -assert-none t:$_DLATCH_?_ t:$_SR_??_ %% %n t:* %i

View File

@ -0,0 +1,49 @@
### Replace FFs with a const.
read_verilog -icells <<EOT
module top(...);
input CLK;
input EN;
(* init=84'haaaaaaaaaaaaaaaaaaaaa *)
output [83:0] Q;
input SRST;
input ARST;
input [3:0] CLR;
input [3:0] SET;
$dff #(.CLK_POLARITY(1'b1), .WIDTH(4)) ff0 (.CLK(CLK), .D(4'hc), .Q(Q[3:0]));
$dffe #(.CLK_POLARITY(1'b1), .EN_POLARITY(1'b1), .WIDTH(4)) ff1 (.CLK(CLK), .EN(EN), .D(4'hc), .Q(Q[7:4]));
$adff #(.CLK_POLARITY(1'b1), .ARST_POLARITY(1'b1), .ARST_VALUE(8'hf0), .WIDTH(8)) ff2 (.CLK(CLK), .ARST(ARST), .D(8'hcc), .Q(Q[15:8]));
$adffe #(.CLK_POLARITY(1'b1), .EN_POLARITY(1'b0), .ARST_POLARITY(1'b1), .ARST_VALUE(8'hf0), .WIDTH(8)) ff3 (.CLK(CLK), .EN(EN), .ARST(ARST), .D(8'hcc), .Q(Q[23:16]));
$sdff #(.CLK_POLARITY(1'b1), .SRST_POLARITY(1'b1), .SRST_VALUE(8'hf0), .WIDTH(8)) ff4 (.CLK(CLK), .SRST(SRST), .D(8'hcc), .Q(Q[31:24]));
$sdffe #(.CLK_POLARITY(1'b1), .EN_POLARITY(1'b1), .SRST_POLARITY(1'b1), .SRST_VALUE(8'hf0), .WIDTH(8)) ff5 (.CLK(CLK), .EN(EN), .SRST(SRST), .D(8'hcc), .Q(Q[39:32]));
$sdffce #(.CLK_POLARITY(1'b1), .EN_POLARITY(1'b1), .SRST_POLARITY(1'b1), .SRST_VALUE(8'hf0), .WIDTH(8)) ff6 (.CLK(CLK), .EN(EN), .SRST(SRST), .D(8'hcc), .Q(Q[47:40]));
$dffsr #(.CLK_POLARITY(1'b1), .CLR_POLARITY(1'b1), .SET_POLARITY(1'b0), .WIDTH(8)) ff7 (.CLK(CLK), .SET({SET, 4'hf}), .CLR({4'h0, CLR}), .D(8'hcc), .Q(Q[55:48]));
$dffsre #(.CLK_POLARITY(1'b1), .EN_POLARITY(1'b0), .CLR_POLARITY(1'b0), .SET_POLARITY(1'b1), .WIDTH(8)) ff8 (.CLK(CLK), .EN(EN), .SET({SET, 4'h0}), .CLR({4'hf, CLR}), .D(8'hcc), .Q(Q[63:56]));
$dlatch #(.EN_POLARITY(1'b1), .WIDTH(4)) ff9 (.EN(EN), .D(4'hc), .Q(Q[67:64]));
$adlatch #(.EN_POLARITY(1'b0), .ARST_POLARITY(1'b1), .ARST_VALUE(8'hf0), .WIDTH(8)) ff10 (.EN(EN), .ARST(ARST), .D(8'hcc), .Q(Q[75:68]));
$dlatchsr #(.EN_POLARITY(1'b0), .CLR_POLARITY(1'b1), .SET_POLARITY(1'b1), .WIDTH(8)) ff11 (.EN(EN), .SET({SET, 4'h0}), .CLR({4'h0, CLR}), .D(8'hcc), .Q(Q[83:76]));
endmodule
EOT
design -save orig
equiv_opt -undef -assert -multiclock opt_dff
design -load postopt
select -assert-count 1 t:$dff r:WIDTH=2 %i
select -assert-count 1 t:$dffe r:WIDTH=2 %i
select -assert-count 1 t:$adff r:WIDTH=6 %i
select -assert-count 1 t:$adffe r:WIDTH=6 %i
select -assert-count 1 t:$sdff r:WIDTH=6 %i
select -assert-count 1 t:$sdffe r:WIDTH=6 %i
select -assert-count 1 t:$sdffce r:WIDTH=6 %i
select -assert-count 1 t:$dffsr r:WIDTH=6 %i
select -assert-count 1 t:$dffsre r:WIDTH=6 %i
select -assert-count 1 t:$dlatch r:WIDTH=2 %i
select -assert-count 1 t:$adlatch r:WIDTH=6 %i
select -assert-count 1 t:$dlatchsr r:WIDTH=6 %i

157
tests/opt/opt_dff_en.ys Normal file
View File

@ -0,0 +1,157 @@
### Always-active EN removal.
read_verilog -icells <<EOT
module top(...);
input CLK;
input [1:0] D;
output [15:0] Q;
input SRST;
input ARST;
input [1:0] CLR;
input [1:0] SET;
$dffe #(.CLK_POLARITY(1'b1), .EN_POLARITY(1'b1), .WIDTH(2)) ff0 (.CLK(CLK), .EN(1'b1), .D(D), .Q(Q[1:0]));
$adffe #(.CLK_POLARITY(1'b1), .EN_POLARITY(1'b0), .ARST_POLARITY(1'b1), .ARST_VALUE(2'h2), .WIDTH(2)) ff1 (.CLK(CLK), .EN(1'b0), .ARST(ARST), .D(D), .Q(Q[3:2]));
$sdffe #(.CLK_POLARITY(1'b1), .EN_POLARITY(1'b1), .SRST_POLARITY(1'b1), .SRST_VALUE(2'h2), .WIDTH(2)) ff2 (.CLK(CLK), .EN(1'b1), .SRST(SRST), .D(D), .Q(Q[5:4]));
$sdffce #(.CLK_POLARITY(1'b1), .EN_POLARITY(1'b1), .SRST_POLARITY(1'b1), .SRST_VALUE(2'h2), .WIDTH(2)) ff3 (.CLK(CLK), .EN(1'b1), .SRST(SRST), .D(D), .Q(Q[7:6]));
$dffsre #(.CLK_POLARITY(1'b1), .EN_POLARITY(1'b0), .CLR_POLARITY(1'b1), .SET_POLARITY(1'b0), .WIDTH(2)) ff4 (.CLK(CLK), .EN(1'b0), .SET(SET), .CLR(CLR), .D(D), .Q(Q[9:8]));
$dlatch #(.EN_POLARITY(1'b1), .WIDTH(2)) ff5 (.EN(1'b1), .D(D), .Q(Q[11:10]));
$adlatch #(.EN_POLARITY(1'b0), .ARST_POLARITY(1'b1), .ARST_VALUE(2'h2), .WIDTH(2)) ff6 (.EN(1'b0), .ARST(ARST), .D(D), .Q(Q[13:12]));
$dlatchsr #(.EN_POLARITY(1'b0), .CLR_POLARITY(1'b1), .SET_POLARITY(1'b0), .WIDTH(2)) ff7 (.EN(1'b0), .SET(SET), .CLR(CLR), .D(D), .Q(Q[15:14]));
endmodule
EOT
design -save orig
# Equivalence check will fail for unmapped adlatch and dlatchsr due to negative hold hack.
delete top/ff6 top/ff7
equiv_opt -undef -assert -multiclock opt_dff
design -load orig
delete top/ff6 top/ff7
simplemap
equiv_opt -undef -assert -multiclock opt_dff
design -load orig
opt_dff
select -assert-count 0 t:$dffe
select -assert-count 0 t:$adffe
select -assert-count 0 t:$sdffe
select -assert-count 0 t:$sdffce
select -assert-count 0 t:$dffsre
select -assert-count 0 t:$dlatch
select -assert-count 0 t:$adlatch
select -assert-count 0 t:$dlatchsr
select -assert-count 1 t:$dff
select -assert-count 2 t:$sdff
select -assert-count 1 t:$adff
select -assert-count 1 t:$dffsr
design -load orig
simplemap
opt_dff
select -assert-count 0 t:$_DFFE_*
select -assert-count 0 t:$_SDFFE_*
select -assert-count 0 t:$_SDFFCE_*
select -assert-count 0 t:$_DFFSRE_*
select -assert-count 0 t:$_DLATCH*
select -assert-count 2 t:$_DFF_P_
select -assert-count 4 t:$_SDFF_PP?_
select -assert-count 2 t:$_DFF_PP?_
select -assert-count 2 t:$_DFFSR_PNP_
design -reset
### Never-active EN removal.
read_verilog -icells <<EOT
module top(...);
input CLK;
input [1:0] D;
(* init = 32'h55555555 *)
output [31:0] Q;
input SRST;
input ARST;
input [1:0] CLR;
input [1:0] SET;
$dffe #(.CLK_POLARITY(1'b1), .EN_POLARITY(1'b1), .WIDTH(2)) ff0 (.CLK(CLK), .EN(1'b0), .D(D), .Q(Q[1:0]));
$adffe #(.CLK_POLARITY(1'b1), .EN_POLARITY(1'b0), .ARST_POLARITY(1'b1), .ARST_VALUE(2'h2), .WIDTH(2)) ff1 (.CLK(CLK), .EN(1'b1), .ARST(ARST), .D(D), .Q(Q[3:2]));
$sdffe #(.CLK_POLARITY(1'b1), .EN_POLARITY(1'b1), .SRST_POLARITY(1'b1), .SRST_VALUE(2'h2), .WIDTH(2)) ff2 (.CLK(CLK), .EN(1'b0), .SRST(SRST), .D(D), .Q(Q[5:4]));
$sdffce #(.CLK_POLARITY(1'b1), .EN_POLARITY(1'b1), .SRST_POLARITY(1'b1), .SRST_VALUE(2'h2), .WIDTH(2)) ff3 (.CLK(CLK), .EN(1'b0), .SRST(SRST), .D(D), .Q(Q[7:6]));
$dffsre #(.CLK_POLARITY(1'b1), .EN_POLARITY(1'b0), .CLR_POLARITY(1'b1), .SET_POLARITY(1'b0), .WIDTH(2)) ff4 (.CLK(CLK), .EN(1'b1), .SET(SET), .CLR(CLR), .D(D), .Q(Q[9:8]));
$dlatch #(.EN_POLARITY(1'b1), .WIDTH(2)) ff5 (.EN(1'b0), .D(D), .Q(Q[11:10]));
$adlatch #(.EN_POLARITY(1'b0), .ARST_POLARITY(1'b1), .ARST_VALUE(2'h2), .WIDTH(2)) ff6 (.EN(1'b1), .ARST(ARST), .D(D), .Q(Q[13:12]));
$dlatchsr #(.EN_POLARITY(1'b0), .CLR_POLARITY(1'b1), .SET_POLARITY(1'b0), .WIDTH(2)) ff7 (.EN(1'b1), .SET(SET), .CLR(CLR), .D(D), .Q(Q[15:14]));
$dffe #(.CLK_POLARITY(1'b1), .EN_POLARITY(1'b1), .WIDTH(2)) ff8 (.CLK(CLK), .EN(1'bx), .D(D), .Q(Q[17:16]));
$adffe #(.CLK_POLARITY(1'b1), .EN_POLARITY(1'b0), .ARST_POLARITY(1'b1), .ARST_VALUE(2'h2), .WIDTH(2)) ff9 (.CLK(CLK), .EN(1'bx), .ARST(ARST), .D(D), .Q(Q[19:18]));
$sdffe #(.CLK_POLARITY(1'b1), .EN_POLARITY(1'b1), .SRST_POLARITY(1'b1), .SRST_VALUE(2'h2), .WIDTH(2)) ff10 (.CLK(CLK), .EN(1'bx), .SRST(SRST), .D(D), .Q(Q[21:20]));
$sdffce #(.CLK_POLARITY(1'b1), .EN_POLARITY(1'b1), .SRST_POLARITY(1'b1), .SRST_VALUE(2'h2), .WIDTH(2)) ff11 (.CLK(CLK), .EN(1'bx), .SRST(SRST), .D(D), .Q(Q[23:22]));
$dffsre #(.CLK_POLARITY(1'b1), .EN_POLARITY(1'b0), .CLR_POLARITY(1'b1), .SET_POLARITY(1'b0), .WIDTH(2)) ff12 (.CLK(CLK), .EN(1'bx), .SET(SET), .CLR(CLR), .D(D), .Q(Q[25:24]));
$dlatch #(.EN_POLARITY(1'b1), .WIDTH(2)) ff13 (.EN(1'bx), .D(D), .Q(Q[27:26]));
$adlatch #(.EN_POLARITY(1'b0), .ARST_POLARITY(1'b1), .ARST_VALUE(2'h2), .WIDTH(2)) ff14 (.EN(1'bx), .ARST(ARST), .D(D), .Q(Q[29:28]));
$dlatchsr #(.EN_POLARITY(1'b0), .CLR_POLARITY(1'b1), .SET_POLARITY(1'b0), .WIDTH(2)) ff15 (.EN(1'bx), .SET(SET), .CLR(CLR), .D(D), .Q(Q[31:30]));
endmodule
EOT
design -save orig
equiv_opt -undef -assert -multiclock opt_dff
design -load postopt
select -assert-count 2 t:$dffe
select -assert-count 4 t:$dlatch
select -assert-count 4 t:$sr
select -assert-none t:$dffe t:$dlatch t:$sr %% %n t:* %i
design -load orig
equiv_opt -undef -assert -multiclock opt_dff -keepdc
design -load postopt
select -assert-count 2 t:$dffe
select -assert-count 1 t:$adffe
select -assert-count 1 t:$sdffe
select -assert-count 1 t:$sdffce
select -assert-count 1 t:$dffsre
select -assert-count 3 t:$dlatch
select -assert-count 1 t:$adlatch
select -assert-count 1 t:$dlatchsr
select -assert-count 2 t:$sr
design -load orig
simplemap
equiv_opt -undef -assert -multiclock opt_dff
design -load postopt
select -assert-count 4 t:$_DFFE_??_
select -assert-count 8 t:$_DLATCH_?_
select -assert-count 8 t:$_SR_??_
select -assert-none t:$_DFFE_??_ t:$_DLATCH_?_ t:$_SR_??_ %% %n t:* %i
design -load orig
simplemap
equiv_opt -undef -assert -multiclock opt_dff -keepdc
design -load postopt
select -assert-count 4 t:$_DFFE_??_
select -assert-count 2 t:$_DFFE_????_
select -assert-count 2 t:$_SDFFE_????_
select -assert-count 2 t:$_SDFFCE_????_
select -assert-count 2 t:$_DFFSRE_????_
select -assert-count 6 t:$_DLATCH_?_
select -assert-count 2 t:$_DLATCH_???_
select -assert-count 2 t:$_DLATCHSR_???_
select -assert-count 4 t:$_SR_??_

86
tests/opt/opt_dff_mux.ys Normal file
View File

@ -0,0 +1,86 @@
### CE and SRST matching.
read_verilog -icells <<EOT
module top(...);
input CLK;
input NE, NS;
input EN;
output [23:0] Q;
input [23:0] D;
input SRST;
input ARST;
input [1:0] CLR;
input [1:0] SET;
$dff #(.CLK_POLARITY(1'b1), .WIDTH(2)) ff0 (.CLK(CLK), .D(NS ? 2'h2 : NE ? D[1:0] : Q[1:0]), .Q(Q[1:0]));
$dffe #(.CLK_POLARITY(1'b1), .EN_POLARITY(1'b1), .WIDTH(2)) ff1 (.CLK(CLK), .EN(EN), .D(NS ? 2'h2 : NE ? D[3:2] : Q[3:2]), .Q(Q[3:2]));
$adff #(.CLK_POLARITY(1'b1), .ARST_POLARITY(1'b1), .ARST_VALUE(2'h2), .WIDTH(2)) ff2 (.CLK(CLK), .ARST(ARST), .D(NS ? 2'h2 : NE ? D[5:4] : Q[5:4]), .Q(Q[5:4]));
$adffe #(.CLK_POLARITY(1'b1), .EN_POLARITY(1'b0), .ARST_POLARITY(1'b1), .ARST_VALUE(2'h2), .WIDTH(2)) ff3 (.CLK(CLK), .EN(EN), .ARST(ARST), .D(NS ? 2'h2 : NE ? D[7:6] : Q[7:6]), .Q(Q[7:6]));
$sdff #(.CLK_POLARITY(1'b1), .SRST_POLARITY(1'b1), .SRST_VALUE(2'h2), .WIDTH(2)) ff4 (.CLK(CLK), .SRST(SRST), .D(NS ? 2'h2 : NE ? D[9:8] : Q[9:8]), .Q(Q[9:8]));
$sdffe #(.CLK_POLARITY(1'b1), .EN_POLARITY(1'b1), .SRST_POLARITY(1'b1), .SRST_VALUE(2'h2), .WIDTH(2)) ff5 (.CLK(CLK), .EN(EN), .SRST(SRST), .D(NS ? 2'h2 : NE ? D[11:10] : Q[11:10]), .Q(Q[11:10]));
$sdffce #(.CLK_POLARITY(1'b1), .EN_POLARITY(1'b1), .SRST_POLARITY(1'b1), .SRST_VALUE(2'h2), .WIDTH(2)) ff6 (.CLK(CLK), .EN(EN), .SRST(SRST), .D(NS ? 2'h2 : NE ? D[13:12] : Q[13:12]), .Q(Q[13:12]));
$dffsr #(.CLK_POLARITY(1'b1), .CLR_POLARITY(1'b1), .SET_POLARITY(1'b0), .WIDTH(2)) ff7 (.CLK(CLK), .SET(SET), .CLR(CLR), .D(NS ? 2'h2 : NE ? D[15:14] : Q[15:14]), .Q(Q[15:14]));
$dffsre #(.CLK_POLARITY(1'b1), .EN_POLARITY(1'b0), .CLR_POLARITY(1'b1), .SET_POLARITY(1'b0), .WIDTH(2)) ff8 (.CLK(CLK), .EN(EN), .SET(SET), .CLR(CLR), .D(NS ? 2'h2 : NE ? D[17:16] : Q[17:16]), .Q(Q[17:16]));
endmodule
EOT
design -save orig
equiv_opt -undef -assert -multiclock opt_dff -keepdc
design -load postopt
clean
select -assert-count 0 t:$dff
select -assert-count 0 t:$dffe
select -assert-count 0 t:$adff
select -assert-count 2 t:$adffe
select -assert-count 0 t:$dffsr
select -assert-count 2 t:$dffsre
select -assert-count 0 t:$sdff
select -assert-count 3 t:$sdffe
select -assert-count 2 t:$sdffce
design -load orig
equiv_opt -undef -assert -multiclock opt_dff -nodffe -nosdff
design -load postopt
clean
select -assert-count 1 t:$dff
select -assert-count 1 t:$dffe
select -assert-count 1 t:$adff
select -assert-count 1 t:$adffe
select -assert-count 1 t:$dffsr
select -assert-count 1 t:$dffsre
select -assert-count 1 t:$sdff
select -assert-count 1 t:$sdffe
select -assert-count 1 t:$sdffce
equiv_opt -undef -assert -multiclock opt_dff -nodffe
design -load postopt
clean
select -assert-count 0 t:$dff
select -assert-count 0 t:$dffe
select -assert-count 1 t:$adff
select -assert-count 1 t:$adffe
select -assert-count 1 t:$dffsr
select -assert-count 1 t:$dffsre
select -assert-count 2 t:$sdff
select -assert-count 1 t:$sdffe
select -assert-count 2 t:$sdffce
design -load orig
equiv_opt -undef -assert -multiclock opt_dff -nosdff
design -load postopt
clean
select -assert-count 0 t:$dff
select -assert-count 2 t:$dffe
select -assert-count 0 t:$adff
select -assert-count 2 t:$adffe
select -assert-count 0 t:$dffsr
select -assert-count 2 t:$dffsre
select -assert-count 0 t:$sdff
select -assert-count 2 t:$sdffe
select -assert-count 1 t:$sdffce

56
tests/opt/opt_dff_qd.ys Normal file
View File

@ -0,0 +1,56 @@
### Q = D case.
read_verilog -icells <<EOT
module top(...);
input CLK;
input EN;
(* init = 24'h555555 *)
output [23:0] Q;
input SRST;
input ARST;
input [1:0] CLR;
input [1:0] SET;
$dff #(.CLK_POLARITY(1'b1), .WIDTH(2)) ff0 (.CLK(CLK), .D(Q[1:0]), .Q(Q[1:0]));
$dffe #(.CLK_POLARITY(1'b1), .EN_POLARITY(1'b1), .WIDTH(2)) ff1 (.CLK(CLK), .EN(EN), .D(Q[3:2]), .Q(Q[3:2]));
$adff #(.CLK_POLARITY(1'b1), .ARST_POLARITY(1'b1), .ARST_VALUE(2'h2), .WIDTH(2)) ff2 (.CLK(CLK), .ARST(ARST), .D(Q[5:4]), .Q(Q[5:4]));
$adffe #(.CLK_POLARITY(1'b1), .EN_POLARITY(1'b0), .ARST_POLARITY(1'b1), .ARST_VALUE(2'h2), .WIDTH(2)) ff3 (.CLK(CLK), .EN(EN), .ARST(ARST), .D(Q[7:6]), .Q(Q[7:6]));
$sdff #(.CLK_POLARITY(1'b1), .SRST_POLARITY(1'b1), .SRST_VALUE(2'h2), .WIDTH(2)) ff4 (.CLK(CLK), .SRST(SRST), .D(Q[9:8]), .Q(Q[9:8]));
$sdffe #(.CLK_POLARITY(1'b1), .EN_POLARITY(1'b1), .SRST_POLARITY(1'b1), .SRST_VALUE(2'h2), .WIDTH(2)) ff5 (.CLK(CLK), .EN(EN), .SRST(SRST), .D(Q[11:10]), .Q(Q[11:10]));
$sdffce #(.CLK_POLARITY(1'b1), .EN_POLARITY(1'b1), .SRST_POLARITY(1'b1), .SRST_VALUE(2'h2), .WIDTH(2)) ff6 (.CLK(CLK), .EN(EN), .SRST(SRST), .D(Q[13:12]), .Q(Q[13:12]));
$dffsr #(.CLK_POLARITY(1'b1), .CLR_POLARITY(1'b1), .SET_POLARITY(1'b0), .WIDTH(2)) ff7 (.CLK(CLK), .SET(SET), .CLR(CLR), .D(Q[15:14]), .Q(Q[15:14]));
$dffsre #(.CLK_POLARITY(1'b1), .EN_POLARITY(1'b0), .CLR_POLARITY(1'b1), .SET_POLARITY(1'b0), .WIDTH(2)) ff8 (.CLK(CLK), .EN(EN), .SET(SET), .CLR(CLR), .D(Q[17:16]), .Q(Q[17:16]));
$dlatch #(.EN_POLARITY(1'b1), .WIDTH(2)) ff9 (.EN(EN), .D(Q[19:18]), .Q(Q[19:18]));
$adlatch #(.EN_POLARITY(1'b0), .ARST_POLARITY(1'b1), .ARST_VALUE(2'h2), .WIDTH(2)) ff10 (.EN(EN), .ARST(ARST), .D(Q[21:20]), .Q(Q[21:20]));
$dlatchsr #(.EN_POLARITY(1'b0), .CLR_POLARITY(1'b1), .SET_POLARITY(1'b0), .WIDTH(2)) ff11 (.EN(EN), .SET(SET), .CLR(CLR), .D(Q[23:22]), .Q(Q[23:22]));
endmodule
EOT
design -save orig
# Equivalence check will fail for unmapped adlatch and dlatchsr due to negative hold hack.
delete top/ff10 top/ff11
equiv_opt -undef -assert -multiclock opt_dff -keepdc
design -load orig
opt_dff -keepdc
select -assert-count 1 t:$and
select -assert-count 3 t:$dffe
select -assert-count 3 t:$dlatch
select -assert-count 3 t:$sr
select -assert-none t:$and t:$dffe t:$dlatch t:$sr %% %n t:* %i
design -load orig
simplemap
opt_dff -keepdc
select -assert-count 2 t:$_AND_
select -assert-count 6 t:$_DFFE_??_
select -assert-count 6 t:$_DLATCH_?_
select -assert-count 6 t:$_SR_??_
select -assert-none t:$_AND_ t:$_DFFE_??_ t:$_DLATCH_?_ t:$_SR_??_ %% %n t:* %i

304
tests/opt/opt_dff_sr.ys Normal file
View File

@ -0,0 +1,304 @@
### Always-active SET/CLR removal.
read_verilog -icells <<EOT
module top(...);
input CLK;
input [5:0] D;
output [23:0] Q;
input CLR;
input SET;
input EN;
$dffsr #(.CLK_POLARITY(1'b1), .SET_POLARITY(1'b1), .CLR_POLARITY(1'b1), .WIDTH(6)) ff0 (.CLK(CLK), .CLR({CLR, CLR, CLR, 1'b1, 1'b0, 1'bx}), .SET({1'b1, 1'b0, 1'bx, SET, SET, SET}), .D(D), .Q(Q[5:0]));
$dffsre #(.CLK_POLARITY(1'b1), .SET_POLARITY(1'b0), .CLR_POLARITY(1'b0), .EN_POLARITY(1'b1), .WIDTH(6)) ff1 (.CLK(CLK), .EN(EN), .CLR({CLR, CLR, CLR, 1'b1, 1'b0, 1'bx}), .SET({1'b1, 1'b0, 1'bx, SET, SET, SET}), .D(D), .Q(Q[11:6]));
$dlatchsr #(.SET_POLARITY(1'b0), .CLR_POLARITY(1'b1), .EN_POLARITY(1'b1), .WIDTH(6)) ff2 (.EN(EN), .CLR({CLR, CLR, CLR, 1'b1, 1'b0, 1'bx}), .SET({1'b1, 1'b0, 1'bx, SET, SET, SET}), .D(D), .Q(Q[17:12]));
$sr #(.SET_POLARITY(1'b1), .CLR_POLARITY(1'b0), .WIDTH(6)) ff3 (.CLR({CLR, CLR, CLR, 1'b1, 1'b0, 1'bx}), .SET({1'b1, 1'b0, 1'bx, SET, SET, SET}), .Q(Q[23:18]));
endmodule
EOT
design -save orig
equiv_opt -undef -assert -multiclock opt_dff
design -load postopt
select -assert-count 1 t:$dffsr
select -assert-count 1 t:$dffsr r:WIDTH=2 %i
select -assert-count 1 t:$dffsre
select -assert-count 1 t:$dffsre r:WIDTH=2 %i
select -assert-count 1 t:$dlatchsr
select -assert-count 1 t:$dlatchsr r:WIDTH=2 %i
select -assert-none t:$sr
design -load orig
equiv_opt -undef -assert -multiclock opt_dff -keepdc
design -load postopt
select -assert-count 1 t:$dffsr
select -assert-count 1 t:$dffsr r:WIDTH=4 %i
select -assert-count 1 t:$dffsre
select -assert-count 1 t:$dffsre r:WIDTH=4 %i
select -assert-count 1 t:$dlatchsr
select -assert-count 1 t:$dlatchsr r:WIDTH=4 %i
select -assert-count 1 t:$sr
select -assert-count 1 t:$sr r:WIDTH=4 %i
design -load orig
simplemap
equiv_opt -undef -assert -multiclock opt_dff
design -load postopt
select -assert-count 1 t:$_DFF_PP0_
select -assert-count 1 t:$_DFF_PP1_
select -assert-count 1 t:$_DFFE_PN0P_
select -assert-count 1 t:$_DFFE_PN1P_
select -assert-count 1 t:$_DLATCH_PP0_
select -assert-count 1 t:$_DLATCH_PN1_
select -assert-none t:$_DFF_PP0_ t:$_DFF_PP1_ t:$_DFFE_PN0P_ t:$_DFFE_PN1P_ t:$_DLATCH_PP0_ t:$_DLATCH_PN1_ t:$_NOT_ %% %n t:* %i
design -load orig
simplemap
equiv_opt -undef -assert -multiclock opt_dff -keepdc
design -load postopt
select -assert-count 1 t:$_DFF_PP0_
select -assert-count 1 t:$_DFF_PP1_
select -assert-count 2 t:$_DFFSR_PPP_
select -assert-count 1 t:$_DFFE_PN0P_
select -assert-count 1 t:$_DFFE_PN1P_
select -assert-count 2 t:$_DFFSRE_PNNP_
select -assert-count 1 t:$_DLATCH_PP0_
select -assert-count 1 t:$_DLATCH_PN1_
select -assert-count 2 t:$_DLATCHSR_PNP_
select -assert-count 1 t:$_DLATCH_P_
select -assert-count 1 t:$_DLATCH_N_
select -assert-count 2 t:$_SR_PN_
select -assert-none t:$_DFF_PP0_ t:$_DFF_PP1_ t:$_DFFSR_PPP_ t:$_DFFE_PN0P_ t:$_DFFE_PN1P_ t:$_DFFSRE_PNNP_ t:$_DLATCH_PP0_ t:$_DLATCH_PN1_ t:$_DLATCHSR_PNP_ t:$_NOT_ t:$_DLATCH_N_ t:$_DLATCH_P_ t:$_SR_PN_ %% %n t:* %i
design -reset
### Never-active CLR removal.
read_verilog -icells <<EOT
module top(...);
input CLK;
input [5:0] D;
output [23:0] Q;
input CLR;
input SET;
input EN;
$dffsr #(.CLK_POLARITY(1'b1), .SET_POLARITY(1'b1), .CLR_POLARITY(1'b1), .WIDTH(6)) ff0 (.CLK(CLK), .CLR(6'h00), .SET({6{SET}}), .D(D), .Q(Q[5:0]));
$dffsre #(.CLK_POLARITY(1'b1), .SET_POLARITY(1'b0), .CLR_POLARITY(1'b0), .EN_POLARITY(1'b1), .WIDTH(6)) ff1 (.CLK(CLK), .EN(EN), .D(D), .CLR(6'h3f), .SET({6{SET}}), .Q(Q[11:6]));
$dlatchsr #(.SET_POLARITY(1'b0), .CLR_POLARITY(1'b1), .EN_POLARITY(1'b1), .WIDTH(6)) ff2 (.EN(EN), .D(D), .CLR(6'h00), .SET({6{SET}}), .Q(Q[17:12]));
$sr #(.SET_POLARITY(1'b1), .CLR_POLARITY(1'b0), .WIDTH(6)) ff3 (.CLR(6'h3f), .SET({6{SET}}), .Q(Q[23:18]));
endmodule
EOT
design -save orig
equiv_opt -undef -assert -multiclock opt_dff -keepdc
design -load postopt
select -assert-count 0 t:$dffsr
select -assert-count 0 t:$dffsre
select -assert-count 0 t:$dlatchsr
select -assert-count 0 t:$sr
select -assert-count 1 t:$adff
select -assert-count 1 t:$adffe
select -assert-count 1 t:$adlatch
select -assert-count 1 t:$dlatch
design -reset
### Never-active CLR removal (not applicable).
read_verilog -icells <<EOT
module top(...);
input CLK;
input [5:0] D;
output [23:0] Q;
input CLR;
input SET;
input ALT;
input EN;
$dffsr #(.CLK_POLARITY(1'b1), .SET_POLARITY(1'b1), .CLR_POLARITY(1'b1), .WIDTH(6)) ff0 (.CLK(CLK), .CLR(6'h00), .SET({{5{SET}}, ALT}), .D(D), .Q(Q[5:0]));
$dffsre #(.CLK_POLARITY(1'b1), .SET_POLARITY(1'b0), .CLR_POLARITY(1'b0), .EN_POLARITY(1'b1), .WIDTH(6)) ff1 (.CLK(CLK), .EN(EN), .D(D), .CLR(6'h3f), .SET({{5{SET}}, ALT}), .Q(Q[11:6]));
$dlatchsr #(.SET_POLARITY(1'b0), .CLR_POLARITY(1'b1), .EN_POLARITY(1'b1), .WIDTH(6)) ff2 (.EN(EN), .D(D), .CLR(6'h00), .SET({{5{SET}}, ALT}), .Q(Q[17:12]));
$sr #(.SET_POLARITY(1'b1), .CLR_POLARITY(1'b0), .WIDTH(6)) ff3 (.CLR(6'h3f), .SET({{5{SET}}, ALT}), .Q(Q[23:18]));
endmodule
EOT
design -save orig
equiv_opt -undef -assert -multiclock opt_dff -keepdc
design -load postopt
select -assert-count 1 t:$dffsr
select -assert-count 1 t:$dffsre
select -assert-count 1 t:$dlatchsr
select -assert-count 1 t:$sr
select -assert-count 0 t:$adff
select -assert-count 0 t:$adffe
select -assert-count 0 t:$adlatch
select -assert-count 0 t:$dlatch
design -load orig
simplemap
equiv_opt -undef -assert -multiclock opt_dff -keepdc
design -load postopt
select -assert-count 0 t:$_DFFSR_*
select -assert-count 0 t:$_DFFSRE_*
select -assert-count 0 t:$_DLATCHSR_*
select -assert-count 0 t:$_SR_*
select -assert-count 6 t:$_DFF_PP1_
select -assert-count 6 t:$_DFFE_PN1P_
select -assert-count 6 t:$_DLATCH_PN1_
select -assert-count 6 t:$_DLATCH_P_
design -reset
### Never-active SET removal.
read_verilog -icells <<EOT
module top(...);
input CLK;
input [5:0] D;
output [23:0] Q;
input CLR;
input SET;
input EN;
$dffsr #(.CLK_POLARITY(1'b1), .SET_POLARITY(1'b1), .CLR_POLARITY(1'b1), .WIDTH(6)) ff0 (.CLK(CLK), .CLR({6{CLR}}), .SET(6'h00), .D(D), .Q(Q[5:0]));
$dffsre #(.CLK_POLARITY(1'b1), .SET_POLARITY(1'b0), .CLR_POLARITY(1'b0), .EN_POLARITY(1'b1), .WIDTH(6)) ff1 (.CLK(CLK), .EN(EN), .D(D), .CLR({6{CLR}}), .SET(6'h3f), .Q(Q[11:6]));
$dlatchsr #(.SET_POLARITY(1'b0), .CLR_POLARITY(1'b1), .EN_POLARITY(1'b1), .WIDTH(6)) ff2 (.EN(EN), .D(D), .CLR({6{CLR}}), .SET(6'h3f), .Q(Q[17:12]));
$sr #(.SET_POLARITY(1'b1), .CLR_POLARITY(1'b0), .WIDTH(6)) ff3 (.CLR({6{CLR}}), .SET(6'h00), .Q(Q[23:18]));
endmodule
EOT
design -save orig
equiv_opt -undef -assert -multiclock opt_dff -keepdc
design -load postopt
select -assert-count 0 t:$dffsr
select -assert-count 0 t:$dffsre
select -assert-count 0 t:$dlatchsr
select -assert-count 0 t:$sr
select -assert-count 1 t:$adff
select -assert-count 1 t:$adffe
select -assert-count 1 t:$adlatch
select -assert-count 1 t:$dlatch
design -reset
### Never-active CLR removal (not applicable).
read_verilog -icells <<EOT
module top(...);
input CLK;
input [5:0] D;
output [23:0] Q;
input CLR;
input SET;
input ALT;
input EN;
$dffsr #(.CLK_POLARITY(1'b1), .SET_POLARITY(1'b1), .CLR_POLARITY(1'b1), .WIDTH(6)) ff0 (.CLK(CLK), .CLR({{5{CLR}}, ALT}), .SET(6'h00), .D(D), .Q(Q[5:0]));
$dffsre #(.CLK_POLARITY(1'b1), .SET_POLARITY(1'b0), .CLR_POLARITY(1'b0), .EN_POLARITY(1'b1), .WIDTH(6)) ff1 (.CLK(CLK), .EN(EN), .D(D), .CLR({{5{CLR}}, ALT}), .SET(6'h3f), .Q(Q[11:6]));
$dlatchsr #(.SET_POLARITY(1'b0), .CLR_POLARITY(1'b1), .EN_POLARITY(1'b1), .WIDTH(6)) ff2 (.EN(EN), .D(D), .CLR({{5{CLR}}, ALT}), .SET(6'h3f), .Q(Q[17:12]));
$sr #(.SET_POLARITY(1'b1), .CLR_POLARITY(1'b0), .WIDTH(6)) ff3 (.CLR({{5{CLR}}, ALT}), .SET(6'h00), .Q(Q[23:18]));
endmodule
EOT
design -save orig
equiv_opt -undef -assert -multiclock opt_dff -keepdc
design -load postopt
select -assert-count 1 t:$dffsr
select -assert-count 1 t:$dffsre
select -assert-count 1 t:$dlatchsr
select -assert-count 1 t:$sr
select -assert-count 0 t:$adff
select -assert-count 0 t:$adffe
select -assert-count 0 t:$adlatch
select -assert-count 0 t:$dlatch
design -load orig
simplemap
equiv_opt -undef -assert -multiclock opt_dff -keepdc
design -load postopt
select -assert-count 0 t:$_DFFSR_*
select -assert-count 0 t:$_DFFSRE_*
select -assert-count 0 t:$_DLATCHSR_*
select -assert-count 0 t:$_SR_*
select -assert-count 6 t:$_DFF_PP0_
select -assert-count 6 t:$_DFFE_PN0P_
select -assert-count 6 t:$_DLATCH_PP0_
select -assert-count 6 t:$_DLATCH_N_
design -reset
### SET/CLR merge into ARST.
read_verilog -icells <<EOT
module top(...);
input CLK;
input [5:0] D;
output [23:0] Q;
input ARST;
input EN;
$dffsr #(.CLK_POLARITY(1'b1), .SET_POLARITY(1'b1), .CLR_POLARITY(1'b1), .WIDTH(6)) ff0 (.CLK(CLK), .CLR({ARST, 5'h00}), .SET({1'b0, {5{ARST}}}), .D(D), .Q(Q[5:0]));
$dffsre #(.CLK_POLARITY(1'b1), .SET_POLARITY(1'b0), .CLR_POLARITY(1'b0), .EN_POLARITY(1'b1), .WIDTH(6)) ff1 (.CLK(CLK), .EN(EN), .D(D), .CLR({ARST, 5'h1f}), .SET({1'b1, {5{ARST}}}), .Q(Q[11:6]));
$dlatchsr #(.SET_POLARITY(1'b0), .CLR_POLARITY(1'b1), .EN_POLARITY(1'b1), .WIDTH(6)) ff2 (.EN(EN), .D(D), .CLR({ARST, 5'h00}), .SET({1'b1, {5{ARST}}}), .Q(Q[17:12]));
$sr #(.SET_POLARITY(1'b1), .CLR_POLARITY(1'b0), .WIDTH(6)) ff3 (.CLR({ARST, 5'h1f}), .SET({1'b0, {5{ARST}}}), .Q(Q[23:18]));
endmodule
EOT
design -save orig
equiv_opt -undef -assert -multiclock opt_dff -keepdc
design -load postopt
select -assert-count 0 t:$dffsr
select -assert-count 0 t:$dffsre
select -assert-count 1 t:$dlatchsr
select -assert-count 1 t:$sr
select -assert-count 1 t:$adff
select -assert-count 1 t:$adff r:ARST_VALUE=6'h1f %i
select -assert-count 1 t:$adffe
select -assert-count 1 t:$adffe r:ARST_VALUE=6'h1f %i
select -assert-count 0 t:$adlatch
select -assert-count 0 t:$dlatch

113
tests/opt/opt_dff_srst.ys Normal file
View File

@ -0,0 +1,113 @@
### Always-active SRST removal.
read_verilog -icells <<EOT
module top(...);
input CLK;
input [1:0] D;
(* init=12'h555 *)
output [11:0] Q;
input SRST;
input EN;
$sdff #(.CLK_POLARITY(1'b1), .SRST_POLARITY(1'b1), .SRST_VALUE(2'h2), .WIDTH(2)) ff0 (.CLK(CLK), .SRST(1'b1), .D(D), .Q(Q[1:0]));
$sdffe #(.CLK_POLARITY(1'b1), .EN_POLARITY(1'b1), .SRST_POLARITY(1'b0), .SRST_VALUE(2'h2), .WIDTH(2)) ff1 (.CLK(CLK), .SRST(1'b0), .EN(EN), .D(D), .Q(Q[3:2]));
$sdffce #(.CLK_POLARITY(1'b1), .EN_POLARITY(1'b1), .SRST_POLARITY(1'b0), .SRST_VALUE(2'h2), .WIDTH(2)) ff2 (.CLK(CLK), .SRST(1'b0), .EN(EN), .D(D), .Q(Q[5:4]));
$sdff #(.CLK_POLARITY(1'b1), .SRST_POLARITY(1'b1), .SRST_VALUE(2'h2), .WIDTH(2)) ff3 (.CLK(CLK), .SRST(1'bx), .D(D), .Q(Q[7:6]));
$sdffe #(.CLK_POLARITY(1'b1), .EN_POLARITY(1'b1), .SRST_POLARITY(1'b0), .SRST_VALUE(2'h2), .WIDTH(2)) ff4 (.CLK(CLK), .SRST(1'bx), .EN(EN), .D(D), .Q(Q[9:8]));
$sdffce #(.CLK_POLARITY(1'b1), .EN_POLARITY(1'b1), .SRST_POLARITY(1'b0), .SRST_VALUE(2'h2), .WIDTH(2)) ff5 (.CLK(CLK), .SRST(1'bx), .EN(EN), .D(D), .Q(Q[11:10]));
endmodule
EOT
design -save orig
equiv_opt -undef -assert -multiclock opt_dff
design -load postopt
select -assert-count 0 t:$sdff
select -assert-count 0 t:$sdffe
select -assert-count 0 t:$sdffce
select -assert-count 4 t:$dff
select -assert-count 2 t:$dffe
design -load orig
equiv_opt -undef -assert -multiclock opt_dff -keepdc
design -load postopt
select -assert-count 1 t:$sdff
select -assert-count 1 t:$sdffe
select -assert-count 1 t:$sdffce
select -assert-count 2 t:$dff
select -assert-count 1 t:$dffe
design -load orig
simplemap
equiv_opt -undef -assert -multiclock opt_dff
design -load postopt
select -assert-none t:$_SDFF_???_
select -assert-none t:$_SDFFE_????_
select -assert-none t:$_SDFFCE_????_
select -assert-count 8 t:$_DFF_?_
select -assert-count 4 t:$_DFFE_??_
design -load orig
simplemap
equiv_opt -undef -assert -multiclock opt_dff -keepdc
design -load postopt
select -assert-count 2 t:$_SDFF_???_
select -assert-count 2 t:$_SDFFE_????_
select -assert-count 2 t:$_SDFFCE_????_
select -assert-count 4 t:$_DFF_?_
select -assert-count 2 t:$_DFFE_??_
design -reset
### Never-active SRST removal.
read_verilog -icells <<EOT
module top(...);
input CLK;
input [1:0] D;
output [5:0] Q;
input SRST;
input EN;
$sdff #(.CLK_POLARITY(1'b1), .SRST_POLARITY(1'b1), .SRST_VALUE(2'h2), .WIDTH(2)) ff0 (.CLK(CLK), .SRST(1'b0), .D(D), .Q(Q[1:0]));
$sdffe #(.CLK_POLARITY(1'b1), .EN_POLARITY(1'b1), .SRST_POLARITY(1'b0), .SRST_VALUE(2'h2), .WIDTH(2)) ff1 (.CLK(CLK), .SRST(1'b1), .EN(EN), .D(D), .Q(Q[3:2]));
$sdffce #(.CLK_POLARITY(1'b1), .EN_POLARITY(1'b1), .SRST_POLARITY(1'b0), .SRST_VALUE(2'h2), .WIDTH(2)) ff2 (.CLK(CLK), .SRST(1'b1), .EN(EN), .D(D), .Q(Q[5:4]));
endmodule
EOT
design -save orig
equiv_opt -undef -assert -multiclock opt_dff
design -load postopt
select -assert-none t:$sdff
select -assert-none t:$sdffe
select -assert-none t:$sdffce
select -assert-count 1 t:$dff
select -assert-count 2 t:$dffe
design -load orig
simplemap
equiv_opt -undef -assert -multiclock opt_dff
design -load postopt
select -assert-none t:$_SDFF_???_
select -assert-none t:$_SDFFE_????_
select -assert-none t:$_SDFFCE_????_
select -assert-count 2 t:$_DFF_P_
select -assert-count 4 t:$_DFFE_PP_
design -reset

View File

@ -4,7 +4,7 @@ design -stash gold
read_verilog -icells opt_rmdff.v
proc
opt_rmdff
opt_dff
select -assert-count 0 c:remove*
select -assert-min 7 c:keep*

View File

@ -1,5 +1,5 @@
read_verilog opt_rmdff_sat.v
prep -flatten
opt_rmdff -sat
synth
opt_dff -sat -nosdff
simplemap
select -assert-count 5 t:$_DFF_P_