Progress in equiv_simple

This commit is contained in:
Clifford Wolf 2015-01-21 23:59:58 +00:00
parent 74e1de1fac
commit abf8398216
2 changed files with 110 additions and 41 deletions

View File

@ -1055,8 +1055,11 @@ void RTLIL::Module::cloneInto(RTLIL::Module *new_mod) const
log_assert(new_mod->refcount_wires_ == 0);
log_assert(new_mod->refcount_cells_ == 0);
new_mod->connections_ = connections_;
new_mod->attributes = attributes;
for (auto &conn : connections_)
new_mod->connect(conn);
for (auto &attr : attributes)
new_mod->attributes[attr.first] = attr.second;
for (auto &it : wires_)
new_mod->addWire(it.first, it.second);

View File

@ -33,14 +33,15 @@ struct EquivSimpleWorker
ezDefaultSAT ez;
SatGen satgen;
int max_seq;
EquivSimpleWorker(Cell *equiv_cell, SigMap &sigmap, dict<SigBit, Cell*> &bit2driver) :
EquivSimpleWorker(Cell *equiv_cell, SigMap &sigmap, dict<SigBit, Cell*> &bit2driver, int max_seq) :
module(equiv_cell->module), equiv_cell(equiv_cell), sigmap(sigmap),
bit2driver(bit2driver), satgen(&ez, &sigmap)
bit2driver(bit2driver), satgen(&ez, &sigmap), max_seq(max_seq)
{
}
void find_input_cone(pool<Cell*> &cells_cone, pool<SigBit> &bits_cone, const pool<Cell*> &cells_stop, const pool<SigBit> &bits_stop, Cell *cell)
void find_input_cone(pool<SigBit> &next_seed, pool<Cell*> &cells_cone, pool<SigBit> &bits_cone, const pool<Cell*> &cells_stop, const pool<SigBit> &bits_stop, Cell *cell)
{
if (cells_cone.count(cell))
return;
@ -52,11 +53,16 @@ struct EquivSimpleWorker
for (auto &conn : cell->connections())
if (yosys_celltypes.cell_input(cell->type, conn.first))
for (auto bit : sigmap(conn.second))
find_input_cone(cells_cone, bits_cone, cells_stop, bits_stop, bit);
for (auto bit : sigmap(conn.second)) {
if (cell->type.in("$dff", "$_DFF_P_", "$_DFF_N_")) {
if (!conn.first.in("\\CLK", "\\C"))
next_seed.insert(bit);
} else
find_input_cone(next_seed, cells_cone, bits_cone, cells_stop, bits_stop, bit);
}
}
void find_input_cone(pool<Cell*> &cells_cone, pool<SigBit> &bits_cone, const pool<Cell*> &cells_stop, const pool<SigBit> &bits_stop, SigBit bit)
void find_input_cone(pool<SigBit> &next_seed, pool<Cell*> &cells_cone, pool<SigBit> &bits_cone, const pool<Cell*> &cells_stop, const pool<SigBit> &bits_stop, SigBit bit)
{
if (bits_cone.count(bit))
return;
@ -69,7 +75,7 @@ struct EquivSimpleWorker
if (!bit2driver.count(bit))
return;
find_input_cone(cells_cone, bits_cone, cells_stop, bits_stop, bit2driver.at(bit));
find_input_cone(next_seed, cells_cone, bits_cone, cells_stop, bits_stop, bit2driver.at(bit));
}
bool run()
@ -77,42 +83,98 @@ struct EquivSimpleWorker
SigBit bit_a = sigmap(equiv_cell->getPort("\\A")).to_single_sigbit();
SigBit bit_b = sigmap(equiv_cell->getPort("\\B")).to_single_sigbit();
int ez_a = satgen.importSigBit(bit_a, max_seq+1);
int ez_b = satgen.importSigBit(bit_b, max_seq+1);
ez.assume(ez.XOR(ez_a, ez_b));
pool<SigBit> seed_a = { bit_a };
pool<SigBit> seed_b = { bit_b };
log(" Trying to prove $equiv cell %s:\n", log_id(equiv_cell));
log(" A = %s, B = %s, Y = %s\n", log_signal(bit_a), log_signal(bit_b), log_signal(equiv_cell->getPort("\\Y")));
pool<Cell*> no_stop_cells;
pool<SigBit> no_stop_bits;
int step = max_seq;
while (1)
{
pool<Cell*> no_stop_cells;
pool<SigBit> no_stop_bits;
pool<Cell*> full_cells_cone_a, full_cells_cone_b;
pool<SigBit> full_bits_cone_a, full_bits_cone_b;
pool<Cell*> full_cells_cone_a, full_cells_cone_b;
pool<SigBit> full_bits_cone_a, full_bits_cone_b;
find_input_cone(full_cells_cone_a, full_bits_cone_a, no_stop_cells, no_stop_bits, bit_a);
find_input_cone(full_cells_cone_b, full_bits_cone_b, no_stop_cells, no_stop_bits, bit_b);
pool<SigBit> next_seed_a, next_seed_b;
pool<Cell*> short_cells_cone_a, short_cells_cone_b;
pool<SigBit> short_bits_cone_a, short_bits_cone_b;
for (auto bit_a : seed_a)
find_input_cone(next_seed_a, full_cells_cone_a, full_bits_cone_a, no_stop_cells, no_stop_bits, bit_a);
next_seed_a.clear();
find_input_cone(short_cells_cone_a, short_bits_cone_a, full_cells_cone_b, full_bits_cone_b, bit_a);
find_input_cone(short_cells_cone_b, short_bits_cone_b, full_cells_cone_a, full_bits_cone_a, bit_b);
for (auto bit_b : seed_b)
find_input_cone(next_seed_b, full_cells_cone_b, full_bits_cone_b, no_stop_cells, no_stop_bits, bit_b);
next_seed_b.clear();
pool<Cell*> problem_cells;
problem_cells.insert(short_cells_cone_a.begin(), short_cells_cone_a.end());
problem_cells.insert(short_cells_cone_b.begin(), short_cells_cone_b.end());
for (auto cell : problem_cells) satgen.importCell(cell);
pool<Cell*> short_cells_cone_a, short_cells_cone_b;
pool<SigBit> short_bits_cone_a, short_bits_cone_b;
int ez_a = satgen.importSigBit(bit_a);
int ez_b = satgen.importSigBit(bit_b);
ez.assume(ez.XOR(ez_a, ez_b));
for (auto bit_a : seed_a)
find_input_cone(next_seed_a, short_cells_cone_a, short_bits_cone_a, full_cells_cone_b, full_bits_cone_b, bit_a);
next_seed_a.swap(seed_a);
log(" Created SAT problem from %d cells.\n", GetSize(problem_cells));
for (auto bit_b : seed_b)
find_input_cone(next_seed_b, short_cells_cone_b, short_bits_cone_b, full_cells_cone_a, full_bits_cone_a, bit_b);
next_seed_b.swap(seed_b);
if (!ez.solve()) {
log(" Proved equivalence! Marking $equiv cell as proven.\n");
equiv_cell->setPort("\\B", equiv_cell->getPort("\\A"));
return true;
pool<Cell*> problem_cells;
problem_cells.insert(short_cells_cone_a.begin(), short_cells_cone_a.end());
problem_cells.insert(short_cells_cone_b.begin(), short_cells_cone_b.end());
log(" Adding %d new cells to the problem (%d A, %d B, %d shared).\n",
GetSize(problem_cells), GetSize(short_cells_cone_a), GetSize(short_cells_cone_b),
(GetSize(short_cells_cone_a) + GetSize(short_cells_cone_b)) - GetSize(problem_cells));
for (auto cell : problem_cells)
satgen.importCell(cell, step+1);
log(" Problem size at t=%d: %d literals, %d clauses\n", step, ez.numCnfVariables(), ez.numCnfClauses());
if (!ez.solve()) {
log(" Proved equivalence! Marking $equiv cell as proven.\n");
equiv_cell->setPort("\\B", equiv_cell->getPort("\\A"));
return true;
}
log(" Failed to prove equivalence with sequence length %d.\n", max_seq - step);
if (--step < 0) {
log(" Reached sequence limit.\n");
break;
}
if (seed_a.empty() && seed_b.empty()) {
log(" No nets to continue in previous time step.\n");
break;
}
if (seed_a.empty()) {
log(" No nets on A-side to continue in previous time step.\n");
break;
}
if (seed_b.empty()) {
log(" No nets on B-side to continue in previous time step.\n");
break;
}
#if 0
log(" Continuing analysis in previous time step with the following nets:\n");
for (auto bit : seed_a)
log(" A: %s\n", log_signal(bit));
for (auto bit : seed_b)
log(" B: %s\n", log_signal(bit));
#else
log(" Continuing analysis in previous time step with %d A- and %d B-nets.\n", GetSize(seed_a), GetSize(seed_b));
#endif
}
log(" Failed to prove equivalence.\n");
return false;
}
};
@ -127,19 +189,23 @@ struct EquivSimplePass : public Pass {
log("\n");
log("This command tries to prove $equiv cells using a simple direct SAT approach.\n");
log("\n");
log(" -seq <N>\n");
log(" the max. number of time steps to be considered (default = 1)\n");
log("\n");
}
virtual void execute(std::vector<std::string> args, Design *design)
{
int success_counter = 0;
int max_seq = 1;
log_header("Executing EQUIV_SIMPLE pass.\n");
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) {
// if (args[argidx] == "-assert") {
// assert_mode = true;
// continue;
// }
if (args[argidx] == "-seq" && argidx+1 < args.size()) {
max_seq = atoi(args[++argidx].c_str());
continue;
}
break;
}
extra_args(args, argidx, design);
@ -164,23 +230,23 @@ struct EquivSimplePass : public Pass {
SigMap sigmap(module);
dict<SigBit, Cell*> bit2driver;
for (auto cell : module->selected_cells()) {
if (!ct.cell_known(cell->type))
for (auto cell : module->cells()) {
if (!ct.cell_known(cell->type) && !cell->type.in("$dff", "$_DFF_P_", "$_DFF_N_"))
continue;
for (auto &conn : cell->connections())
if (ct.cell_output(cell->type, conn.first))
if (yosys_celltypes.cell_output(cell->type, conn.first))
for (auto bit : sigmap(conn.second))
bit2driver[bit] = cell;
}
for (auto cell : unproven_equiv_cells) {
EquivSimpleWorker worker(cell, sigmap, bit2driver);
EquivSimpleWorker worker(cell, sigmap, bit2driver, max_seq);
if (worker.run())
success_counter++;
}
}
log("Successfully proved %d previously unproven $equiv cells.\n", success_counter);
log("Proved %d previously unproven $equiv cells.\n", success_counter);
}
} EquivSimplePass;