Merge remote-tracking branch 'origin/master' into eddie/opt_merge_init

This commit is contained in:
Eddie Hung 2020-01-28 12:46:18 -08:00
commit a855f23f22
190 changed files with 9313 additions and 4980 deletions

View File

@ -50,9 +50,15 @@ Yosys 0.9 .. Yosys 0.9-dev
- "synth_ecp5" to now infer DSP blocks (-nodsp to disable, experimental)
- "synth_ice40 -dsp" to infer DSP blocks
- Added latch support to synth_xilinx
- Added support for flip-flops with synchronous reset to synth_xilinx
- Added support for flip-flops with reset and enable to synth_xilinx
- Added "check -mapped"
- Added checking of SystemVerilog always block types (always_comb,
always_latch and always_ff)
- Added "xilinx_dffopt" pass
- Added "scratchpad" pass
- Added "abc9 -dff"
- Added "synth_xilinx -dff"
Yosys 0.8 .. Yosys 0.9
----------------------

View File

@ -115,7 +115,7 @@ LDFLAGS += -rdynamic
LDLIBS += -lrt
endif
YOSYS_VER := 0.9+932
YOSYS_VER := 0.9+1706
GIT_REV := $(shell cd $(YOSYS_SRC) && git rev-parse --short HEAD 2> /dev/null || echo UNKNOWN)
OBJS = kernel/version_$(GIT_REV).o
@ -128,7 +128,7 @@ bumpversion:
# is just a symlink to your actual ABC working directory, as 'make mrproper'
# will remove the 'abc' directory and you do not want to accidentally
# delete your work on ABC..
ABCREV = 623b5e8
ABCREV = 71f2b40
ABCPULL = 1
ABCURL ?= https://github.com/berkeley-abc/abc
ABCMKARGS = CC="$(CXX)" CXX="$(CXX)" ABC_USE_LIBSTDCXX=1
@ -152,7 +152,15 @@ ifeq ($(ENABLE_PYOSYS),1)
PYTHON_VERSION_TESTCODE := "import sys;t='{v[0]}.{v[1]}'.format(v=list(sys.version_info[:2]));print(t)"
PYTHON_VERSION := $(shell $(PYTHON_EXECUTABLE) -c ""$(PYTHON_VERSION_TESTCODE)"")
PYTHON_MAJOR_VERSION := $(shell echo $(PYTHON_VERSION) | cut -f1 -d.)
PYTHON_PREFIX := $(shell $(PYTHON_EXECUTABLE)-config --prefix)
ENABLE_PYTHON_CONFIG_EMBED ?= $(shell $(PYTHON_EXECUTABLE)-config --embed --libs > /dev/null && echo 1)
ifeq ($(ENABLE_PYTHON_CONFIG_EMBED),1)
PYTHON_CONFIG := $(PYTHON_EXECUTABLE)-config --embed
else
PYTHON_CONFIG := $(PYTHON_EXECUTABLE)-config
endif
PYTHON_PREFIX := $(shell $(PYTHON_CONFIG) --prefix)
PYTHON_DESTDIR := $(PYTHON_PREFIX)/lib/python$(PYTHON_VERSION)/site-packages
# Reload Makefile.conf to override python specific variables if defined
@ -305,17 +313,17 @@ ifeq ($(ENABLE_PYOSYS),1)
#Detect name of boost_python library. Some distros usbe boost_python-py<version>, other boost_python<version>, some only use the major version number, some a concatenation of major and minor version numbers
ifeq ($(OS), Darwin)
BOOST_PYTHON_LIB ?= $(shell \
if echo "int main(int argc, char ** argv) {return 0;}" | $(CXX) -xc -o /dev/null $(shell $(PYTHON_EXECUTABLE)-config --ldflags) -lboost_python-py$(subst .,,$(PYTHON_VERSION)) - > /dev/null 2>&1; then echo "-lboost_python-py$(subst .,,$(PYTHON_VERSION))"; else \
if echo "int main(int argc, char ** argv) {return 0;}" | $(CXX) -xc -o /dev/null $(shell $(PYTHON_EXECUTABLE)-config --ldflags) -lboost_python-py$(subst .,,$(PYTHON_MAJOR_VERSION)) - > /dev/null 2>&1; then echo "-lboost_python-py$(subst .,,$(PYTHON_MAJOR_VERSION))"; else \
if echo "int main(int argc, char ** argv) {return 0;}" | $(CXX) -xc -o /dev/null $(shell $(PYTHON_EXECUTABLE)-config --ldflags) -lboost_python$(subst .,,$(PYTHON_VERSION)) - > /dev/null 2>&1; then echo "-lboost_python$(subst .,,$(PYTHON_VERSION))"; else \
if echo "int main(int argc, char ** argv) {return 0;}" | $(CXX) -xc -o /dev/null $(shell $(PYTHON_EXECUTABLE)-config --ldflags) -lboost_python$(subst .,,$(PYTHON_MAJOR_VERSION)) - > /dev/null 2>&1; then echo "-lboost_python$(subst .,,$(PYTHON_MAJOR_VERSION))"; else \
if echo "int main(int argc, char ** argv) {return 0;}" | $(CXX) -xc -o /dev/null $(shell $(PYTHON_CONFIG) --ldflags) -lboost_python-py$(subst .,,$(PYTHON_VERSION)) - > /dev/null 2>&1; then echo "-lboost_python-py$(subst .,,$(PYTHON_VERSION))"; else \
if echo "int main(int argc, char ** argv) {return 0;}" | $(CXX) -xc -o /dev/null $(shell $(PYTHON_CONFIG) --ldflags) -lboost_python-py$(subst .,,$(PYTHON_MAJOR_VERSION)) - > /dev/null 2>&1; then echo "-lboost_python-py$(subst .,,$(PYTHON_MAJOR_VERSION))"; else \
if echo "int main(int argc, char ** argv) {return 0;}" | $(CXX) -xc -o /dev/null $(shell $(PYTHON_CONFIG) --ldflags) -lboost_python$(subst .,,$(PYTHON_VERSION)) - > /dev/null 2>&1; then echo "-lboost_python$(subst .,,$(PYTHON_VERSION))"; else \
if echo "int main(int argc, char ** argv) {return 0;}" | $(CXX) -xc -o /dev/null $(shell $(PYTHON_CONFIG) --ldflags) -lboost_python$(subst .,,$(PYTHON_MAJOR_VERSION)) - > /dev/null 2>&1; then echo "-lboost_python$(subst .,,$(PYTHON_MAJOR_VERSION))"; else \
echo ""; fi; fi; fi; fi;)
else
BOOST_PYTHON_LIB ?= $(shell \
if echo "int main(int argc, char ** argv) {return 0;}" | $(CXX) -xc -o /dev/null `$(PYTHON_EXECUTABLE)-config --libs` -lboost_python-py$(subst .,,$(PYTHON_VERSION)) - > /dev/null 2>&1; then echo "-lboost_python-py$(subst .,,$(PYTHON_VERSION))"; else \
if echo "int main(int argc, char ** argv) {return 0;}" | $(CXX) -xc -o /dev/null `$(PYTHON_EXECUTABLE)-config --libs` -lboost_python-py$(subst .,,$(PYTHON_MAJOR_VERSION)) - > /dev/null 2>&1; then echo "-lboost_python-py$(subst .,,$(PYTHON_MAJOR_VERSION))"; else \
if echo "int main(int argc, char ** argv) {return 0;}" | $(CXX) -xc -o /dev/null `$(PYTHON_EXECUTABLE)-config --libs` -lboost_python$(subst .,,$(PYTHON_VERSION)) - > /dev/null 2>&1; then echo "-lboost_python$(subst .,,$(PYTHON_VERSION))"; else \
if echo "int main(int argc, char ** argv) {return 0;}" | $(CXX) -xc -o /dev/null `$(PYTHON_EXECUTABLE)-config --libs` -lboost_python$(subst .,,$(PYTHON_MAJOR_VERSION)) - > /dev/null 2>&1; then echo "-lboost_python$(subst .,,$(PYTHON_MAJOR_VERSION))"; else \
if echo "int main(int argc, char ** argv) {return 0;}" | $(CXX) -xc -o /dev/null `$(PYTHON_CONFIG) --libs` -lboost_python-py$(subst .,,$(PYTHON_VERSION)) - > /dev/null 2>&1; then echo "-lboost_python-py$(subst .,,$(PYTHON_VERSION))"; else \
if echo "int main(int argc, char ** argv) {return 0;}" | $(CXX) -xc -o /dev/null `$(PYTHON_CONFIG) --libs` -lboost_python-py$(subst .,,$(PYTHON_MAJOR_VERSION)) - > /dev/null 2>&1; then echo "-lboost_python-py$(subst .,,$(PYTHON_MAJOR_VERSION))"; else \
if echo "int main(int argc, char ** argv) {return 0;}" | $(CXX) -xc -o /dev/null `$(PYTHON_CONFIG) --libs` -lboost_python$(subst .,,$(PYTHON_VERSION)) - > /dev/null 2>&1; then echo "-lboost_python$(subst .,,$(PYTHON_VERSION))"; else \
if echo "int main(int argc, char ** argv) {return 0;}" | $(CXX) -xc -o /dev/null `$(PYTHON_CONFIG) --libs` -lboost_python$(subst .,,$(PYTHON_MAJOR_VERSION)) - > /dev/null 2>&1; then echo "-lboost_python$(subst .,,$(PYTHON_MAJOR_VERSION))"; else \
echo ""; fi; fi; fi; fi;)
endif
@ -325,19 +333,19 @@ endif
ifeq ($(OS), Darwin)
ifeq ($(PYTHON_MAJOR_VERSION),3)
LDLIBS += $(shell $(PYTHON_EXECUTABLE)-config --ldflags) $(BOOST_PYTHON_LIB) -lboost_system -lboost_filesystem
CXXFLAGS += $(shell $(PYTHON_EXECUTABLE)-config --includes) -DWITH_PYTHON
LDLIBS += $(shell $(PYTHON_CONFIG) --ldflags) $(BOOST_PYTHON_LIB) -lboost_system -lboost_filesystem
CXXFLAGS += $(shell $(PYTHON_CONFIG) --includes) -DWITH_PYTHON
else
LDLIBS += $(shell $(PYTHON_EXECUTABLE)-config --ldflags) $(BOOST_PYTHON_LIB) -lboost_system -lboost_filesystem
CXXFLAGS += $(shell $(PYTHON_EXECUTABLE)-config --includes) -DWITH_PYTHON
LDLIBS += $(shell $(PYTHON_CONFIG) --ldflags) $(BOOST_PYTHON_LIB) -lboost_system -lboost_filesystem
CXXFLAGS += $(shell $(PYTHON_CONFIG) --includes) -DWITH_PYTHON
endif
else
ifeq ($(PYTHON_MAJOR_VERSION),3)
LDLIBS += $(shell $(PYTHON_EXECUTABLE)-config --libs) $(BOOST_PYTHON_LIB) -lboost_system -lboost_filesystem
CXXFLAGS += $(shell $(PYTHON_EXECUTABLE)-config --includes) -DWITH_PYTHON
LDLIBS += $(shell $(PYTHON_CONFIG) --libs) $(BOOST_PYTHON_LIB) -lboost_system -lboost_filesystem
CXXFLAGS += $(shell $(PYTHON_CONFIG) --includes) -DWITH_PYTHON
else
LDLIBS += $(shell $(PYTHON_EXECUTABLE)-config --libs) $(BOOST_PYTHON_LIB) -lboost_system -lboost_filesystem
CXXFLAGS += $(shell $(PYTHON_EXECUTABLE)-config --includes) -DWITH_PYTHON
LDLIBS += $(shell $(PYTHON_CONFIG) --libs) $(BOOST_PYTHON_LIB) -lboost_system -lboost_filesystem
CXXFLAGS += $(shell $(PYTHON_CONFIG) --includes) -DWITH_PYTHON
endif
endif

View File

@ -376,7 +376,11 @@ Verilog Attributes and non-standard features
- The port attribute ``abc9_arrival`` specifies an integer (for output ports
only) to be used as the arrival time of this sequential port. It can be used,
for example, to specify the clk-to-Q delay of a flip-flop for consideration
during techmapping.
during `abc9` techmapping.
- The module attribute ``abc9_flop`` is a boolean marking the module as a
flip-flop. This allows `abc9` to analyse its contents in order to perform
sequential synthesis.
- The frontend sets attributes ``always_comb``, ``always_latch`` and
``always_ff`` on processes derived from SystemVerilog style always blocks
@ -454,10 +458,10 @@ Verilog Attributes and non-standard features
expressions over parameters and constant values are allowed). The intended
use for this is synthesis-time DRC.
- There is limited support for converting specify .. endspecify statements to
special ``$specify2``, ``$specify3``, and ``$specrule`` cells, for use in
blackboxes and whiteboxes. Use ``read_verilog -specify`` to enable this
functionality. (By default specify .. endspecify blocks are ignored.)
- There is limited support for converting ``specify`` .. ``endspecify``
statements to special ``$specify2``, ``$specify3``, and ``$specrule`` cells,
for use in blackboxes and whiteboxes. Use ``read_verilog -specify`` to
enable this functionality. (By default these blocks are ignored.)
Non-standard or SystemVerilog features for formal verification

View File

@ -787,6 +787,14 @@ struct AigerBackend : public Backend {
if (top_module == nullptr)
log_error("Can't find top module in current design!\n");
if (!design->selected_whole_module(top_module))
log_cmd_error("Can't handle partially selected module %s!\n", log_id(top_module));
if (!top_module->processes.empty())
log_error("Found unmapped processes in module %s: unmapped processes are not supported in AIGER backend!\n", log_id(top_module));
if (!top_module->memories.empty())
log_error("Found unmapped memories in module %s: unmapped memories are not supported in AIGER backend!\n", log_id(top_module));
AigerWriter writer(top_module, zinit_mode, imode, omode, bmode, lmode);
writer.write_aiger(*f, ascii_mode, miter_mode, symbols_mode);

View File

@ -81,8 +81,8 @@ struct XAigerWriter
pool<SigBit> input_bits, output_bits;
dict<SigBit, SigBit> not_map, alias_map;
dict<SigBit, pair<SigBit, SigBit>> and_map;
vector<std::tuple<SigBit,RTLIL::Cell*,RTLIL::IdString,int>> ci_bits;
vector<std::tuple<SigBit,RTLIL::Cell*,RTLIL::IdString,int,int>> co_bits;
vector<SigBit> ci_bits, co_bits;
dict<SigBit, Cell*> ff_bits;
dict<SigBit, float> arrival_times;
vector<pair<int, int>> aig_gates;
@ -93,7 +93,6 @@ struct XAigerWriter
dict<SigBit, int> ordered_outputs;
vector<Cell*> box_list;
bool omode = false;
int mkgate(int a0, int a1)
{
@ -141,7 +140,6 @@ struct XAigerWriter
{
pool<SigBit> undriven_bits;
pool<SigBit> unused_bits;
pool<SigBit> keep_bits;
// promote public wires
for (auto wire : module->wires())
@ -153,362 +151,333 @@ struct XAigerWriter
if (wire->port_input)
sigmap.add(wire);
// promote keep wires
for (auto wire : module->wires())
{
bool keep = wire->attributes.count("\\keep");
if (wire->get_bool_attribute(ID::keep))
sigmap.add(wire);
for (auto wire : module->wires())
for (int i = 0; i < GetSize(wire); i++)
{
SigBit wirebit(wire, i);
SigBit bit = sigmap(wirebit);
if (bit.wire) {
undriven_bits.insert(bit);
unused_bits.insert(bit);
}
if (keep)
keep_bits.insert(wirebit);
if (wire->port_input || keep) {
if (bit != wirebit)
alias_map[bit] = wirebit;
input_bits.insert(wirebit);
}
if (wire->port_output || keep) {
if (bit != RTLIL::Sx) {
if (bit != wirebit)
alias_map[wirebit] = bit;
if (bit.wire == nullptr) {
if (wire->port_output) {
aig_map[wirebit] = (bit == State::S1) ? 1 : 0;
output_bits.insert(wirebit);
}
else
log_debug("Skipping PO '%s' driven by 1'bx\n", log_signal(wirebit));
continue;
}
undriven_bits.insert(bit);
unused_bits.insert(bit);
bool keep = wire->get_bool_attribute(ID::keep);
if (wire->port_input || keep)
input_bits.insert(bit);
if (wire->port_output || keep) {
if (bit != wirebit)
alias_map[wirebit] = bit;
output_bits.insert(wirebit);
}
}
}
for (auto bit : input_bits)
undriven_bits.erase(sigmap(bit));
for (auto bit : output_bits)
if (!bit.wire->port_input)
unused_bits.erase(bit);
// TODO: Speed up toposort -- ultimately we care about
// box ordering, but not individual AIG cells
dict<SigBit, pool<IdString>> bit_drivers, bit_users;
TopoSort<IdString, RTLIL::sort_by_id_str> toposort;
bool abc9_box_seen = false;
for (auto cell : module->selected_cells()) {
if (cell->type == "$_NOT_")
{
SigBit A = sigmap(cell->getPort("\\A").as_bit());
SigBit Y = sigmap(cell->getPort("\\Y").as_bit());
unused_bits.erase(A);
undriven_bits.erase(Y);
not_map[Y] = A;
if (!holes_mode) {
toposort.node(cell->name);
bit_users[A].insert(cell->name);
bit_drivers[Y].insert(cell->name);
}
continue;
}
if (cell->type == "$_AND_")
{
SigBit A = sigmap(cell->getPort("\\A").as_bit());
SigBit B = sigmap(cell->getPort("\\B").as_bit());
SigBit Y = sigmap(cell->getPort("\\Y").as_bit());
unused_bits.erase(A);
unused_bits.erase(B);
undriven_bits.erase(Y);
and_map[Y] = make_pair(A, B);
if (!holes_mode) {
toposort.node(cell->name);
bit_users[A].insert(cell->name);
bit_users[B].insert(cell->name);
bit_drivers[Y].insert(cell->name);
}
continue;
}
log_assert(!holes_mode);
dict<IdString,dict<IdString,int>> arrival_cache;
for (auto cell : module->cells()) {
RTLIL::Module* inst_module = module->design->module(cell->type);
if (inst_module && inst_module->attributes.count("\\abc9_box_id")) {
abc9_box_seen = true;
if (!cell->has_keep_attr()) {
if (cell->type == "$_NOT_")
{
SigBit A = sigmap(cell->getPort("\\A").as_bit());
SigBit Y = sigmap(cell->getPort("\\Y").as_bit());
unused_bits.erase(A);
undriven_bits.erase(Y);
not_map[Y] = A;
continue;
}
if (!holes_mode) {
toposort.node(cell->name);
for (const auto &conn : cell->connections()) {
auto port_wire = inst_module->wire(conn.first);
if (port_wire->port_input) {
// Ignore inout for the sake of topographical ordering
if (port_wire->port_output) continue;
for (auto bit : sigmap(conn.second))
bit_users[bit].insert(cell->name);
}
if (cell->type == "$_AND_")
{
SigBit A = sigmap(cell->getPort("\\A").as_bit());
SigBit B = sigmap(cell->getPort("\\B").as_bit());
SigBit Y = sigmap(cell->getPort("\\Y").as_bit());
unused_bits.erase(A);
unused_bits.erase(B);
undriven_bits.erase(Y);
and_map[Y] = make_pair(A, B);
continue;
}
if (port_wire->port_output)
for (auto bit : sigmap(conn.second))
bit_drivers[bit].insert(cell->name);
if (cell->type == "$__ABC9_FF_" &&
// The presence of an abc9_mergeability attribute indicates
// that we do want to pass this flop to ABC
cell->attributes.count("\\abc9_mergeability"))
{
SigBit D = sigmap(cell->getPort("\\D").as_bit());
SigBit Q = sigmap(cell->getPort("\\Q").as_bit());
unused_bits.erase(D);
undriven_bits.erase(Q);
alias_map[Q] = D;
auto r YS_ATTRIBUTE(unused) = ff_bits.insert(std::make_pair(D, cell));
log_assert(r.second);
if (input_bits.erase(Q))
log_assert(Q.wire->attributes.count(ID::keep));
continue;
}
if (inst_module) {
bool abc9_flop = false;
auto it = cell->attributes.find("\\abc9_box_seq");
if (it != cell->attributes.end()) {
int abc9_box_seq = it->second.as_int();
if (GetSize(box_list) <= abc9_box_seq)
box_list.resize(abc9_box_seq+1);
box_list[abc9_box_seq] = cell;
// Only flop boxes may have arrival times
abc9_flop = inst_module->get_bool_attribute("\\abc9_flop");
if (!abc9_flop)
continue;
}
auto &cell_arrivals = arrival_cache[cell->type];
for (const auto &conn : cell->connections()) {
auto r = cell_arrivals.insert(conn.first);
auto &arrival = r.first->second;
if (r.second) {
auto port_wire = inst_module->wire(conn.first);
if (port_wire->port_output) {
auto it = port_wire->attributes.find("\\abc9_arrival");
if (it != port_wire->attributes.end()) {
if (it->second.flags != 0)
log_error("Attribute 'abc9_arrival' on port '%s' of module '%s' is not an integer.\n", log_id(port_wire), log_id(cell->type));
arrival = it->second.as_int();
}
}
}
if (arrival)
for (auto bit : sigmap(conn.second))
arrival_times[bit] = arrival;
}
if (abc9_flop)
continue;
}
}
else {
bool cell_known = inst_module || cell->known();
for (const auto &c : cell->connections()) {
if (c.second.is_fully_const()) continue;
auto port_wire = inst_module ? inst_module->wire(c.first) : nullptr;
auto is_input = (port_wire && port_wire->port_input) || !cell_known || cell->input(c.first);
auto is_output = (port_wire && port_wire->port_output) || !cell_known || cell->output(c.first);
if (!is_input && !is_output)
log_error("Connection '%s' on cell '%s' (type '%s') not recognised!\n", log_id(c.first), log_id(cell), log_id(cell->type));
if (is_input) {
for (auto b : c.second) {
Wire *w = b.wire;
if (!w) continue;
if (!w->port_output || !cell_known) {
SigBit I = sigmap(b);
if (I != b)
alias_map[b] = I;
output_bits.insert(b);
unused_bits.erase(b);
bool cell_known = inst_module || cell->known();
for (const auto &c : cell->connections()) {
if (c.second.is_fully_const()) continue;
auto port_wire = inst_module ? inst_module->wire(c.first) : nullptr;
auto is_input = (port_wire && port_wire->port_input) || !cell_known || cell->input(c.first);
auto is_output = (port_wire && port_wire->port_output) || !cell_known || cell->output(c.first);
if (!is_input && !is_output)
log_error("Connection '%s' on cell '%s' (type '%s') not recognised!\n", log_id(c.first), log_id(cell), log_id(cell->type));
if (!cell_known)
keep_bits.insert(b);
}
if (is_input)
for (auto b : c.second) {
Wire *w = b.wire;
if (!w) continue;
// Do not add as PO if bit is already a PI
if (input_bits.count(b))
continue;
if (!w->port_output || !cell_known) {
SigBit I = sigmap(b);
if (I != b)
alias_map[b] = I;
output_bits.insert(b);
}
}
if (is_output) {
int arrival = 0;
if (port_wire) {
auto it = port_wire->attributes.find("\\abc9_arrival");
if (it != port_wire->attributes.end()) {
if (it->second.flags != 0)
log_error("Attribute 'abc9_arrival' on port '%s' of module '%s' is not an integer.\n", log_id(port_wire), log_id(cell->type));
arrival = it->second.as_int();
}
}
for (auto b : c.second) {
Wire *w = b.wire;
if (!w) continue;
input_bits.insert(b);
SigBit O = sigmap(b);
if (O != b)
alias_map[O] = b;
undriven_bits.erase(O);
if (arrival)
arrival_times[b] = arrival;
}
}
}
}
//log_warning("Unsupported cell type: %s (%s)\n", log_id(cell->type), log_id(cell));
}
if (abc9_box_seen) {
for (auto &it : bit_users)
if (bit_drivers.count(it.first))
for (auto driver_cell : bit_drivers.at(it.first))
for (auto user_cell : it.second)
toposort.edge(driver_cell, user_cell);
dict<IdString, std::vector<IdString>> box_ports;
for (auto cell : box_list) {
log_assert(cell);
#if 0
toposort.analyze_loops = true;
#endif
bool no_loops YS_ATTRIBUTE(unused) = toposort.sort();
#if 0
unsigned i = 0;
for (auto &it : toposort.loops) {
log(" loop %d\n", i++);
for (auto cell_name : it) {
auto cell = module->cell(cell_name);
log_assert(cell);
log("\t%s (%s @ %s)\n", log_id(cell), log_id(cell->type), cell->get_src_attribute().c_str());
}
}
#endif
log_assert(no_loops);
RTLIL::Module* box_module = module->design->module(cell->type);
log_assert(box_module);
log_assert(box_module->attributes.count("\\abc9_box_id"));
for (auto cell_name : toposort.sorted) {
RTLIL::Cell *cell = module->cell(cell_name);
log_assert(cell);
RTLIL::Module* box_module = module->design->module(cell->type);
if (!box_module || !box_module->attributes.count("\\abc9_box_id"))
continue;
bool blackbox = box_module->get_blackbox_attribute(true /* ignore_wb */);
// Fully pad all unused input connections of this box cell with S0
// Fully pad all undriven output connections of this box cell with anonymous wires
// NB: Assume box_module->ports are sorted alphabetically
// (as RTLIL::Module::fixup_ports() would do)
auto r = box_ports.insert(cell->type);
if (r.second) {
// Make carry in the last PI, and carry out the last PO
// since ABC requires it this way
IdString carry_in, carry_out;
for (const auto &port_name : box_module->ports) {
RTLIL::Wire* w = box_module->wire(port_name);
auto w = box_module->wire(port_name);
log_assert(w);
auto it = cell->connections_.find(port_name);
if (w->port_input) {
RTLIL::SigSpec rhs;
if (it != cell->connections_.end()) {
if (GetSize(it->second) < GetSize(w))
it->second.append(RTLIL::SigSpec(State::S0, GetSize(w)-GetSize(it->second)));
rhs = it->second;
if (w->get_bool_attribute("\\abc9_carry")) {
if (w->port_input) {
if (carry_in != IdString())
log_error("Module '%s' contains more than one 'abc9_carry' input port.\n", log_id(box_module));
carry_in = port_name;
}
else {
rhs = RTLIL::SigSpec(State::S0, GetSize(w));
cell->setPort(port_name, rhs);
}
int offset = 0;
for (auto b : rhs.bits()) {
SigBit I = sigmap(b);
if (b == RTLIL::Sx)
b = State::S0;
else if (I != b) {
if (I == RTLIL::Sx)
alias_map[b] = State::S0;
else
alias_map[b] = I;
}
co_bits.emplace_back(b, cell, port_name, offset++, 0);
unused_bits.erase(b);
}
}
if (w->port_output) {
RTLIL::SigSpec rhs;
auto it = cell->connections_.find(w->name);
if (it != cell->connections_.end()) {
if (GetSize(it->second) < GetSize(w))
it->second.append(module->addWire(NEW_ID, GetSize(w)-GetSize(it->second)));
rhs = it->second;
}
else {
Wire *wire = module->addWire(NEW_ID, GetSize(w));
if (blackbox)
wire->set_bool_attribute(ID(abc9_padding));
rhs = wire;
cell->setPort(port_name, rhs);
}
int offset = 0;
for (const auto &b : rhs.bits()) {
ci_bits.emplace_back(b, cell, port_name, offset++);
SigBit O = sigmap(b);
if (O != b)
alias_map[O] = b;
undriven_bits.erase(O);
input_bits.erase(b);
if (w->port_output) {
if (carry_out != IdString())
log_error("Module '%s' contains more than one 'abc9_carry' output port.\n", log_id(box_module));
carry_out = port_name;
}
}
else
r.first->second.push_back(port_name);
}
if (carry_in != IdString() && carry_out == IdString())
log_error("Module '%s' contains an 'abc9_carry' input port but no output port.\n", log_id(box_module));
if (carry_in == IdString() && carry_out != IdString())
log_error("Module '%s' contains an 'abc9_carry' output port but no input port.\n", log_id(box_module));
if (carry_in != IdString()) {
r.first->second.push_back(carry_in);
r.first->second.push_back(carry_out);
}
box_list.emplace_back(cell);
}
// TODO: Free memory from toposort, bit_drivers, bit_users
}
for (auto port_name : r.first->second) {
auto w = box_module->wire(port_name);
log_assert(w);
auto rhs = cell->connections_.at(port_name, SigSpec());
rhs.append(Const(State::Sx, GetSize(w)-GetSize(rhs)));
if (w->port_input)
for (auto b : rhs) {
SigBit I = sigmap(b);
if (b == RTLIL::Sx)
b = State::S0;
else if (I != b) {
if (I == RTLIL::Sx)
alias_map[b] = State::S0;
else
alias_map[b] = I;
}
co_bits.emplace_back(b);
unused_bits.erase(I);
}
if (w->port_output)
for (const auto &b : rhs) {
SigBit O = sigmap(b);
if (O != b)
alias_map[O] = b;
ci_bits.emplace_back(b);
undriven_bits.erase(O);
// If PI and CI, then must be a (* keep *) wire
if (input_bits.erase(O)) {
log_assert(output_bits.count(O));
log_assert(O.wire->get_bool_attribute(ID::keep));
}
}
}
for (auto bit : input_bits) {
if (!output_bits.count(bit))
continue;
RTLIL::Wire *wire = bit.wire;
// If encountering an inout port, or a keep-ed wire, then create a new wire
// with $inout.out suffix, make it a PO driven by the existing inout, and
// inherit existing inout's drivers
if ((wire->port_input && wire->port_output && !undriven_bits.count(bit))
|| keep_bits.count(bit)) {
RTLIL::IdString wire_name = stringf("$%s$inout.out", wire->name.c_str());
RTLIL::Wire *new_wire = module->wire(wire_name);
if (!new_wire)
new_wire = module->addWire(wire_name, GetSize(wire));
SigBit new_bit(new_wire, bit.offset);
module->connect(new_bit, bit);
if (not_map.count(bit)) {
auto a = not_map.at(bit);
not_map[new_bit] = a;
// Connect <cell>.abc9_ff.Q (inserted by abc9_map.v) as the last input to the flop box
if (box_module->get_bool_attribute("\\abc9_flop")) {
SigSpec rhs = module->wire(stringf("%s.abc9_ff.Q", cell->name.c_str()));
if (rhs.empty())
log_error("'%s.abc9_ff.Q' is not a wire present in module '%s'.\n", log_id(cell), log_id(module));
for (auto b : rhs) {
SigBit I = sigmap(b);
if (b == RTLIL::Sx)
b = State::S0;
else if (I != b) {
if (I == RTLIL::Sx)
alias_map[b] = State::S0;
else
alias_map[b] = I;
}
co_bits.emplace_back(b);
unused_bits.erase(I);
}
else if (and_map.count(bit)) {
auto a = and_map.at(bit);
and_map[new_bit] = a;
}
else if (alias_map.count(bit)) {
auto a = alias_map.at(bit);
alias_map[new_bit] = a;
}
else
alias_map[new_bit] = bit;
output_bits.erase(bit);
output_bits.insert(new_bit);
}
}
for (auto bit : input_bits)
undriven_bits.erase(bit);
for (auto bit : output_bits)
unused_bits.erase(sigmap(bit));
for (auto bit : unused_bits)
undriven_bits.erase(bit);
if (!undriven_bits.empty() && !holes_mode) {
undriven_bits.sort();
for (auto bit : undriven_bits) {
log_warning("Treating undriven bit %s.%s like $anyseq.\n", log_id(module), log_signal(bit));
input_bits.insert(bit);
}
log_warning("Treating a total of %d undriven bits in %s like $anyseq.\n", GetSize(undriven_bits), log_id(module));
// Make all undriven bits a primary input
for (auto bit : undriven_bits) {
input_bits.insert(bit);
undriven_bits.erase(bit);
}
if (holes_mode) {
struct sort_by_port_id {
bool operator()(const RTLIL::SigBit& a, const RTLIL::SigBit& b) const {
return a.wire->port_id < b.wire->port_id;
return a.wire->port_id < b.wire->port_id ||
(a.wire->port_id == b.wire->port_id && a.offset < b.offset);
}
};
input_bits.sort(sort_by_port_id());
output_bits.sort(sort_by_port_id());
}
else {
input_bits.sort();
output_bits.sort();
}
not_map.sort();
and_map.sort();
aig_map[State::S0] = 0;
aig_map[State::S1] = 1;
for (auto bit : input_bits) {
for (const auto &bit : input_bits) {
aig_m++, aig_i++;
log_assert(!aig_map.count(bit));
aig_map[bit] = 2*aig_m;
}
for (auto &c : ci_bits) {
RTLIL::SigBit bit = std::get<0>(c);
for (const auto &i : ff_bits) {
const Cell *cell = i.second;
const SigBit &q = sigmap(cell->getPort("\\Q"));
aig_m++, aig_i++;
log_assert(!aig_map.count(q));
aig_map[q] = 2*aig_m;
}
for (auto &bit : ci_bits) {
aig_m++, aig_i++;
// 1'bx may exist here due to a box output
// that has been padded to its full width
if (bit == State::Sx)
continue;
log_assert(!aig_map.count(bit));
aig_map[bit] = 2*aig_m;
}
for (auto &c : co_bits) {
RTLIL::SigBit bit = std::get<0>(c);
std::get<4>(c) = ordered_outputs[bit] = aig_o++;
aig_outputs.push_back(bit2aig(bit));
}
if (output_bits.empty()) {
output_bits.insert(State::S0);
omode = true;
}
for (auto bit : output_bits) {
for (auto bit : co_bits) {
ordered_outputs[bit] = aig_o++;
aig_outputs.push_back(bit2aig(bit));
}
for (const auto &bit : output_bits) {
ordered_outputs[bit] = aig_o++;
int aig;
// Unlike bit2aig() which checks aig_map first, for
// inout/keep bits, since aig_map will point to
// the PI, first attempt to find the NOT/AND driver
// before resorting to an aig_map lookup (which
// could be another PO)
if (input_bits.count(bit)) {
if (not_map.count(bit)) {
aig = bit2aig(not_map.at(bit)) ^ 1;
} else if (and_map.count(bit)) {
auto args = and_map.at(bit);
int a0 = bit2aig(args.first);
int a1 = bit2aig(args.second);
aig = mkgate(a0, a1);
}
else
aig = aig_map.at(bit);
}
else
aig = bit2aig(bit);
aig_outputs.push_back(aig);
}
for (auto &i : ff_bits) {
const SigBit &d = i.first;
aig_o++;
aig_outputs.push_back(aig_map.at(d));
}
}
void write_aiger(std::ostream &f, bool ascii_mode)
@ -570,7 +539,6 @@ struct XAigerWriter
f << "c";
log_assert(!output_bits.empty());
auto write_buffer = [](std::stringstream &buffer, int i32) {
int32_t i32_be = to_big_endian(i32);
buffer.write(reinterpret_cast<const char*>(&i32_be), sizeof(i32_be));
@ -578,14 +546,14 @@ struct XAigerWriter
std::stringstream h_buffer;
auto write_h_buffer = std::bind(write_buffer, std::ref(h_buffer), std::placeholders::_1);
write_h_buffer(1);
log_debug("ciNum = %d\n", GetSize(input_bits) + GetSize(ci_bits));
write_h_buffer(input_bits.size() + ci_bits.size());
log_debug("coNum = %d\n", GetSize(output_bits) + GetSize(co_bits));
write_h_buffer(output_bits.size() + GetSize(co_bits));
log_debug("piNum = %d\n", GetSize(input_bits));
write_h_buffer(input_bits.size());
log_debug("poNum = %d\n", GetSize(output_bits));
write_h_buffer(output_bits.size());
log_debug("ciNum = %d\n", GetSize(input_bits) + GetSize(ff_bits) + GetSize(ci_bits));
write_h_buffer(input_bits.size() + ff_bits.size() + ci_bits.size());
log_debug("coNum = %d\n", GetSize(output_bits) + GetSize(ff_bits) + GetSize(co_bits));
write_h_buffer(output_bits.size() + GetSize(ff_bits) + GetSize(co_bits));
log_debug("piNum = %d\n", GetSize(input_bits) + GetSize(ff_bits));
write_h_buffer(input_bits.size() + ff_bits.size());
log_debug("poNum = %d\n", GetSize(output_bits) + GetSize(ff_bits));
write_h_buffer(output_bits.size() + ff_bits.size());
log_debug("boxNum = %d\n", GetSize(box_list));
write_h_buffer(box_list.size());
@ -601,134 +569,100 @@ struct XAigerWriter
//for (auto bit : output_bits)
// write_o_buffer(0);
if (!box_list.empty()) {
RTLIL::Module *holes_module = module->design->addModule("$__holes__");
log_assert(holes_module);
if (!box_list.empty() || !ff_bits.empty()) {
dict<IdString, std::tuple<int,int,int>> cell_cache;
dict<IdString, Cell*> cell_cache;
int port_id = 1;
int box_count = 0;
for (auto cell : box_list) {
log_assert(cell);
RTLIL::Module* box_module = module->design->module(cell->type);
log_assert(box_module);
IdString derived_name = box_module->derive(module->design, cell->parameters);
box_module = module->design->module(derived_name);
if (box_module->has_processes())
log_error("ABC9 box '%s' contains processes!\n", box_module->name.c_str());
int box_inputs = 0, box_outputs = 0;
auto r = cell_cache.insert(std::make_pair(derived_name, nullptr));
Cell *holes_cell = r.first->second;
if (r.second && !holes_cell && box_module->get_bool_attribute("\\whitebox")) {
holes_cell = holes_module->addCell(cell->name, cell->type);
holes_cell->parameters = cell->parameters;
r.first->second = holes_cell;
auto r = cell_cache.insert(cell->type);
auto &v = r.first->second;
if (r.second) {
int box_inputs = 0, box_outputs = 0;
for (auto port_name : box_module->ports) {
RTLIL::Wire *w = box_module->wire(port_name);
log_assert(w);
if (w->port_input)
box_inputs += GetSize(w);
if (w->port_output)
box_outputs += GetSize(w);
}
// For flops only, create an extra 1-bit input that drives a new wire
// called "<cell>.abc9_ff.Q" that is used below
if (box_module->get_bool_attribute("\\abc9_flop"))
box_inputs++;
std::get<0>(v) = box_inputs;
std::get<1>(v) = box_outputs;
std::get<2>(v) = box_module->attributes.at("\\abc9_box_id").as_int();
}
// NB: Assume box_module->ports are sorted alphabetically
// (as RTLIL::Module::fixup_ports() would do)
for (const auto &port_name : box_module->ports) {
RTLIL::Wire *w = box_module->wire(port_name);
log_assert(w);
RTLIL::Wire *holes_wire;
RTLIL::SigSpec port_sig;
if (w->port_input)
for (int i = 0; i < GetSize(w); i++) {
box_inputs++;
holes_wire = holes_module->wire(stringf("\\i%d", box_inputs));
if (!holes_wire) {
holes_wire = holes_module->addWire(stringf("\\i%d", box_inputs));
holes_wire->port_input = true;
holes_wire->port_id = port_id++;
holes_module->ports.push_back(holes_wire->name);
}
if (holes_cell)
port_sig.append(holes_wire);
}
if (w->port_output) {
box_outputs += GetSize(w);
for (int i = 0; i < GetSize(w); i++) {
if (GetSize(w) == 1)
holes_wire = holes_module->addWire(stringf("%s.%s", cell->name.c_str(), log_id(w->name)));
else
holes_wire = holes_module->addWire(stringf("%s.%s[%d]", cell->name.c_str(), log_id(w->name), i));
holes_wire->port_output = true;
holes_wire->port_id = port_id++;
holes_module->ports.push_back(holes_wire->name);
if (holes_cell)
port_sig.append(holes_wire);
else
holes_module->connect(holes_wire, State::S0);
}
}
if (!port_sig.empty()) {
if (r.second)
holes_cell->setPort(w->name, port_sig);
else
holes_module->connect(holes_cell->getPort(w->name), port_sig);
}
}
write_h_buffer(box_inputs);
write_h_buffer(box_outputs);
write_h_buffer(box_module->attributes.at("\\abc9_box_id").as_int());
write_h_buffer(std::get<0>(v));
write_h_buffer(std::get<1>(v));
write_h_buffer(std::get<2>(v));
write_h_buffer(box_count++);
}
std::stringstream r_buffer;
auto write_r_buffer = std::bind(write_buffer, std::ref(r_buffer), std::placeholders::_1);
write_r_buffer(0);
log_debug("flopNum = %d\n", GetSize(ff_bits));
write_r_buffer(ff_bits.size());
std::stringstream s_buffer;
auto write_s_buffer = std::bind(write_buffer, std::ref(s_buffer), std::placeholders::_1);
write_s_buffer(ff_bits.size());
for (const auto &i : ff_bits) {
const SigBit &d = i.first;
const Cell *cell = i.second;
int mergeability = cell->attributes.at(ID(abc9_mergeability)).as_int();
log_assert(mergeability > 0);
write_r_buffer(mergeability);
Const init = cell->attributes.at(ID(abc9_init));
log_assert(GetSize(init) == 1);
if (init == State::S1)
write_s_buffer(1);
else if (init == State::S0)
write_s_buffer(0);
else {
log_assert(init == State::Sx);
write_s_buffer(0);
}
write_i_buffer(arrival_times.at(d, 0));
//write_o_buffer(0);
}
f << "r";
std::string buffer_str = r_buffer.str();
int32_t buffer_size_be = to_big_endian(buffer_str.size());
f.write(reinterpret_cast<const char*>(&buffer_size_be), sizeof(buffer_size_be));
f.write(buffer_str.data(), buffer_str.size());
f << "s";
buffer_str = s_buffer.str();
buffer_size_be = to_big_endian(buffer_str.size());
f.write(reinterpret_cast<const char*>(&buffer_size_be), sizeof(buffer_size_be));
f.write(buffer_str.data(), buffer_str.size());
RTLIL::Module *holes_module = module->design->module(stringf("%s$holes", module->name.c_str()));
if (holes_module) {
log_push();
// NB: fixup_ports() will sort ports by name
//holes_module->fixup_ports();
holes_module->check();
holes_module->design->selection_stack.emplace_back(false);
RTLIL::Selection& sel = holes_module->design->selection_stack.back();
sel.select(holes_module);
Pass::call(holes_module->design, "flatten -wb");
// Cannot techmap/aigmap all lib_whitebox-es just once per design
// instead of per write_xaiger call, since boxes may be parameterised
// and new $paramod-s may have been created...
Pass::call(holes_module->design, "techmap");
Pass::call(holes_module->design, "aigmap");
for (auto cell : holes_module->cells())
if (!cell->type.in("$_NOT_", "$_AND_"))
log_error("Whitebox contents cannot be represented as AIG. Please verify whiteboxes are synthesisable.\n");
holes_module->design->selection_stack.pop_back();
// Move into a new (temporary) design so that "clean" will only
// operate (and run checks on) this one module
RTLIL::Design *holes_design = new RTLIL::Design;
holes_module->design->modules_.erase(holes_module->name);
holes_design->add(holes_module);
Pass::call(holes_design, "clean -purge");
std::stringstream a_buffer;
XAigerWriter writer(holes_module, true /* holes_mode */);
writer.write_aiger(a_buffer, false /*ascii_mode*/);
delete holes_design;
f << "a";
std::string buffer_str = a_buffer.str();
int32_t buffer_size_be = to_big_endian(buffer_str.size());
f.write(reinterpret_cast<const char*>(&buffer_size_be), sizeof(buffer_size_be));
f.write(buffer_str.data(), buffer_str.size());
log_pop();
}
}
@ -750,19 +684,20 @@ struct XAigerWriter
//f.write(buffer_str.data(), buffer_str.size());
f << stringf("Generated by %s\n", yosys_version_str);
module->design->scratchpad_set_int("write_xaiger.num_ands", and_map.size());
module->design->scratchpad_set_int("write_xaiger.num_wires", aig_map.size());
module->design->scratchpad_set_int("write_xaiger.num_inputs", input_bits.size());
module->design->scratchpad_set_int("write_xaiger.num_outputs", output_bits.size());
}
void write_map(std::ostream &f, bool verbose_map)
void write_map(std::ostream &f)
{
dict<int, string> input_lines;
dict<int, string> output_lines;
dict<int, string> wire_lines;
for (auto wire : module->wires())
{
//if (!verbose_map && wire->name[0] == '$')
// continue;
SigSpec sig = sigmap(wire);
for (int i = 0; i < GetSize(wire); i++)
@ -776,17 +711,10 @@ struct XAigerWriter
if (output_bits.count(b)) {
int o = ordered_outputs.at(b);
output_lines[o] += stringf("output %d %d %s\n", o - GetSize(co_bits), i, log_id(wire));
int init = 2;
output_lines[o] += stringf("output %d %d %s %d\n", o - GetSize(co_bits), i, log_id(wire), init);
continue;
}
if (verbose_map) {
if (aig_map.count(sig[i]) == 0)
continue;
int a = aig_map.at(sig[i]);
wire_lines[a] += stringf("wire %d %d %s\n", a, i, log_id(wire));
}
}
}
@ -800,15 +728,9 @@ struct XAigerWriter
f << stringf("box %d %d %s\n", box_count++, 0, log_id(cell->name));
output_lines.sort();
if (omode)
output_lines[State::S0] = "output 0 0 $__dummy__\n";
for (auto &it : output_lines)
f << it.second;
log_assert(output_lines.size() == output_bits.size());
wire_lines.sort();
for (auto &it : wire_lines)
f << it.second;
}
};
@ -820,8 +742,11 @@ struct XAigerBackend : public Backend {
log("\n");
log(" write_xaiger [options] [filename]\n");
log("\n");
log("Write the current design to an XAIGER file. The design must be flattened and\n");
log("all unsupported cells will be converted into psuedo-inputs and pseudo-outputs.\n");
log("Write the top module (according to the (* top *) attribute or if only one module\n");
log("is currently selected) to an XAIGER file. Any non $_NOT_, $_AND_, $_ABC9_FF_, or");
log("non (* abc9_box_id *) cells will be converted into psuedo-inputs and\n");
log("pseudo-outputs. Whitebox contents will be taken from the '<module-name>$holes'\n");
log("module, if it exists.\n");
log("\n");
log(" -ascii\n");
log(" write ASCII version of AIGER format\n");
@ -829,14 +754,10 @@ struct XAigerBackend : public Backend {
log(" -map <filename>\n");
log(" write an extra file with port and box symbols\n");
log("\n");
log(" -vmap <filename>\n");
log(" like -map, but more verbose\n");
log("\n");
}
void execute(std::ostream *&f, std::string filename, std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
{
bool ascii_mode = false;
bool verbose_map = false;
std::string map_filename;
log_header(design, "Executing XAIGER backend.\n");
@ -852,11 +773,6 @@ struct XAigerBackend : public Backend {
map_filename = args[++argidx];
continue;
}
if (map_filename.empty() && args[argidx] == "-vmap" && argidx+1 < args.size()) {
map_filename = args[++argidx];
verbose_map = true;
continue;
}
break;
}
extra_args(f, filename, args, argidx, !ascii_mode);
@ -866,6 +782,14 @@ struct XAigerBackend : public Backend {
if (top_module == nullptr)
log_error("Can't find top module in current design!\n");
if (!design->selected_whole_module(top_module))
log_cmd_error("Can't handle partially selected module %s!\n", log_id(top_module));
if (!top_module->processes.empty())
log_error("Found unmapped processes in module %s: unmapped processes are not supported in XAIGER backend!\n", log_id(top_module));
if (!top_module->memories.empty())
log_error("Found unmapped memories in module %s: unmapped memories are not supported in XAIGER backend!\n", log_id(top_module));
XAigerWriter writer(top_module);
writer.write_aiger(*f, ascii_mode);
@ -874,7 +798,7 @@ struct XAigerBackend : public Backend {
mapf.open(map_filename.c_str(), std::ofstream::trunc);
if (mapf.fail())
log_error("Can't open file `%s' for writing: %s\n", map_filename.c_str(), strerror(errno));
writer.write_map(mapf, verbose_map);
writer.write_map(mapf);
}
}
} XAigerBackend;

View File

@ -300,6 +300,26 @@ struct EdifBackend : public Backend {
*f << stringf(" (library DESIGN\n");
*f << stringf(" (edifLevel 0)\n");
*f << stringf(" (technology (numberDefinition))\n");
auto add_prop = [&](IdString name, Const val) {
if ((val.flags & RTLIL::CONST_FLAG_STRING) != 0)
*f << stringf("\n (property %s (string \"%s\"))", EDIF_DEF(name), val.decode_string().c_str());
else if (val.bits.size() <= 32 && RTLIL::SigSpec(val).is_fully_def())
*f << stringf("\n (property %s (integer %u))", EDIF_DEF(name), val.as_int());
else {
std::string hex_string = "";
for (size_t i = 0; i < val.bits.size(); i += 4) {
int digit_value = 0;
if (i+0 < val.bits.size() && val.bits.at(i+0) == RTLIL::State::S1) digit_value |= 1;
if (i+1 < val.bits.size() && val.bits.at(i+1) == RTLIL::State::S1) digit_value |= 2;
if (i+2 < val.bits.size() && val.bits.at(i+2) == RTLIL::State::S1) digit_value |= 4;
if (i+3 < val.bits.size() && val.bits.at(i+3) == RTLIL::State::S1) digit_value |= 8;
char digit_str[2] = { "0123456789abcdef"[digit_value], 0 };
hex_string = std::string(digit_str) + hex_string;
}
*f << stringf("\n (property %s (string \"%d'h%s\"))", EDIF_DEF(name), GetSize(val.bits), hex_string.c_str());
}
};
for (auto module : sorted_modules)
{
if (module->get_blackbox_attribute())
@ -323,14 +343,23 @@ struct EdifBackend : public Backend {
else if (!wire->port_input)
dir = "OUTPUT";
if (wire->width == 1) {
*f << stringf(" (port %s (direction %s))\n", EDIF_DEF(wire->name), dir);
*f << stringf(" (port %s (direction %s)", EDIF_DEF(wire->name), dir);
if (attr_properties)
for (auto &p : wire->attributes)
add_prop(p.first, p.second);
*f << ")\n";
RTLIL::SigSpec sig = sigmap(RTLIL::SigSpec(wire));
net_join_db[sig].insert(stringf("(portRef %s)", EDIF_REF(wire->name)));
} else {
int b[2];
b[wire->upto ? 0 : 1] = wire->start_offset;
b[wire->upto ? 1 : 0] = wire->start_offset + GetSize(wire) - 1;
*f << stringf(" (port (array %s %d) (direction %s))\n", EDIF_DEFR(wire->name, port_rename, b[0], b[1]), wire->width, dir);
*f << stringf(" (port (array %s %d) (direction %s)", EDIF_DEFR(wire->name, port_rename, b[0], b[1]), wire->width, dir);
if (attr_properties)
for (auto &p : wire->attributes)
add_prop(p.first, p.second);
*f << ")\n";
for (int i = 0; i < wire->width; i++) {
RTLIL::SigSpec sig = sigmap(RTLIL::SigSpec(wire, i));
net_join_db[sig].insert(stringf("(portRef (member %s %d))", EDIF_REF(wire->name), GetSize(wire)-i-1));
@ -348,27 +377,6 @@ struct EdifBackend : public Backend {
*f << stringf(" (instance %s\n", EDIF_DEF(cell->name));
*f << stringf(" (viewRef VIEW_NETLIST (cellRef %s%s))", EDIF_REF(cell->type),
lib_cell_ports.count(cell->type) > 0 ? " (libraryRef LIB)" : "");
auto add_prop = [&](IdString name, Const val) {
if ((val.flags & RTLIL::CONST_FLAG_STRING) != 0)
*f << stringf("\n (property %s (string \"%s\"))", EDIF_DEF(name), val.decode_string().c_str());
else if (val.bits.size() <= 32 && RTLIL::SigSpec(val).is_fully_def())
*f << stringf("\n (property %s (integer %u))", EDIF_DEF(name), val.as_int());
else {
std::string hex_string = "";
for (size_t i = 0; i < val.bits.size(); i += 4) {
int digit_value = 0;
if (i+0 < val.bits.size() && val.bits.at(i+0) == RTLIL::State::S1) digit_value |= 1;
if (i+1 < val.bits.size() && val.bits.at(i+1) == RTLIL::State::S1) digit_value |= 2;
if (i+2 < val.bits.size() && val.bits.at(i+2) == RTLIL::State::S1) digit_value |= 4;
if (i+3 < val.bits.size() && val.bits.at(i+3) == RTLIL::State::S1) digit_value |= 8;
char digit_str[2] = { "0123456789abcdef"[digit_value], 0 };
hex_string = std::string(digit_str) + hex_string;
}
*f << stringf("\n (property %s (string \"%d'h%s\"))", EDIF_DEF(name), GetSize(val.bits), hex_string.c_str());
}
};
for (auto &p : cell->parameters)
add_prop(p.first, p.second);
if (attr_properties)
@ -404,6 +412,8 @@ struct EdifBackend : public Backend {
for (auto &ref : it.second)
log_warning("Exporting x-bit on %s as zero bit.\n", ref.c_str());
sig = RTLIL::State::S0;
} else if (sig == RTLIL::State::Sz) {
continue;
} else {
for (auto &ref : it.second)
log_error("Don't know how to handle %s on %s.\n", log_signal(sig), ref.c_str());
@ -432,7 +442,11 @@ struct EdifBackend : public Backend {
if (sig == RTLIL::State::S1)
*f << stringf(" (portRef %c (instanceRef VCC))\n", gndvccy ? 'Y' : 'P');
}
*f << stringf(" ))\n");
*f << stringf(" )");
if (attr_properties && sig.wire != NULL)
for (auto &p : sig.wire->attributes)
add_prop(p.first, p.second);
*f << stringf("\n )\n");
}
*f << stringf(" )\n");
*f << stringf(" )\n");

View File

@ -304,7 +304,11 @@ class SmtIo:
def p_open(self):
assert self.p is None
self.p = subprocess.Popen(self.popen_vargs, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
try:
self.p = subprocess.Popen(self.popen_vargs, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
except FileNotFoundError:
print("%s SMT Solver '%s' not found in path." % (self.timestamp(), self.popen_vargs[0]), flush=True)
sys.exit(1)
running_solvers[self.p_index] = self.p
self.p_running = True
self.p_next = None

View File

@ -206,7 +206,7 @@ eval_end:
};
AigerReader::AigerReader(RTLIL::Design *design, std::istream &f, RTLIL::IdString module_name, RTLIL::IdString clk_name, std::string map_filename, bool wideports)
: design(design), f(f), clk_name(clk_name), map_filename(map_filename), wideports(wideports)
: design(design), f(f), clk_name(clk_name), map_filename(map_filename), wideports(wideports), aiger_autoidx(autoidx++)
{
module = new RTLIL::Module;
module->name = module_name;
@ -255,7 +255,7 @@ end_of_header:
else
log_abort();
RTLIL::Wire* n0 = module->wire("\\__0__");
RTLIL::Wire* n0 = module->wire(stringf("$aiger%d$0", aiger_autoidx));
if (n0)
module->connect(n0, State::S0);
@ -271,14 +271,24 @@ end_of_header:
if ((c == 'i' && l1 > inputs.size()) || (c == 'l' && l1 > latches.size()) || (c == 'o' && l1 > outputs.size()))
log_error("Line %u has invalid symbol position!\n", line_count);
RTLIL::IdString escaped_s = stringf("\\%s", s.c_str());
RTLIL::Wire* wire;
if (c == 'i') wire = inputs[l1];
else if (c == 'l') wire = latches[l1];
else if (c == 'o') wire = outputs[l1];
else if (c == 'o') {
wire = module->wire(escaped_s);
if (wire) {
// Could have been renamed by a latch
module->swap_names(wire, outputs[l1]);
module->connect(outputs[l1], wire);
goto next;
}
wire = outputs[l1];
}
else if (c == 'b') wire = bad_properties[l1];
else log_abort();
module->rename(wire, stringf("\\%s", s.c_str()));
module->rename(wire, escaped_s);
}
else if (c == 'j' || c == 'f') {
// TODO
@ -293,6 +303,7 @@ end_of_header:
}
else
log_error("Line %u: cannot interpret first character '%c'!\n", line_count, c);
next:
std::getline(f, line); // Ignore up to start of next line
}
@ -312,18 +323,18 @@ static uint32_t parse_xaiger_literal(std::istream &f)
return from_big_endian(l);
}
static RTLIL::Wire* createWireIfNotExists(RTLIL::Module *module, unsigned literal)
RTLIL::Wire* AigerReader::createWireIfNotExists(RTLIL::Module *module, unsigned literal)
{
const unsigned variable = literal >> 1;
const bool invert = literal & 1;
RTLIL::IdString wire_name(stringf("\\__%d%s__", variable, invert ? "b" : ""));
RTLIL::IdString wire_name(stringf("$aiger%d$%d%s", aiger_autoidx, variable, invert ? "b" : ""));
RTLIL::Wire *wire = module->wire(wire_name);
if (wire) return wire;
log_debug2("Creating %s\n", wire_name.c_str());
wire = module->addWire(wire_name);
wire->port_input = wire->port_output = false;
if (!invert) return wire;
RTLIL::IdString wire_inv_name(stringf("\\__%d__", variable));
RTLIL::IdString wire_inv_name(stringf("$aiger%d$%d", aiger_autoidx, variable));
RTLIL::Wire *wire_inv = module->wire(wire_inv_name);
if (wire_inv) {
if (module->cell(wire_inv_name)) return wire;
@ -335,12 +346,12 @@ static RTLIL::Wire* createWireIfNotExists(RTLIL::Module *module, unsigned litera
}
log_debug2("Creating %s = ~%s\n", wire_name.c_str(), wire_inv_name.c_str());
module->addNotGate(stringf("\\__%d__$not", variable), wire_inv, wire);
module->addNotGate(stringf("$not$aiger%d$%d", aiger_autoidx, variable), wire_inv, wire);
return wire;
}
void AigerReader::parse_xaiger(const dict<int,IdString> &box_lookup)
void AigerReader::parse_xaiger()
{
std::string header;
f >> header;
@ -372,108 +383,115 @@ void AigerReader::parse_xaiger(const dict<int,IdString> &box_lookup)
else
log_abort();
RTLIL::Wire* n0 = module->wire("\\__0__");
RTLIL::Wire* n0 = module->wire(stringf("$aiger%d$0", aiger_autoidx));
if (n0)
module->connect(n0, State::S0);
int c = f.get();
if (c != 'c')
log_error("Line %u: cannot interpret first character '%c'!\n", line_count, c);
if (f.peek() == '\n')
f.get();
// Parse footer (symbol table, comments, etc.)
std::string s;
bool comment_seen = false;
for (int c = f.peek(); c != EOF; c = f.peek()) {
if (comment_seen || c == 'c') {
if (!comment_seen) {
f.ignore(1);
c = f.peek();
comment_seen = true;
}
if (c == '\n')
break;
f.ignore(1);
// XAIGER extensions
if (c == 'm') {
uint32_t dataSize YS_ATTRIBUTE(unused) = parse_xaiger_literal(f);
uint32_t lutNum = parse_xaiger_literal(f);
uint32_t lutSize YS_ATTRIBUTE(unused) = parse_xaiger_literal(f);
log_debug("m: dataSize=%u lutNum=%u lutSize=%u\n", dataSize, lutNum, lutSize);
ConstEvalAig ce(module);
for (unsigned i = 0; i < lutNum; ++i) {
uint32_t rootNodeID = parse_xaiger_literal(f);
uint32_t cutLeavesM = parse_xaiger_literal(f);
log_debug2("rootNodeID=%d cutLeavesM=%d\n", rootNodeID, cutLeavesM);
RTLIL::Wire *output_sig = module->wire(stringf("\\__%d__", rootNodeID));
uint32_t nodeID;
RTLIL::SigSpec input_sig;
for (unsigned j = 0; j < cutLeavesM; ++j) {
nodeID = parse_xaiger_literal(f);
log_debug2("\t%u\n", nodeID);
RTLIL::Wire *wire = module->wire(stringf("\\__%d__", nodeID));
log_assert(wire);
input_sig.append(wire);
for (int c = f.get(); c != EOF; c = f.get()) {
// XAIGER extensions
if (c == 'm') {
uint32_t dataSize YS_ATTRIBUTE(unused) = parse_xaiger_literal(f);
uint32_t lutNum = parse_xaiger_literal(f);
uint32_t lutSize YS_ATTRIBUTE(unused) = parse_xaiger_literal(f);
log_debug("m: dataSize=%u lutNum=%u lutSize=%u\n", dataSize, lutNum, lutSize);
ConstEvalAig ce(module);
for (unsigned i = 0; i < lutNum; ++i) {
uint32_t rootNodeID = parse_xaiger_literal(f);
uint32_t cutLeavesM = parse_xaiger_literal(f);
log_debug2("rootNodeID=%d cutLeavesM=%d\n", rootNodeID, cutLeavesM);
RTLIL::Wire *output_sig = module->wire(stringf("$aiger%d$%d", aiger_autoidx, rootNodeID));
log_assert(output_sig);
uint32_t nodeID;
RTLIL::SigSpec input_sig;
for (unsigned j = 0; j < cutLeavesM; ++j) {
nodeID = parse_xaiger_literal(f);
log_debug2("\t%u\n", nodeID);
if (nodeID == 0) {
log_debug("\tLUT '$lut$aiger%d$%d' input %d is constant!\n", aiger_autoidx, rootNodeID, cutLeavesM);
continue;
}
// TODO: Compute LUT mask from AIG in less than O(2 ** input_sig.size())
ce.clear();
ce.compute_deps(output_sig, input_sig.to_sigbit_pool());
RTLIL::Const lut_mask(RTLIL::State::Sx, 1 << input_sig.size());
for (int j = 0; j < (1 << cutLeavesM); ++j) {
int gray = j ^ (j >> 1);
ce.set_incremental(input_sig, RTLIL::Const{gray, static_cast<int>(cutLeavesM)});
RTLIL::SigBit o(output_sig);
bool success YS_ATTRIBUTE(unused) = ce.eval(o);
log_assert(success);
log_assert(o.wire == nullptr);
lut_mask[gray] = o.data;
}
RTLIL::Cell *output_cell = module->cell(stringf("\\__%d__$and", rootNodeID));
log_assert(output_cell);
module->remove(output_cell);
module->addLut(stringf("\\__%d__$lut", rootNodeID), input_sig, output_sig, std::move(lut_mask));
RTLIL::Wire *wire = module->wire(stringf("$aiger%d$%d", aiger_autoidx, nodeID));
log_assert(wire);
input_sig.append(wire);
}
}
else if (c == 'r') {
uint32_t dataSize YS_ATTRIBUTE(unused) = parse_xaiger_literal(f);
flopNum = parse_xaiger_literal(f);
log_debug("flopNum: %u\n", flopNum);
log_assert(dataSize == (flopNum+1) * sizeof(uint32_t));
f.ignore(flopNum * sizeof(uint32_t));
}
else if (c == 'n') {
parse_xaiger_literal(f);
f >> s;
log_debug("n: '%s'\n", s.c_str());
}
else if (c == 'h') {
f.ignore(sizeof(uint32_t));
uint32_t version YS_ATTRIBUTE(unused) = parse_xaiger_literal(f);
log_assert(version == 1);
uint32_t ciNum YS_ATTRIBUTE(unused) = parse_xaiger_literal(f);
log_debug("ciNum = %u\n", ciNum);
uint32_t coNum YS_ATTRIBUTE(unused) = parse_xaiger_literal(f);
log_debug("coNum = %u\n", coNum);
piNum = parse_xaiger_literal(f);
log_debug("piNum = %u\n", piNum);
uint32_t poNum YS_ATTRIBUTE(unused) = parse_xaiger_literal(f);
log_debug("poNum = %u\n", poNum);
uint32_t boxNum = parse_xaiger_literal(f);
log_debug("boxNum = %u\n", boxNum);
for (unsigned i = 0; i < boxNum; i++) {
f.ignore(2*sizeof(uint32_t));
uint32_t boxUniqueId = parse_xaiger_literal(f);
log_assert(boxUniqueId > 0);
uint32_t oldBoxNum = parse_xaiger_literal(f);
RTLIL::Cell* cell = module->addCell(stringf("$__box%u__", oldBoxNum), box_lookup.at(boxUniqueId));
boxes.emplace_back(cell);
// Reverse input order as fastest input is returned first
input_sig.reverse();
// TODO: Compute LUT mask from AIG in less than O(2 ** input_sig.size())
ce.clear();
ce.compute_deps(output_sig, input_sig.to_sigbit_pool());
RTLIL::Const lut_mask(RTLIL::State::Sx, 1 << GetSize(input_sig));
for (int j = 0; j < GetSize(lut_mask); ++j) {
int gray = j ^ (j >> 1);
ce.set_incremental(input_sig, RTLIL::Const{gray, GetSize(input_sig)});
RTLIL::SigBit o(output_sig);
bool success YS_ATTRIBUTE(unused) = ce.eval(o);
log_assert(success);
log_assert(o.wire == nullptr);
lut_mask[gray] = o.data;
}
}
else if (c == 'a' || c == 'i' || c == 'o') {
uint32_t dataSize = parse_xaiger_literal(f);
f.ignore(dataSize);
}
else {
break;
RTLIL::Cell *output_cell = module->cell(stringf("$and$aiger%d$%d", aiger_autoidx, rootNodeID));
log_assert(output_cell);
module->remove(output_cell);
module->addLut(stringf("$lut$aiger%d$%d", aiger_autoidx, rootNodeID), input_sig, output_sig, std::move(lut_mask));
}
}
else
log_error("Line %u: cannot interpret first character '%c'!\n", line_count, c);
else if (c == 'r') {
uint32_t dataSize = parse_xaiger_literal(f);
flopNum = parse_xaiger_literal(f);
log_debug("flopNum = %u\n", flopNum);
log_assert(dataSize == (flopNum+1) * sizeof(uint32_t));
mergeability.reserve(flopNum);
for (unsigned i = 0; i < flopNum; i++)
mergeability.emplace_back(parse_xaiger_literal(f));
}
else if (c == 'n') {
parse_xaiger_literal(f);
f >> s;
log_debug("n: '%s'\n", s.c_str());
}
else if (c == 'h') {
f.ignore(sizeof(uint32_t));
uint32_t version YS_ATTRIBUTE(unused) = parse_xaiger_literal(f);
log_assert(version == 1);
uint32_t ciNum YS_ATTRIBUTE(unused) = parse_xaiger_literal(f);
log_debug("ciNum = %u\n", ciNum);
uint32_t coNum YS_ATTRIBUTE(unused) = parse_xaiger_literal(f);
log_debug("coNum = %u\n", coNum);
piNum = parse_xaiger_literal(f);
log_debug("piNum = %u\n", piNum);
uint32_t poNum YS_ATTRIBUTE(unused) = parse_xaiger_literal(f);
log_debug("poNum = %u\n", poNum);
uint32_t boxNum = parse_xaiger_literal(f);
log_debug("boxNum = %u\n", boxNum);
for (unsigned i = 0; i < boxNum; i++) {
uint32_t boxInputs = parse_xaiger_literal(f);
uint32_t boxOutputs = parse_xaiger_literal(f);
uint32_t boxUniqueId = parse_xaiger_literal(f);
log_assert(boxUniqueId > 0);
uint32_t oldBoxNum = parse_xaiger_literal(f);
RTLIL::Cell* cell = module->addCell(stringf("$box%u", oldBoxNum), stringf("$__boxid%u", boxUniqueId));
cell->setPort("\\i", SigSpec(State::S0, boxInputs));
cell->setPort("\\o", SigSpec(State::S0, boxOutputs));
cell->attributes["\\abc9_box_seq"] = oldBoxNum;
boxes.emplace_back(cell);
}
}
else if (c == 'a' || c == 'i' || c == 'o' || c == 's') {
uint32_t dataSize = parse_xaiger_literal(f);
f.ignore(dataSize);
log_debug("ignoring '%c'\n", c);
}
else {
break;
}
}
post_process();
@ -487,13 +505,15 @@ void AigerReader::parse_aiger_ascii()
unsigned l1, l2, l3;
// Parse inputs
int digits = ceil(log10(I));
for (unsigned i = 1; i <= I; ++i, ++line_count) {
if (!(f >> l1))
log_error("Line %u cannot be interpreted as an input!\n", line_count);
log_debug2("%d is an input\n", l1);
log_assert(!(l1 & 1)); // Inputs can't be inverted
RTLIL::Wire *wire = createWireIfNotExists(module, l1);
RTLIL::Wire *wire = module->addWire(stringf("$i%0*d", digits, l1 >> 1));
wire->port_input = true;
module->connect(createWireIfNotExists(module, l1), wire);
inputs.push_back(wire);
}
@ -507,12 +527,14 @@ void AigerReader::parse_aiger_ascii()
clk_wire->port_input = true;
clk_wire->port_output = false;
}
digits = ceil(log10(L));
for (unsigned i = 0; i < L; ++i, ++line_count) {
if (!(f >> l1 >> l2))
log_error("Line %u cannot be interpreted as a latch!\n", line_count);
log_debug2("%d %d is a latch\n", l1, l2);
log_assert(!(l1 & 1));
RTLIL::Wire *q_wire = createWireIfNotExists(module, l1);
RTLIL::Wire *q_wire = module->addWire(stringf("$l%0*d", digits, l1 >> 1));
module->connect(createWireIfNotExists(module, l1), q_wire);
RTLIL::Wire *d_wire = createWireIfNotExists(module, l2);
if (clk_wire)
@ -543,25 +565,18 @@ void AigerReader::parse_aiger_ascii()
}
// Parse outputs
digits = ceil(log10(O));
for (unsigned i = 0; i < O; ++i, ++line_count) {
if (!(f >> l1))
log_error("Line %u cannot be interpreted as an output!\n", line_count);
log_debug2("%d is an output\n", l1);
const unsigned variable = l1 >> 1;
const bool invert = l1 & 1;
RTLIL::IdString wire_name(stringf("\\__%d%s__", variable, invert ? "b" : "")); // FIXME: is "b" the right suffix?
RTLIL::Wire *wire = module->wire(wire_name);
if (!wire)
wire = createWireIfNotExists(module, l1);
else if (wire->port_input || wire->port_output) {
RTLIL::Wire *new_wire = module->addWire(NEW_ID);
module->connect(new_wire, wire);
wire = new_wire;
}
RTLIL::Wire *wire = module->addWire(stringf("$o%0*d", digits, i));
wire->port_output = true;
module->connect(wire, createWireIfNotExists(module, l1));
outputs.push_back(wire);
}
//std::getline(f, line); // Ignore up to start of next line
// Parse bad properties
for (unsigned i = 0; i < B; ++i, ++line_count) {
@ -573,6 +588,8 @@ void AigerReader::parse_aiger_ascii()
wire->port_output = true;
bad_properties.push_back(wire);
}
//if (B > 0)
// std::getline(f, line); // Ignore up to start of next line
// TODO: Parse invariant constraints
for (unsigned i = 0; i < C; ++i, ++line_count)
@ -596,7 +613,7 @@ void AigerReader::parse_aiger_ascii()
RTLIL::Wire *o_wire = createWireIfNotExists(module, l1);
RTLIL::Wire *i1_wire = createWireIfNotExists(module, l2);
RTLIL::Wire *i2_wire = createWireIfNotExists(module, l3);
module->addAndGate(o_wire->name.str() + "$and", i1_wire, i2_wire, o_wire);
module->addAndGate("$and" + o_wire->name.str(), i1_wire, i2_wire, o_wire);
}
std::getline(f, line); // Ignore up to start of next line
}
@ -616,11 +633,12 @@ void AigerReader::parse_aiger_binary()
std::string line;
// Parse inputs
int digits = ceil(log10(I));
for (unsigned i = 1; i <= I; ++i) {
log_debug2("%d is an input\n", i);
RTLIL::Wire *wire = createWireIfNotExists(module, i << 1);
RTLIL::Wire *wire = module->addWire(stringf("$i%0*d", digits, i));
wire->port_input = true;
log_assert(!wire->port_output);
module->connect(createWireIfNotExists(module, i << 1), wire);
inputs.push_back(wire);
}
@ -634,12 +652,14 @@ void AigerReader::parse_aiger_binary()
clk_wire->port_input = true;
clk_wire->port_output = false;
}
digits = ceil(log10(L));
l1 = (I+1) * 2;
for (unsigned i = 0; i < L; ++i, ++line_count, l1 += 2) {
if (!(f >> l2))
log_error("Line %u cannot be interpreted as a latch!\n", line_count);
log_debug("%d %d is a latch\n", l1, l2);
RTLIL::Wire *q_wire = createWireIfNotExists(module, l1);
RTLIL::Wire *q_wire = module->addWire(stringf("$l%0*d", digits, l1 >> 1));
module->connect(createWireIfNotExists(module, l1), q_wire);
RTLIL::Wire *d_wire = createWireIfNotExists(module, l2);
if (clk_wire)
@ -670,23 +690,15 @@ void AigerReader::parse_aiger_binary()
}
// Parse outputs
digits = ceil(log10(O));
for (unsigned i = 0; i < O; ++i, ++line_count) {
if (!(f >> l1))
log_error("Line %u cannot be interpreted as an output!\n", line_count);
log_debug2("%d is an output\n", l1);
const unsigned variable = l1 >> 1;
const bool invert = l1 & 1;
RTLIL::IdString wire_name(stringf("\\__%d%s__", variable, invert ? "b" : "")); // FIXME: is "_b" the right suffix?
RTLIL::Wire *wire = module->wire(wire_name);
if (!wire)
wire = createWireIfNotExists(module, l1);
else if (wire->port_input || wire->port_output) {
RTLIL::Wire *new_wire = module->addWire(NEW_ID);
module->connect(new_wire, wire);
wire = new_wire;
}
RTLIL::Wire *wire = module->addWire(stringf("$o%0*d", digits, i));
wire->port_output = true;
module->connect(wire, createWireIfNotExists(module, l1));
outputs.push_back(wire);
}
std::getline(f, line); // Ignore up to start of next line
@ -727,88 +739,49 @@ void AigerReader::parse_aiger_binary()
RTLIL::Wire *o_wire = createWireIfNotExists(module, l1);
RTLIL::Wire *i1_wire = createWireIfNotExists(module, l2);
RTLIL::Wire *i2_wire = createWireIfNotExists(module, l3);
module->addAndGate(o_wire->name.str() + "$and", i1_wire, i2_wire, o_wire);
module->addAndGate("$and" + o_wire->name.str(), i1_wire, i2_wire, o_wire);
}
}
void AigerReader::post_process()
{
pool<IdString> seen_boxes;
unsigned ci_count = 0, co_count = 0;
for (auto cell : boxes) {
RTLIL::Module* box_module = design->module(cell->type);
log_assert(box_module);
if (seen_boxes.insert(cell->type).second) {
auto it = box_module->attributes.find("\\abc9_carry");
if (it != box_module->attributes.end()) {
RTLIL::Wire *carry_in = nullptr, *carry_out = nullptr;
auto carry_in_out = it->second.decode_string();
auto pos = carry_in_out.find(',');
if (pos == std::string::npos)
log_error("'abc9_carry' attribute on module '%s' does not contain ','.\n", log_id(cell->type));
auto carry_in_name = RTLIL::escape_id(carry_in_out.substr(0, pos));
carry_in = box_module->wire(carry_in_name);
if (!carry_in || !carry_in->port_input)
log_error("'abc9_carry' on module '%s' contains '%s' which does not exist or is not an input port.\n", log_id(cell->type), carry_in_name.c_str());
auto carry_out_name = RTLIL::escape_id(carry_in_out.substr(pos+1));
carry_out = box_module->wire(carry_out_name);
if (!carry_out || !carry_out->port_output)
log_error("'abc9_carry' on module '%s' contains '%s' which does not exist or is not an output port.\n", log_id(cell->type), carry_out_name.c_str());
auto &ports = box_module->ports;
for (auto jt = ports.begin(); jt != ports.end(); ) {
RTLIL::Wire* w = box_module->wire(*jt);
log_assert(w);
if (w == carry_in || w == carry_out) {
jt = ports.erase(jt);
continue;
}
if (w->port_id > carry_in->port_id)
--w->port_id;
if (w->port_id > carry_out->port_id)
--w->port_id;
log_assert(w->port_input || w->port_output);
log_assert(ports[w->port_id-1] == w->name);
++jt;
}
ports.push_back(carry_in->name);
carry_in->port_id = ports.size();
ports.push_back(carry_out->name);
carry_out->port_id = ports.size();
}
for (auto &bit : cell->connections_.at("\\i")) {
log_assert(bit == State::S0);
log_assert(co_count < outputs.size());
bit = outputs[co_count++];
log_assert(bit.wire && GetSize(bit.wire) == 1);
log_assert(bit.wire->port_output);
bit.wire->port_output = false;
}
// NB: Assume box_module->ports are sorted alphabetically
// (as RTLIL::Module::fixup_ports() would do)
for (auto port_name : box_module->ports) {
RTLIL::Wire* port = box_module->wire(port_name);
log_assert(port);
RTLIL::SigSpec rhs;
for (int i = 0; i < GetSize(port); i++) {
RTLIL::Wire* wire = nullptr;
if (port->port_input) {
log_assert(co_count < outputs.size());
wire = outputs[co_count++];
log_assert(wire);
log_assert(wire->port_output);
wire->port_output = false;
}
if (port->port_output) {
log_assert((piNum + ci_count) < inputs.size());
wire = inputs[piNum + ci_count++];
log_assert(wire);
log_assert(wire->port_input);
wire->port_input = false;
}
rhs.append(wire);
}
cell->setPort(port_name, rhs);
for (auto &bit : cell->connections_.at("\\o")) {
log_assert(bit == State::S0);
log_assert((piNum + ci_count) < inputs.size());
bit = inputs[piNum + ci_count++];
log_assert(bit.wire && GetSize(bit.wire) == 1);
log_assert(bit.wire->port_input);
bit.wire->port_input = false;
}
}
for (uint32_t i = 0; i < flopNum; i++) {
RTLIL::Wire *d = outputs[outputs.size() - flopNum + i];
log_assert(d);
log_assert(d->port_output);
d->port_output = false;
RTLIL::Wire *q = inputs[piNum - flopNum + i];
log_assert(q);
log_assert(q->port_input);
q->port_input = false;
auto ff = module->addCell(NEW_ID, "$__ABC9_FF_");
ff->setPort("\\D", d);
ff->setPort("\\Q", q);
ff->attributes["\\abc9_mergeability"] = mergeability[i];
}
dict<RTLIL::IdString, int> wideports_cache;
if (!map_filename.empty()) {
@ -835,6 +808,7 @@ void AigerReader::post_process()
wire->port_input = false;
module->connect(wire, existing);
}
log_debug(" -> %s\n", log_id(escaped_s));
}
else if (index > 0) {
std::string indexed_name = stringf("%s[%d]", escaped_s.c_str(), index);
@ -848,18 +822,14 @@ void AigerReader::post_process()
module->connect(wire, existing);
wire->port_input = false;
}
log_debug(" -> %s\n", log_id(indexed_name));
}
log_debug(" -> %s\n", log_id(wire));
}
else if (type == "output") {
log_assert(static_cast<unsigned>(variable + co_count) < outputs.size());
RTLIL::Wire* wire = outputs[variable + co_count];
log_assert(wire);
log_assert(wire->port_output);
if (escaped_s == "$__dummy__") {
wire->port_output = false;
continue;
}
log_debug("Renaming output %s", log_id(wire));
if (index == 0) {
@ -868,70 +838,40 @@ void AigerReader::post_process()
// simply connect the latter to the former
RTLIL::Wire* existing = module->wire(escaped_s);
if (!existing) {
if (escaped_s.ends_with("$inout.out")) {
wire->port_output = false;
RTLIL::Wire *in_wire = module->wire(escaped_s.substr(1, escaped_s.size()-11));
log_assert(in_wire);
log_assert(in_wire->port_input && !in_wire->port_output);
in_wire->port_output = true;
module->connect(in_wire, wire);
}
else
module->rename(wire, escaped_s);
module->rename(wire, escaped_s);
}
else {
wire->port_output = false;
existing->port_output = true;
module->connect(wire, existing);
wire = existing;
}
log_debug(" -> %s\n", log_id(escaped_s));
}
else if (index > 0) {
std::string indexed_name = stringf("%s[%d]", escaped_s.c_str(), index);
RTLIL::Wire* existing = module->wire(indexed_name);
if (!existing) {
if (escaped_s.ends_with("$inout.out")) {
wire->port_output = false;
RTLIL::Wire *in_wire = module->wire(stringf("%s[%d]", escaped_s.substr(1, escaped_s.size()-11).c_str(), index));
log_assert(in_wire);
log_assert(in_wire->port_input && !in_wire->port_output);
in_wire->port_output = true;
module->connect(in_wire, wire);
}
else {
module->rename(wire, indexed_name);
if (wideports)
wideports_cache[escaped_s] = std::max(wideports_cache[escaped_s], index);
}
module->rename(wire, indexed_name);
if (wideports)
wideports_cache[escaped_s] = std::max(wideports_cache[escaped_s], index);
}
else {
module->connect(wire, existing);
wire->port_output = false;
existing->port_output = true;
module->connect(wire, existing);
}
log_debug(" -> %s\n", log_id(indexed_name));
}
log_debug(" -> %s\n", log_id(wire));
int init;
mf >> init;
if (init < 2)
wire->attributes["\\init"] = init;
}
else if (type == "box") {
RTLIL::Cell* cell = module->cell(stringf("$__box%d__", variable));
if (cell) { // ABC could have optimised this box away
RTLIL::Cell* cell = module->cell(stringf("$box%d", variable));
if (cell) // ABC could have optimised this box away
module->rename(cell, escaped_s);
for (const auto &i : cell->connections()) {
RTLIL::IdString port_name = i.first;
RTLIL::SigSpec rhs = i.second;
int index = 0;
for (auto bit : rhs.bits()) {
RTLIL::Wire* wire = bit.wire;
RTLIL::IdString escaped_s = RTLIL::escape_id(stringf("%s.%s", log_id(cell), log_id(port_name)));
if (index == 0)
module->rename(wire, escaped_s);
else if (index > 0) {
module->rename(wire, stringf("%s[%d]", escaped_s.c_str(), index));
if (wideports)
wideports_cache[escaped_s] = std::max(wideports_cache[escaped_s], index);
}
index++;
}
}
}
}
else
log_error("Symbol type '%s' not recognised.\n", type.c_str());
@ -968,15 +908,10 @@ void AigerReader::post_process()
if (other_wire) {
other_wire->port_input = false;
other_wire->port_output = false;
}
if (wire->port_input) {
if (other_wire)
if (wire->port_input)
module->connect(other_wire, SigSpec(wire, i));
}
else {
// Since we skip POs that are connected to Sx,
// re-connect them here
module->connect(SigSpec(wire, i), other_wire ? other_wire : SigSpec(RTLIL::Sx));
else
module->connect(SigSpec(wire, i), other_wire);
}
}
}
@ -997,9 +932,9 @@ void AigerReader::post_process()
if (cell->type != "$lut") continue;
auto y_port = cell->getPort("\\Y").as_bit();
if (y_port.wire->width == 1)
module->rename(cell, stringf("%s$lut", y_port.wire->name.c_str()));
module->rename(cell, stringf("$lut%s", y_port.wire->name.c_str()));
else
module->rename(cell, stringf("%s[%d]$lut", y_port.wire->name.c_str(), y_port.offset));
module->rename(cell, stringf("$lut%s[%d]", y_port.wire->name.c_str(), y_port.offset));
}
}
@ -1014,28 +949,31 @@ struct AigerFrontend : public Frontend {
log("Load module from an AIGER file into the current design.\n");
log("\n");
log(" -module_name <module_name>\n");
log(" Name of module to be created (default: <filename>)\n");
log(" name of module to be created (default: <filename>)\n");
log("\n");
log(" -clk_name <wire_name>\n");
log(" If specified, AIGER latches to be transformed into $_DFF_P_ cells\n");
log(" clocked by wire of this name. Otherwise, $_FF_ cells will be used.\n");
log(" if specified, AIGER latches to be transformed into $_DFF_P_ cells\n");
log(" clocked by wire of this name. otherwise, $_FF_ cells will be used\n");
log("\n");
log(" -map <filename>\n");
log(" read file with port and latch symbols\n");
log("\n");
log(" -wideports\n");
log(" Merge ports that match the pattern 'name[int]' into a single\n");
log(" multi-bit port 'name'.\n");
log(" merge ports that match the pattern 'name[int]' into a single\n");
log(" multi-bit port 'name'\n");
log("\n");
log(" -xaiger\n");
log(" read XAIGER extensions\n");
log("\n");
}
void execute(std::istream *&f, std::string filename, std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
{
log_header(design, "Executing AIGER frontend.\n");
RTLIL::IdString clk_name = "\\clk";
RTLIL::IdString clk_name;
RTLIL::IdString module_name;
std::string map_filename;
bool wideports = false;
bool wideports = false, xaiger = false;
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) {
@ -1056,6 +994,10 @@ struct AigerFrontend : public Frontend {
wideports = true;
continue;
}
if (arg == "-xaiger") {
xaiger = true;
continue;
}
break;
}
extra_args(f, filename, args, argidx, true);
@ -1075,7 +1017,10 @@ struct AigerFrontend : public Frontend {
}
AigerReader reader(design, *f, module_name, clk_name, map_filename, wideports);
reader.parse_aiger();
if (xaiger)
reader.parse_xaiger();
else
reader.parse_aiger();
}
} AigerFrontend;

View File

@ -33,6 +33,7 @@ struct AigerReader
RTLIL::Module *module;
std::string map_filename;
bool wideports;
const int aiger_autoidx;
unsigned M, I, L, O, A;
unsigned B, C, J, F; // Optional in AIGER 1.9
@ -44,13 +45,16 @@ struct AigerReader
std::vector<RTLIL::Wire*> outputs;
std::vector<RTLIL::Wire*> bad_properties;
std::vector<RTLIL::Cell*> boxes;
std::vector<int> mergeability;
AigerReader(RTLIL::Design *design, std::istream &f, RTLIL::IdString module_name, RTLIL::IdString clk_name, std::string map_filename, bool wideports);
void parse_aiger();
void parse_xaiger(const dict<int,IdString> &box_lookup);
void parse_xaiger();
void parse_aiger_ascii();
void parse_aiger_binary();
void post_process();
RTLIL::Wire* createWireIfNotExists(RTLIL::Module *module, unsigned literal);
};
YOSYS_NAMESPACE_END

View File

@ -1198,6 +1198,14 @@ bool AstNode::simplify(bool const_fold, bool at_zero, bool in_lvalue, int stage,
varbuf = new AstNode(AST_LOCALPARAM, varbuf);
varbuf->str = init_ast->children[0]->str;
auto resolved = current_scope.at(init_ast->children[0]->str);
if (resolved->range_valid) {
varbuf->range_left = resolved->range_left;
varbuf->range_right = resolved->range_right;
varbuf->range_swapped = resolved->range_swapped;
varbuf->range_valid = resolved->range_valid;
}
AstNode *backup_scope_varbuf = current_scope[varbuf->str];
current_scope[varbuf->str] = varbuf;
@ -2998,6 +3006,14 @@ void AstNode::expand_genblock(std::string index_var, std::string prefix, std::ma
current_ast_mod->children.push_back(p);
str = p->str;
id2ast = p;
auto resolved = current_scope.at(index_var);
if (resolved->range_valid) {
p->range_left = resolved->range_left;
p->range_right = resolved->range_right;
p->range_swapped = resolved->range_swapped;
p->range_valid = resolved->range_valid;
}
}
}

View File

@ -1,7 +1,11 @@
This directory contains Verific bindings for Yosys.
See http://www.verific.com/ for details.
Use Symbiotic EDA Suite if you need Yosys+Verifc.
https://www.symbioticeda.com/seda-suite
Contact office@symbioticeda.com for free evaluation
binaries of Symbiotic EDA Suite.
Verific Features that should be enabled in your Verific library

View File

@ -2065,7 +2065,12 @@ struct VerificPass : public Pass {
log(" -d <dump_file>\n");
log(" Dump the Verific netlist as a verilog file.\n");
log("\n");
log("Visit http://verific.com/ for more information on Verific.\n");
log("\n");
log("Use Symbiotic EDA Suite if you need Yosys+Verifc.\n");
log("https://www.symbioticeda.com/seda-suite\n");
log("\n");
log("Contact office@symbioticeda.com for free evaluation\n");
log("binaries of Symbiotic EDA Suite.\n");
log("\n");
}
#ifdef YOSYS_ENABLE_VERIFIC
@ -2074,7 +2079,13 @@ struct VerificPass : public Pass {
static bool set_verific_global_flags = true;
if (check_noverific_env())
log_cmd_error("This version of Yosys is built without Verific support.\n");
log_cmd_error("This version of Yosys is built without Verific support.\n"
"\n"
"Use Symbiotic EDA Suite if you need Yosys+Verifc.\n"
"https://www.symbioticeda.com/seda-suite\n"
"\n"
"Contact office@symbioticeda.com for free evaluation\n"
"binaries of Symbiotic EDA Suite.\n");
log_header(design, "Executing VERIFIC (loading SystemVerilog and VHDL designs using Verific).\n");
@ -2493,7 +2504,13 @@ struct VerificPass : public Pass {
}
#else /* YOSYS_ENABLE_VERIFIC */
void execute(std::vector<std::string>, RTLIL::Design *) YS_OVERRIDE {
log_cmd_error("This version of Yosys is built without Verific support.\n");
log_cmd_error("This version of Yosys is built without Verific support.\n"
"\n"
"Use Symbiotic EDA Suite if you need Yosys+Verifc.\n"
"https://www.symbioticeda.com/seda-suite\n"
"\n"
"Contact office@symbioticeda.com for free evaluation\n"
"binaries of Symbiotic EDA Suite.\n");
}
#endif
} VerificPass;

View File

@ -28,7 +28,7 @@
*
* Ad-hoc implementation of a Verilog preprocessor. The directives `define,
* `include, `ifdef, `ifndef, `else and `endif are handled here. All other
* directives are handled by the lexer (see lexer.l).
* directives are handled by the lexer (see verilog_lexer.l).
*
*/

View File

@ -28,7 +28,7 @@
*
* A simple lexer for Verilog code. Non-preprocessor compiler directives are
* handled here. The preprocessor stuff is handled in preproc.cc. Everything
* else is left to the bison parser (see parser.y).
* else is left to the bison parser (see verilog_parser.y).
*
*/

View File

@ -317,6 +317,12 @@ int main(int argc, char **argv)
exit(0);
}
if (argc == 2 && (!strcmp(argv[1], "-V") || !strcmp(argv[1], "-version") || !strcmp(argv[1], "--version")))
{
printf("%s\n", yosys_version_str);
exit(0);
}
int opt;
while ((opt = getopt(argc, argv, "MXAQTVSgm:f:Hh:b:o:p:l:L:qv:tds:c:W:w:e:D:P:E:")) != -1)
{
@ -566,34 +572,22 @@ int main(int argc, char **argv)
#else
std::string meminfo;
std::string stats_divider = ", ";
# if defined(__linux__)
std::ifstream statm;
statm.open(stringf("/proc/%lld/statm", (long long)getpid()));
if (statm.is_open()) {
int sz_total, sz_resident;
statm >> sz_total >> sz_resident;
meminfo = stringf(", MEM: %.2f MB total, %.2f MB resident",
sz_total * (getpagesize() / 1024.0 / 1024.0),
sz_resident * (getpagesize() / 1024.0 / 1024.0));
stats_divider = "\n";
}
# elif defined(__FreeBSD__)
pid_t pid = getpid();
int mib[4] = {CTL_KERN, KERN_PROC, KERN_PROC_PID, (int)pid};
struct kinfo_proc kip;
size_t kip_len = sizeof(kip);
if (sysctl(mib, 4, &kip, &kip_len, NULL, 0) == 0) {
vm_size_t sz_total = kip.ki_size;
segsz_t sz_resident = kip.ki_rssize;
meminfo = stringf(", MEM: %.2f MB total, %.2f MB resident",
(int)sz_total / 1024.0 / 1024.0,
(int)sz_resident * (getpagesize() / 1024.0 / 1024.0));
stats_divider = "\n";
}
# endif
struct rusage ru_buffer;
getrusage(RUSAGE_SELF, &ru_buffer);
if (yosys_design->scratchpad_get_bool("print_stats.include_children")) {
struct rusage ru_buffer_children;
getrusage(RUSAGE_CHILDREN, &ru_buffer_children);
ru_buffer.ru_utime.tv_sec += ru_buffer_children.ru_utime.tv_sec;
ru_buffer.ru_utime.tv_usec += ru_buffer_children.ru_utime.tv_usec;
ru_buffer.ru_stime.tv_sec += ru_buffer_children.ru_stime.tv_sec;
ru_buffer.ru_stime.tv_usec += ru_buffer_children.ru_stime.tv_usec;
ru_buffer.ru_maxrss = std::max(ru_buffer.ru_maxrss, ru_buffer_children.ru_maxrss);
}
# if defined(__linux__) || defined(__FreeBSD__)
meminfo = stringf(", MEM: %.2f MB peak",
ru_buffer.ru_maxrss / 1024.0);
#endif
log("End of script. Logfile hash: %s%sCPU: user %.2fs system %.2fs%s\n", hash.c_str(),
stats_divider.c_str(), ru_buffer.ru_utime.tv_sec + 1e-6 * ru_buffer.ru_utime.tv_usec,
ru_buffer.ru_stime.tv_sec + 1e-6 * ru_buffer.ru_stime.tv_usec, meminfo.c_str());

View File

@ -114,20 +114,35 @@ void Pass::run_register()
void Pass::init_register()
{
vector<Pass*> added_passes;
while (first_queued_pass) {
added_passes.push_back(first_queued_pass);
first_queued_pass->run_register();
first_queued_pass = first_queued_pass->next_queued_pass;
}
for (auto added_pass : added_passes)
added_pass->on_register();
}
void Pass::done_register()
{
for (auto &it : pass_register)
it.second->on_shutdown();
frontend_register.clear();
pass_register.clear();
backend_register.clear();
log_assert(first_queued_pass == NULL);
}
void Pass::on_register()
{
}
void Pass::on_shutdown()
{
}
Pass::~Pass()
{
}

View File

@ -62,6 +62,9 @@ struct Pass
virtual void run_register();
static void init_register();
static void done_register();
virtual void on_register();
virtual void on_shutdown();
};
struct ScriptPass : Pass

View File

@ -46,6 +46,7 @@ IdString RTLIL::ID::Y;
IdString RTLIL::ID::keep;
IdString RTLIL::ID::whitebox;
IdString RTLIL::ID::blackbox;
dict<std::string, std::string> RTLIL::constpad;
RTLIL::Const::Const()
{
@ -1893,10 +1894,6 @@ DEF_METHOD(And, max(sig_a.size(), sig_b.size()), ID($and))
DEF_METHOD(Or, max(sig_a.size(), sig_b.size()), ID($or))
DEF_METHOD(Xor, max(sig_a.size(), sig_b.size()), ID($xor))
DEF_METHOD(Xnor, max(sig_a.size(), sig_b.size()), ID($xnor))
DEF_METHOD(Shl, sig_a.size(), ID($shl))
DEF_METHOD(Shr, sig_a.size(), ID($shr))
DEF_METHOD(Sshl, sig_a.size(), ID($sshl))
DEF_METHOD(Sshr, sig_a.size(), ID($sshr))
DEF_METHOD(Shift, sig_a.size(), ID($shift))
DEF_METHOD(Shiftx, sig_a.size(), ID($shiftx))
DEF_METHOD(Lt, 1, ID($lt))
@ -1916,6 +1913,31 @@ DEF_METHOD(LogicAnd, 1, ID($logic_and))
DEF_METHOD(LogicOr, 1, ID($logic_or))
#undef DEF_METHOD
#define DEF_METHOD(_func, _y_size, _type) \
RTLIL::Cell* RTLIL::Module::add ## _func(RTLIL::IdString name, RTLIL::SigSpec sig_a, RTLIL::SigSpec sig_b, RTLIL::SigSpec sig_y, bool is_signed, const std::string &src) { \
RTLIL::Cell *cell = addCell(name, _type); \
cell->parameters[ID(A_SIGNED)] = is_signed; \
cell->parameters[ID(B_SIGNED)] = false; \
cell->parameters[ID(A_WIDTH)] = sig_a.size(); \
cell->parameters[ID(B_WIDTH)] = sig_b.size(); \
cell->parameters[ID(Y_WIDTH)] = sig_y.size(); \
cell->setPort(ID::A, sig_a); \
cell->setPort(ID::B, sig_b); \
cell->setPort(ID::Y, sig_y); \
cell->set_src_attribute(src); \
return cell; \
} \
RTLIL::SigSpec RTLIL::Module::_func(RTLIL::IdString name, RTLIL::SigSpec sig_a, RTLIL::SigSpec sig_b, bool is_signed, const std::string &src) { \
RTLIL::SigSpec sig_y = addWire(NEW_ID, _y_size); \
add ## _func(name, sig_a, sig_b, sig_y, is_signed, src); \
return sig_y; \
}
DEF_METHOD(Shl, sig_a.size(), ID($shl))
DEF_METHOD(Shr, sig_a.size(), ID($shr))
DEF_METHOD(Sshl, sig_a.size(), ID($sshl))
DEF_METHOD(Sshr, sig_a.size(), ID($sshr))
#undef DEF_METHOD
#define DEF_METHOD(_func, _type, _pmux) \
RTLIL::Cell* RTLIL::Module::add ## _func(RTLIL::IdString name, RTLIL::SigSpec sig_a, RTLIL::SigSpec sig_b, RTLIL::SigSpec sig_s, RTLIL::SigSpec sig_y, const std::string &src) { \
RTLIL::Cell *cell = addCell(name, _type); \

View File

@ -377,6 +377,8 @@ namespace RTLIL
extern IdString blackbox;
};
extern dict<std::string, std::string> constpad;
static inline std::string escape_id(std::string str) {
if (str.size() > 0 && str[0] != '\\' && str[0] != '$')
return "\\" + str;
@ -849,6 +851,8 @@ public:
RTLIL::SigSpec repeat(int num) const;
void reverse() { inline_unpack(); std::reverse(bits_.begin(), bits_.end()); }
bool operator <(const RTLIL::SigSpec &other) const;
bool operator ==(const RTLIL::SigSpec &other) const;
inline bool operator !=(const RTLIL::SigSpec &other) const { return !(*this == other); }

View File

@ -544,6 +544,8 @@ void yosys_shutdown()
already_shutdown = true;
log_pop();
Pass::done_register();
delete yosys_design;
yosys_design = NULL;
@ -553,7 +555,6 @@ void yosys_shutdown()
log_errfile = NULL;
log_files.clear();
Pass::done_register();
yosys_celltypes.clear();
#ifdef YOSYS_ENABLE_TCL

View File

@ -198,8 +198,8 @@ calculated signal and a constant zero with an {\tt \$and} gate).
\subsection{Registers}
D-Type Flip-Flops are represented by {\tt \$dff} cells. These cells have a clock port \B{CLK},
an input port \B{D} and an output port \B{Q}. The following parameters are available for \$dff
D-type flip-flops are represented by {\tt \$dff} cells. These cells have a clock port \B{CLK},
an input port \B{D} and an output port \B{Q}. The following parameters are available for {\tt \$dff}
cells:
\begin{itemize}
@ -211,13 +211,23 @@ Clock is active on the positive edge if this parameter has the value {\tt 1'b1}
edge if this parameter is {\tt 1'b0}.
\end{itemize}
D-Type Flip-Flops with asynchronous resets are represented by {\tt \$adff} cells. As the {\tt \$dff}
D-type flip-flops with enable are represented by {\tt \$dffe} cells. As the {\tt \$dff}
cells they have \B{CLK}, \B{D} and \B{Q} ports. In addition they also have a single-bit \B{EN}
input port for the enable pin and the following parameter:
\begin{itemize}
\item \B{EN\_POLARITY} \\
The enable input is active-high if this parameter has the value {\tt 1'b1} and active-low
if this parameter is {\tt 1'b0}.
\end{itemize}
D-type flip-flops with asynchronous reset are represented by {\tt \$adff} cells. As the {\tt \$dff}
cells they have \B{CLK}, \B{D} and \B{Q} ports. In addition they also have a single-bit \B{ARST}
input port for the reset pin and the following additional two parameters:
\begin{itemize}
\item \B{ARST\_POLARITY} \\
The asynchronous reset is high-active if this parameter has the value {\tt 1'b1} and low-active
The asynchronous reset is active-high if this parameter has the value {\tt 1'b1} and active-low
if this parameter is {\tt 1'b0}.
\item \B{ARST\_VALUE} \\
@ -231,8 +241,27 @@ Usually these cells are generated by the {\tt proc} pass using the information
in the designs RTLIL::Process objects.
\end{sloppypar}
D-type flip-flops with asynchronous set and reset are represented by {\tt \$dffsr} cells.
As the {\tt \$dff} cells they have \B{CLK}, \B{D} and \B{Q} ports. In addition they also have
a single-bit \B{SET} input port for the set pin, a single-bit \B{CLR} input port for the reset pin,
and the following two parameters:
\begin{itemize}
\item \B{SET\_POLARITY} \\
The set input is active-high if this parameter has the value {\tt 1'b1} and active-low
if this parameter is {\tt 1'b0}.
\item \B{CLR\_POLARITY} \\
The reset input is active-high if this parameter has the value {\tt 1'b1} and active-low
if this parameter is {\tt 1'b0}.
\end{itemize}
When both the set and reset inputs of a {\tt \$dffsr} cell are active, the reset input takes
precedence.
\begin{fixme}
Add information about {\tt \$sr} cells (set-reset flip-flops) and d-type latches.
Add information about {\tt \$sr} cells (set-reset flip-flops), {\tt \$dlatch} cells (d-type latches),
and {\tt \$dlatchsr} cells (d-type latches with set/reset).
\end{fixme}
\subsection{Memories}
@ -451,6 +480,30 @@ $ClkEdge$ & $RstLvl$ & $RstVal$ & Cell Type \\
\lstinline[language=Verilog];posedge; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];0; & {\tt \$\_DFF\_PP0\_} \\
\lstinline[language=Verilog];posedge; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];1; & {\tt \$\_DFF\_PP1\_} \\
\end{tabular}
% FIXME: the layout of this is broken and I have no idea how to fix it
\hfil
\begin{tabular}[t]{lll}
$ClkEdge$ & $EnLvl$ & Cell Type \\
\hline
\lstinline[language=Verilog];negedge; & \lstinline[language=Verilog];0; & {\tt \$\_DFFE\_NN\_} \\
\lstinline[language=Verilog];negedge; & \lstinline[language=Verilog];1; & {\tt \$\_DFFE\_NP\_} \\
\lstinline[language=Verilog];posedge; & \lstinline[language=Verilog];0; & {\tt \$\_DFFE\_PN\_} \\
\lstinline[language=Verilog];posedge; & \lstinline[language=Verilog];1; & {\tt \$\_DFFE\_PP\_} \\
\end{tabular}
% FIXME: the layout of this is broken too
\hfil
\begin{tabular}[t]{llll}
$ClkEdge$ & $SetLvl$ & $RstLvl$ & Cell Type \\
\hline
\lstinline[language=Verilog];negedge; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];0; & {\tt \$\_DFFSR\_NNN\_} \\
\lstinline[language=Verilog];negedge; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];1; & {\tt \$\_DFFSR\_NNP\_} \\
\lstinline[language=Verilog];negedge; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];0; & {\tt \$\_DFFSR\_NPN\_} \\
\lstinline[language=Verilog];negedge; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];1; & {\tt \$\_DFFSR\_NPP\_} \\
\lstinline[language=Verilog];posedge; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];0; & {\tt \$\_DFFSR\_PNN\_} \\
\lstinline[language=Verilog];posedge; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];1; & {\tt \$\_DFFSR\_PNP\_} \\
\lstinline[language=Verilog];posedge; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];0; & {\tt \$\_DFFSR\_PPN\_} \\
\lstinline[language=Verilog];posedge; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];1; & {\tt \$\_DFFSR\_PPP\_} \\
\end{tabular}
\caption{Cell types for gate level logic networks}
\label{tab:CellLib_gates}
\end{table}
@ -459,11 +512,22 @@ Table~\ref{tab:CellLib_gates} lists all cell types used for gate level logic. Th
{\tt \$\_NOT\_}, {\tt \$\_AND\_}, {\tt \$\_NAND\_}, {\tt \$\_ANDNOT\_}, {\tt \$\_OR\_}, {\tt \$\_NOR\_},
{\tt \$\_ORNOT\_}, {\tt \$\_XOR\_}, {\tt \$\_XNOR\_} and {\tt \$\_MUX\_} are used to model combinatorial logic.
The cell type {\tt \$\_TBUF\_} is used to model tristate logic.
The cell types {\tt \$\_DFF\_N\_} and {\tt \$\_DFF\_P\_} represent d-type flip-flops.
The cell types {\tt \$\_DFFE\_NN\_}, {\tt \$\_DFFE\_NP\_}, {\tt \$\_DFFE\_PN\_} and {\tt \$\_DFFE\_PP\_}
implement d-type flip-flops with enable. The values in the table for these cell types relate to the
following Verilog code template.
\begin{lstlisting}[mathescape,language=Verilog]
always @($ClkEdge$ C)
if (EN == $EnLvl$)
Q <= D;
\end{lstlisting}
The cell types {\tt \$\_DFF\_NN0\_}, {\tt \$\_DFF\_NN1\_}, {\tt \$\_DFF\_NP0\_}, {\tt \$\_DFF\_NP1\_},
{\tt \$\_DFF\_PN0\_}, {\tt \$\_DFF\_PN1\_}, {\tt \$\_DFF\_PP0\_} and {\tt \$\_DFF\_PP1\_} implement
d-type flip-flops with asynchronous resets. The values in the table for these cell types relate to the
d-type flip-flops with asynchronous reset. The values in the table for these cell types relate to the
following Verilog code template, where \lstinline[mathescape,language=Verilog];$RstEdge$; is \lstinline[language=Verilog];posedge;
if \lstinline[mathescape,language=Verilog];$RstLvl$; if \lstinline[language=Verilog];1;, and \lstinline[language=Verilog];negedge;
otherwise.
@ -476,6 +540,25 @@ otherwise.
Q <= D;
\end{lstlisting}
The cell types {\tt \$\_DFFSR\_NNN\_}, {\tt \$\_DFFSR\_NNP\_}, {\tt \$\_DFFSR\_NPN\_}, {\tt \$\_DFFSR\_NPP\_},
{\tt \$\_DFFSR\_PNN\_}, {\tt \$\_DFFSR\_PNP\_}, {\tt \$\_DFFSR\_PPN\_} and {\tt \$\_DFFSR\_PPP\_} implement
d-type flip-flops with asynchronous set and reset. The values in the table for these cell types relate to the
following Verilog code template, where \lstinline[mathescape,language=Verilog];$RstEdge$; is \lstinline[language=Verilog];posedge;
if \lstinline[mathescape,language=Verilog];$RstLvl$; if \lstinline[language=Verilog];1;, \lstinline[language=Verilog];negedge;
otherwise, and \lstinline[mathescape,language=Verilog];$SetEdge$; is \lstinline[language=Verilog];posedge;
if \lstinline[mathescape,language=Verilog];$SetLvl$; if \lstinline[language=Verilog];1;, \lstinline[language=Verilog];negedge;
otherwise.
\begin{lstlisting}[mathescape,language=Verilog]
always @($ClkEdge$ C, $RstEdge$ R, $SetEdge$ S)
if (R == $RstLvl$)
Q <= 0;
else if (S == $SetLvl$)
Q <= 1;
else
Q <= D;
\end{lstlisting}
In most cases gate level logic networks are created from RTL networks using the {\tt techmap} pass. The flip-flop cells
from the gate level logic network can be mapped to physical flip-flop cells from a Liberty file using the {\tt dfflibmap}
pass. The combinatorial logic cells can be mapped to physical cells from a Liberty file via ABC \citeweblink{ABC}
@ -507,11 +590,7 @@ Add information about {\tt \$ff} and {\tt \$\_FF\_} cells.
\end{fixme}
\begin{fixme}
Add information about {\tt \$dffe}, {\tt \$dffsr}, {\tt \$dlatch}, and {\tt \$dlatchsr} cells.
\end{fixme}
\begin{fixme}
Add information about {\tt \$\_DFFE\_??\_}, {\tt \$\_DFFSR\_???\_}, {\tt \$\_DLATCH\_?\_}, and {\tt \$\_DLATCHSR\_???\_} cells.
Add information about {\tt \$\_DLATCH\_?\_}, and {\tt \$\_DLATCHSR\_???\_} cells.
\end{fixme}
\begin{fixme}

View File

@ -93,7 +93,7 @@ frontends/verilog/preproc.cc} in the Yosys source tree.
\begin{sloppypar}
The Verilog Lexer is written using the lexer generator {\it flex} \citeweblink{flex}. Its source code
can be found in {\tt frontends/verilog/lexer.l} in the Yosys source tree.
can be found in {\tt frontends/verilog/verilog\_lexer.l} in the Yosys source tree.
The lexer does little more than identifying all keywords and literals
recognised by the Yosys Verilog frontend.
\end{sloppypar}
@ -115,7 +115,7 @@ whenever possible.)
\subsection{The Verilog Parser}
The Verilog Parser is written using the parser generator {\it bison} \citeweblink{bison}. Its source code
can be found in {\tt frontends/verilog/parser.y} in the Yosys source tree.
can be found in {\tt frontends/verilog/verilog\_parser.y} in the Yosys source tree.
It generates an AST using the \lstinline[language=C++]{AST::AstNode} data structure
defined in {\tt frontends/ast/ast.h}. An \lstinline[language=C++]{AST::AstNode} object has

View File

@ -146,7 +146,7 @@ with the help of HDL synthesis tools.
In special cases such as synthesis for coarse-grain cell libraries or when
testing new synthesis algorithms it might be necessary to write a custom HDL
synthesis tool or add new features to an existing one. It this cases the
synthesis tool or add new features to an existing one. In these cases the
availability of a Free and Open Source (FOSS) synthesis tool that can be used
as basis for custom tools would be helpful.

View File

@ -32,3 +32,4 @@ OBJS += passes/cmds/chtype.o
OBJS += passes/cmds/blackbox.o
OBJS += passes/cmds/ltp.o
OBJS += passes/cmds/bugpoint.o
OBJS += passes/cmds/scratchpad.o

View File

@ -56,7 +56,7 @@ int autoname_worker(Module *module)
for (auto &conn : cell->connections()) {
string suffix = stringf("_%s", log_id(conn.first));
for (auto bit : conn.second)
if (bit.wire != nullptr && bit.wire->name[0] == '$') {
if (bit.wire != nullptr && bit.wire->name[0] == '$' && !bit.wire->port_id) {
IdString new_name(cell->name.str() + suffix);
int score = wire_score.at(bit.wire);
if (cell->output(conn.first)) score = 0;

View File

@ -301,41 +301,40 @@ struct SccPass : public Pass {
RTLIL::Selection newSelection(false);
int scc_counter = 0;
for (auto &mod_it : design->modules_)
if (design->selected(mod_it.second))
for (auto mod : design->selected_modules())
{
SccWorker worker(design, mod, nofeedbackMode, allCellTypes, maxDepth);
if (!setAttr.empty())
{
SccWorker worker(design, mod_it.second, nofeedbackMode, allCellTypes, maxDepth);
if (!setAttr.empty())
for (const auto &cells : worker.sccList)
{
for (const auto &cells : worker.sccList)
for (auto attr : setAttr)
{
for (auto attr : setAttr)
{
IdString attr_name(RTLIL::escape_id(attr.first));
string attr_valstr = attr.second;
string index = stringf("%d", scc_counter);
IdString attr_name(RTLIL::escape_id(attr.first));
string attr_valstr = attr.second;
string index = stringf("%d", scc_counter);
for (size_t pos = 0; (pos = attr_valstr.find("{}", pos)) != string::npos; pos += index.size())
attr_valstr.replace(pos, 2, index);
for (size_t pos = 0; (pos = attr_valstr.find("{}", pos)) != string::npos; pos += index.size())
attr_valstr.replace(pos, 2, index);
Const attr_value(attr_valstr);
Const attr_value(attr_valstr);
for (auto cell : cells)
cell->attributes[attr_name] = attr_value;
}
scc_counter++;
for (auto cell : cells)
cell->attributes[attr_name] = attr_value;
}
}
else
{
scc_counter += GetSize(worker.sccList);
}
if (selectMode)
worker.select(newSelection);
scc_counter++;
}
}
else
{
scc_counter += GetSize(worker.sccList);
}
if (selectMode)
worker.select(newSelection);
}
if (expect >= 0) {
if (scc_counter == expect)

141
passes/cmds/scratchpad.cc Normal file
View File

@ -0,0 +1,141 @@
/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
* 2019 Nina Engelhardt <nak@symbioticeda.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/register.h"
#include "kernel/rtlil.h"
#include "kernel/log.h"
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
struct ScratchpadPass : public Pass {
ScratchpadPass() : Pass("scratchpad", "get/set values in the scratchpad") { }
void help() YS_OVERRIDE
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" scratchpad [options]\n");
log("\n");
log("This pass allows to read and modify values from the scratchpad of the current\n");
log("design. Options:\n");
log("\n");
log(" -get <identifier>\n");
log(" print the value saved in the scratchpad under the given identifier.\n");
log("\n");
log(" -set <identifier> <value>\n");
log(" save the given value in the scratchpad under the given identifier.\n");
log("\n");
log(" -unset <identifier>\n");
log(" remove the entry for the given identifier from the scratchpad.\n");
log("\n");
log(" -copy <identifier_from> <identifier_to>\n");
log(" copy the value of the first identifier to the second identifier.\n");
log("\n");
log(" -assert <identifier> <value>\n");
log(" assert that the entry for the given identifier is set to the given value.\n");
log("\n");
log(" -assert-set <identifier>\n");
log(" assert that the entry for the given identifier exists.\n");
log("\n");
log(" -assert-unset <identifier>\n");
log(" assert that the entry for the given identifier does not exist.\n");
log("\n");
log("The identifier may not contain whitespace. By convention, it is usually prefixed\n");
log("by the name of the pass that uses it, e.g. 'opt.did_something'. If the value\n");
log("contains whitespace, it must be enclosed in double quotes.\n");
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
{
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++)
{
if (args[argidx] == "-get" && argidx+1 < args.size()) {
string identifier = args[++argidx];
if (design->scratchpad.count(identifier)) {
log("%s\n", design->scratchpad_get_string(identifier).c_str());
} else if (RTLIL::constpad.count(identifier)) {
log("%s\n", RTLIL::constpad.at(identifier).c_str());
} else {
log("\"%s\" not set\n", identifier.c_str());
}
continue;
}
if (args[argidx] == "-set" && argidx+2 < args.size()) {
string identifier = args[++argidx];
if (RTLIL::constpad.count(identifier))
log_error("scratchpad entry \"%s\" is a global constant\n", identifier.c_str());
string value = args[++argidx];
if (value.front() == '\"' && value.back() == '\"') value = value.substr(1, value.size() - 2);
design->scratchpad_set_string(identifier, value);
continue;
}
if (args[argidx] == "-unset" && argidx+1 < args.size()) {
string identifier = args[++argidx];
design->scratchpad_unset(identifier);
continue;
}
if (args[argidx] == "-copy" && argidx+2 < args.size()) {
string identifier_from = args[++argidx];
string identifier_to = args[++argidx];
string value;
if (design->scratchpad.count(identifier_from))
value = design->scratchpad_get_string(identifier_from);
else if (RTLIL::constpad.count(identifier_from))
value = RTLIL::constpad.at(identifier_from);
else
log_error("\"%s\" not set\n", identifier_from.c_str());
if (RTLIL::constpad.count(identifier_to))
log_error("scratchpad entry \"%s\" is a global constant\n", identifier_to.c_str());
design->scratchpad_set_string(identifier_to, value);
continue;
}
if (args[argidx] == "-assert" && argidx+2 < args.size()) {
string identifier = args[++argidx];
string expected = args[++argidx];
if (expected.front() == '\"' && expected.back() == '\"') expected = expected.substr(1, expected.size() - 2);
if (design->scratchpad.count(identifier) == 0)
log_error("scratchpad entry '%s' is not defined\n", identifier.c_str());
string value = design->scratchpad_get_string(identifier);
if (value != expected) {
log_error("scratchpad entry '%s' is set to '%s' instead of the asserted '%s'\n",
identifier.c_str(), value.c_str(), expected.c_str());
}
continue;
}
if (args[argidx] == "-assert-set" && argidx+1 < args.size()) {
string identifier = args[++argidx];
if (design->scratchpad.count(identifier) == 0)
log_error("scratchpad entry '%s' is not defined\n", identifier.c_str());
continue;
}
if (args[argidx] == "-assert-unset" && argidx+1 < args.size()) {
string identifier = args[++argidx];
if (design->scratchpad.count(identifier) > 0)
log_error("scratchpad entry '%s' is defined\n", identifier.c_str());
continue;
}
break;
}
extra_args(args, argidx, design, false);
}
} ScratchpadPass;
PRIVATE_NAMESPACE_END

View File

@ -873,7 +873,7 @@ struct ShowPass : public Pass {
#ifdef __APPLE__
std::string cmd = stringf("ps -fu %d | grep -q '[ ]%s' || xdot '%s' &", getuid(), dot_file.c_str(), dot_file.c_str());
#else
std::string cmd = stringf("{ test -f '%s.pid' && fuser -s '%s.pid'; } || ( echo $$ >&3; exec xdot '%s'; ) 3> '%s.pid' &", dot_file.c_str(), dot_file.c_str(), dot_file.c_str(), dot_file.c_str());
std::string cmd = stringf("{ test -f '%s.pid' && fuser -s '%s.pid' 2> /dev/null; } || ( echo $$ >&3; exec xdot '%s'; ) 3> '%s.pid' &", dot_file.c_str(), dot_file.c_str(), dot_file.c_str(), dot_file.c_str());
#endif
log("Exec: %s\n", cmd.c_str());
if (run_command(cmd) != 0)

View File

@ -44,6 +44,10 @@ struct EquivOptPass:public ScriptPass
log(" expand the modules in this file before proving equivalence. this is\n");
log(" useful for handling architecture-specific primitives.\n");
log("\n");
log(" -blacklist <file>\n");
log(" Do not match cells or signals that match the names in the file\n");
log(" (passed to equiv_make).\n");
log("\n");
log(" -assert\n");
log(" produce an error if the circuits are not equivalent.\n");
log("\n");
@ -61,13 +65,14 @@ struct EquivOptPass:public ScriptPass
log("\n");
}
std::string command, techmap_opts;
std::string command, techmap_opts, make_opts;
bool assert, undef, multiclock, async2sync;
void clear_flags() YS_OVERRIDE
{
command = "";
techmap_opts = "";
make_opts = "";
assert = false;
undef = false;
multiclock = false;
@ -93,6 +98,10 @@ struct EquivOptPass:public ScriptPass
techmap_opts += " -map " + args[++argidx];
continue;
}
if (args[argidx] == "-blacklist" && argidx + 1 < args.size()) {
make_opts += " -blacklist " + args[++argidx];
continue;
}
if (args[argidx] == "-assert") {
assert = true;
continue;
@ -170,7 +179,12 @@ struct EquivOptPass:public ScriptPass
run("clk2fflogic", "(only with -multiclock)");
if (async2sync || help_mode)
run("async2sync", " (only with -async2sync)");
run("equiv_make gold gate equiv");
string opts;
if (help_mode)
opts = " -blacklist <filename> ...";
else
opts = make_opts;
run("equiv_make" + opts + " gold gate equiv");
if (help_mode)
run("equiv_induct [-undef] equiv");
else if (undef)

View File

@ -34,13 +34,20 @@ static SigSet<sig2driver_entry_t> sig2driver, sig2user;
static std::set<RTLIL::Cell*> muxtree_cells;
static SigPool sig_at_port;
static bool check_state_mux_tree(RTLIL::SigSpec old_sig, RTLIL::SigSpec sig, pool<Cell*> &recursion_monitor)
static bool check_state_mux_tree(RTLIL::SigSpec old_sig, RTLIL::SigSpec sig, pool<Cell*> &recursion_monitor, dict<RTLIL::SigSpec, bool> &mux_tree_cache)
{
if (mux_tree_cache.find(sig) != mux_tree_cache.end())
return mux_tree_cache.at(sig);
if (sig.is_fully_const() || old_sig == sig) {
ret_true:
mux_tree_cache[sig] = true;
return true;
}
if (sig_at_port.check_any(assign_map(sig))) {
ret_false:
mux_tree_cache[sig] = false;
return false;
}
@ -49,13 +56,13 @@ static bool check_state_mux_tree(RTLIL::SigSpec old_sig, RTLIL::SigSpec sig, poo
for (auto &cellport : cellport_list)
{
if ((cellport.first->type != "$mux" && cellport.first->type != "$pmux") || cellport.second != "\\Y") {
return false;
goto ret_false;
}
if (recursion_monitor.count(cellport.first)) {
log_warning("logic loop in mux tree at signal %s in module %s.\n",
log_signal(sig), RTLIL::id2cstr(module->name));
return false;
goto ret_false;
}
recursion_monitor.insert(cellport.first);
@ -63,22 +70,22 @@ static bool check_state_mux_tree(RTLIL::SigSpec old_sig, RTLIL::SigSpec sig, poo
RTLIL::SigSpec sig_a = assign_map(cellport.first->getPort("\\A"));
RTLIL::SigSpec sig_b = assign_map(cellport.first->getPort("\\B"));
if (!check_state_mux_tree(old_sig, sig_a, recursion_monitor)) {
if (!check_state_mux_tree(old_sig, sig_a, recursion_monitor, mux_tree_cache)) {
recursion_monitor.erase(cellport.first);
return false;
goto ret_false;
}
for (int i = 0; i < sig_b.size(); i += sig_a.size())
if (!check_state_mux_tree(old_sig, sig_b.extract(i, sig_a.size()), recursion_monitor)) {
if (!check_state_mux_tree(old_sig, sig_b.extract(i, sig_a.size()), recursion_monitor, mux_tree_cache)) {
recursion_monitor.erase(cellport.first);
return false;
goto ret_false;
}
recursion_monitor.erase(cellport.first);
muxtree_cells.insert(cellport.first);
}
return true;
goto ret_true;
}
static bool check_state_users(RTLIL::SigSpec sig)
@ -143,11 +150,12 @@ static void detect_fsm(RTLIL::Wire *wire)
pool<Cell*> recursion_monitor;
RTLIL::SigSpec sig_q = assign_map(cellport.first->getPort("\\Q"));
RTLIL::SigSpec sig_d = assign_map(cellport.first->getPort("\\D"));
dict<RTLIL::SigSpec, bool> mux_tree_cache;
if (sig_q != assign_map(wire))
continue;
looks_like_state_reg = check_state_mux_tree(sig_q, sig_d, recursion_monitor);
looks_like_state_reg = check_state_mux_tree(sig_q, sig_d, recursion_monitor, mux_tree_cache);
looks_like_good_state_reg = check_state_users(sig_q);
if (!looks_like_state_reg)

View File

@ -134,6 +134,7 @@ struct rules_t
dict<string, int> min_limits, max_limits;
bool or_next_if_better, make_transp, make_outreg;
char shuffle_enable;
vector<vector<std::tuple<bool,IdString,Const>>> attributes;
};
dict<IdString, vector<bram_t>> brams;
@ -327,6 +328,20 @@ struct rules_t
continue;
}
if (GetSize(tokens) >= 2 && tokens[0] == "attribute") {
data.attributes.emplace_back();
for (int idx = 1; idx < GetSize(tokens); idx++) {
size_t c1 = tokens[idx][0] == '!' ? 1 : 0;
size_t c2 = tokens[idx].find("=");
bool exists = (c1 == 0);
IdString key = RTLIL::escape_id(tokens[idx].substr(c1, c2));
Const val = c2 != std::string::npos ? tokens[idx].substr(c2+1) : RTLIL::Const(1);
data.attributes.back().emplace_back(exists, key, val);
}
continue;
}
syntax_error();
}
}
@ -813,6 +828,43 @@ grow_read_ports:;
return false;
}
for (const auto &sums : match.attributes) {
bool found = false;
for (const auto &term : sums) {
bool exists = std::get<0>(term);
IdString key = std::get<1>(term);
const Const &value = std::get<2>(term);
auto it = cell->attributes.find(key);
if (it == cell->attributes.end()) {
if (exists)
continue;
found = true;
break;
}
else if (!exists)
continue;
if (it->second != value)
continue;
found = true;
break;
}
if (!found) {
std::stringstream ss;
bool exists = std::get<0>(sums.front());
if (!exists)
ss << "!";
IdString key = std::get<1>(sums.front());
ss << log_id(key);
const Const &value = std::get<2>(sums.front());
if (exists && value != Const(1))
ss << "=\"" << value.decode_string() << "\"";
log(" Rule for bram type %s rejected: requirement 'attribute %s ...' not met.\n",
log_id(match.name), ss.str().c_str());
return false;
}
}
if (mode == 1)
return true;
}
@ -1100,6 +1152,43 @@ void handle_cell(Cell *cell, const rules_t &rules)
goto next_match_rule;
}
for (const auto &sums : match.attributes) {
bool found = false;
for (const auto &term : sums) {
bool exists = std::get<0>(term);
IdString key = std::get<1>(term);
const Const &value = std::get<2>(term);
auto it = cell->attributes.find(key);
if (it == cell->attributes.end()) {
if (exists)
continue;
found = true;
break;
}
else if (!exists)
continue;
if (it->second != value)
continue;
found = true;
break;
}
if (!found) {
std::stringstream ss;
bool exists = std::get<0>(sums.front());
if (!exists)
ss << "!";
IdString key = std::get<1>(sums.front());
ss << log_id(key);
const Const &value = std::get<2>(sums.front());
if (exists && value != Const(1))
ss << "=\"" << value.decode_string() << "\"";
log(" Rule for bram type %s (variant %d) rejected: requirement 'attribute %s ...' not met.\n",
log_id(bram.name), bram.variant, ss.str().c_str());
goto next_match_rule;
}
}
log(" Rule #%d for bram type %s (variant %d) accepted.\n", i+1, log_id(bram.name), bram.variant);
if (or_next_if_better || !best_rule_cache.empty())
@ -1225,6 +1314,13 @@ struct MemoryBramPass : public Pass {
log(" dcells ....... number of cells in 'data-direction'\n");
log(" cells ........ total number of cells (acells*dcells*dups)\n");
log("\n");
log("A match containing the command 'attribute' followed by a list of space\n");
log("separated 'name[=string_value]' values requires that the memory contains any\n");
log("one of the given attribute name and string values (where specified), or name\n");
log("and integer 1 value (if no string_value given, since Verilog will interpret\n");
log("'(* attr *)' as '(* attr=1 *)').\n");
log("A name prefixed with '!' indicates that the attribute must not exist.\n");
log("\n");
log("The interface for the created bram instances is derived from the bram\n");
log("description. Use 'techmap' to convert the created bram instances into\n");
log("instances of the actual bram cells of your target architecture.\n");

View File

@ -978,7 +978,7 @@ void replace_const_cells(RTLIL::Design *design, RTLIL::Module *module, bool cons
{
cover_list("opt.opt_expr.eqneq.cmpzero", "$eq", "$ne", cell->type.str());
log_debug("Replacing %s cell `%s' in module `%s' with %s.\n", log_id(cell->type), log_id(cell),
log_id(module), "$eq" ? "$logic_not" : "$reduce_bool");
log_id(module), cell->type == ID($eq) ? "$logic_not" : "$reduce_bool");
cell->type = cell->type == ID($eq) ? ID($logic_not) : ID($reduce_bool);
if (assign_map(cell->getPort(ID::A)).is_fully_zero()) {
cell->setPort(ID::A, cell->getPort(ID::B));

View File

@ -22,8 +22,9 @@ $(eval $(call add_extra_objs,passes/pmgen/ice40_wrapcarry_pm.h))
# --------------------------------------
OBJS += passes/pmgen/xilinx_dsp.o
passes/pmgen/xilinx_dsp.o: passes/pmgen/xilinx_dsp_pm.h passes/pmgen/xilinx_dsp_CREG_pm.h passes/pmgen/xilinx_dsp_cascade_pm.h
passes/pmgen/xilinx_dsp.o: passes/pmgen/xilinx_dsp_pm.h passes/pmgen/xilinx_dsp48a_pm.h passes/pmgen/xilinx_dsp_CREG_pm.h passes/pmgen/xilinx_dsp_cascade_pm.h
$(eval $(call add_extra_objs,passes/pmgen/xilinx_dsp_pm.h))
$(eval $(call add_extra_objs,passes/pmgen/xilinx_dsp48a_pm.h))
$(eval $(call add_extra_objs,passes/pmgen/xilinx_dsp_CREG_pm.h))
$(eval $(call add_extra_objs,passes/pmgen/xilinx_dsp_cascade_pm.h))

View File

@ -73,11 +73,11 @@ void create_ice40_dsp(ice40_dsp_pm &pm)
// SB_MAC16 Input Interface
SigSpec A = st.sigA;
A.extend_u0(16, st.mul->getParam(ID(A_SIGNED)).as_bool());
A.extend_u0(16, st.mul->parameters.at(ID(A_SIGNED), State::S0).as_bool());
log_assert(GetSize(A) == 16);
SigSpec B = st.sigB;
B.extend_u0(16, st.mul->getParam(ID(B_SIGNED)).as_bool());
B.extend_u0(16, st.mul->parameters.at(ID(B_SIGNED), State::S0).as_bool());
log_assert(GetSize(B) == 16);
SigSpec CD = st.sigCD;
@ -248,8 +248,8 @@ void create_ice40_dsp(ice40_dsp_pm &pm)
cell->setParam(ID(BOTADDSUB_CARRYSELECT), Const(0, 2));
cell->setParam(ID(MODE_8x8), State::S0);
cell->setParam(ID(A_SIGNED), st.mul->getParam(ID(A_SIGNED)).as_bool());
cell->setParam(ID(B_SIGNED), st.mul->getParam(ID(B_SIGNED)).as_bool());
cell->setParam(ID(A_SIGNED), st.mul->parameters.at(ID(A_SIGNED), State::S0).as_bool());
cell->setParam(ID(B_SIGNED), st.mul->parameters.at(ID(B_SIGNED), State::S0).as_bool());
if (st.ffO) {
if (st.o_lo)

View File

@ -56,11 +56,16 @@ code sigA sigB sigH
break;
sigH.append(O[i]);
}
// This sigM could have no users if downstream sinks (e.g. $add) is
// narrower than $mul result, for example
if (i == 0)
reject;
log_assert(nusers(O.extract_end(i)) <= 1);
endcode
code argQ ffA ffAholdmux ffArstmux ffAholdpol ffArstpol sigA clock clock_pol
if (mul->type != \SB_MAC16 || !param(mul, \A_REG).as_bool()) {
if (mul->type != \SB_MAC16 || !param(mul, \A_REG, State::S0).as_bool()) {
argQ = sigA;
subpattern(in_dffe);
if (dff) {
@ -81,7 +86,7 @@ code argQ ffA ffAholdmux ffArstmux ffAholdpol ffArstpol sigA clock clock_pol
endcode
code argQ ffB ffBholdmux ffBrstmux ffBholdpol ffBrstpol sigB clock clock_pol
if (mul->type != \SB_MAC16 || !param(mul, \B_REG).as_bool()) {
if (mul->type != \SB_MAC16 || !param(mul, \B_REG, State::S0).as_bool()) {
argQ = sigB;
subpattern(in_dffe);
if (dff) {
@ -104,7 +109,7 @@ endcode
code argD ffFJKG sigH clock clock_pol
if (nusers(sigH) == 2 &&
(mul->type != \SB_MAC16 ||
(!param(mul, \TOP_8x8_MULT_REG).as_bool() && !param(mul, \BOT_8x8_MULT_REG).as_bool() && !param(mul, \PIPELINE_16x16_MULT_REG1).as_bool() && !param(mul, \PIPELINE_16x16_MULT_REG1).as_bool()))) {
(!param(mul, \TOP_8x8_MULT_REG, State::S0).as_bool() && !param(mul, \BOT_8x8_MULT_REG, State::S0).as_bool() && !param(mul, \PIPELINE_16x16_MULT_REG1, State::S0).as_bool() && !param(mul, \PIPELINE_16x16_MULT_REG1, State::S0).as_bool()))) {
argD = sigH;
subpattern(out_dffe);
if (dff) {
@ -143,7 +148,7 @@ endcode
code argD ffH sigH sigO clock clock_pol
if (ffFJKG && nusers(sigH) == 2 &&
(mul->type != \SB_MAC16 || !param(mul, \PIPELINE_16x16_MULT_REG2).as_bool())) {
(mul->type != \SB_MAC16 || !param(mul, \PIPELINE_16x16_MULT_REG2, State::S0).as_bool())) {
argD = sigH;
subpattern(out_dffe);
if (dff) {
@ -174,7 +179,7 @@ reject_ffH: ;
endcode
match add
if mul->type != \SB_MAC16 || (param(mul, \TOPOUTPUT_SELECT).as_int() == 3 && param(mul, \BOTOUTPUT_SELECT).as_int() == 3)
if mul->type != \SB_MAC16 || (param(mul, \TOPOUTPUT_SELECT, State::S0).as_int() == 3 && param(mul, \BOTOUTPUT_SELECT, State::S0).as_int() == 3)
select add->type.in($add)
choice <IdString> AB {\A, \B}
@ -200,7 +205,7 @@ code sigCD sigO cd_signed
if ((actual_acc_width > actual_mul_width) && (natural_mul_width > actual_mul_width))
reject;
// If accumulator, check adder width and signedness
if (sigCD == sigH && (actual_acc_width != actual_mul_width) && (param(mul, \A_SIGNED).as_bool() != param(add, \A_SIGNED).as_bool()))
if (sigCD == sigH && (actual_acc_width != actual_mul_width) && (param(mul, \A_SIGNED, State::S0).as_bool() != param(add, \A_SIGNED).as_bool()))
reject;
sigO = port(add, \Y);
@ -275,7 +280,7 @@ endcode
code argQ ffCD ffCDholdmux ffCDholdpol ffCDrstpol sigCD clock clock_pol
if (!sigCD.empty() && sigCD != sigO &&
(mul->type != \SB_MAC16 || (!param(mul, \C_REG).as_bool() && !param(mul, \D_REG).as_bool()))) {
(mul->type != \SB_MAC16 || (!param(mul, \C_REG, State::S0).as_bool() && !param(mul, \D_REG, State::S0).as_bool()))) {
argQ = sigCD;
subpattern(in_dffe);
if (dff) {
@ -328,6 +333,8 @@ arg argD argQ clock clock_pol
code
dff = nullptr;
if (argQ.empty())
reject;
for (auto c : argQ.chunks()) {
if (!c.wire)
reject;

View File

@ -42,11 +42,19 @@ void create_ice40_wrapcarry(ice40_wrapcarry_pm &pm)
cell->setPort("\\A", st.carry->getPort("\\I0"));
cell->setPort("\\B", st.carry->getPort("\\I1"));
cell->setPort("\\CI", st.carry->getPort("\\CI"));
auto CI = st.carry->getPort("\\CI");
cell->setPort("\\CI", CI);
cell->setPort("\\CO", st.carry->getPort("\\CO"));
cell->setPort("\\I0", st.lut->getPort("\\I0"));
cell->setPort("\\I3", st.lut->getPort("\\I3"));
auto I3 = st.lut->getPort("\\I3");
if (pm.sigmap(CI) == pm.sigmap(I3)) {
cell->setParam("\\I3_IS_CI", State::S1);
I3 = State::Sx;
}
else
cell->setParam("\\I3_IS_CI", State::S0);
cell->setPort("\\I3", I3);
cell->setPort("\\O", st.lut->getPort("\\O"));
cell->setParam("\\LUT", st.lut->getParam("\\LUT_INIT"));
@ -118,7 +126,8 @@ struct Ice40WrapCarryPass : public Pass {
auto lut = module->addCell(lut_name, ID($lut));
lut->setParam(ID(WIDTH), 4);
lut->setParam(ID(LUT), cell->getParam(ID(LUT)));
lut->setPort(ID(A), {cell->getPort(ID(I0)), cell->getPort(ID(A)), cell->getPort(ID(B)), cell->getPort(ID(I3)) });
auto I3 = cell->getPort(cell->getParam(ID(I3_IS_CI)).as_bool() ? ID(CI) : ID(I3));
lut->setPort(ID(A), { I3, cell->getPort(ID(B)), cell->getPort(ID(A)), cell->getPort(ID(I0)) });
lut->setPort(ID(Y), cell->getPort(ID(O)));
Const src;

View File

@ -26,6 +26,7 @@ USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
#include "passes/pmgen/xilinx_dsp_pm.h"
#include "passes/pmgen/xilinx_dsp48a_pm.h"
#include "passes/pmgen/xilinx_dsp_CREG_pm.h"
#include "passes/pmgen/xilinx_dsp_cascade_pm.h"
@ -487,6 +488,190 @@ void xilinx_dsp_pack(xilinx_dsp_pm &pm)
pm.blacklist(cell);
}
void xilinx_dsp48a_pack(xilinx_dsp48a_pm &pm)
{
auto &st = pm.st_xilinx_dsp48a_pack;
log("Analysing %s.%s for Xilinx DSP48A/DSP48A1 packing.\n", log_id(pm.module), log_id(st.dsp));
log_debug("preAdd: %s\n", log_id(st.preAdd, "--"));
log_debug("ffA1: %s %s %s\n", log_id(st.ffA1, "--"), log_id(st.ffA1cemux, "--"), log_id(st.ffA1rstmux, "--"));
log_debug("ffA0: %s %s %s\n", log_id(st.ffA0, "--"), log_id(st.ffA0cemux, "--"), log_id(st.ffA0rstmux, "--"));
log_debug("ffB1: %s %s %s\n", log_id(st.ffB1, "--"), log_id(st.ffB1cemux, "--"), log_id(st.ffB1rstmux, "--"));
log_debug("ffB0: %s %s %s\n", log_id(st.ffB0, "--"), log_id(st.ffB0cemux, "--"), log_id(st.ffB0rstmux, "--"));
log_debug("ffD: %s %s %s\n", log_id(st.ffD, "--"), log_id(st.ffDcemux, "--"), log_id(st.ffDrstmux, "--"));
log_debug("dsp: %s\n", log_id(st.dsp, "--"));
log_debug("ffM: %s %s %s\n", log_id(st.ffM, "--"), log_id(st.ffMcemux, "--"), log_id(st.ffMrstmux, "--"));
log_debug("postAdd: %s\n", log_id(st.postAdd, "--"));
log_debug("postAddMux: %s\n", log_id(st.postAddMux, "--"));
log_debug("ffP: %s %s %s\n", log_id(st.ffP, "--"), log_id(st.ffPcemux, "--"), log_id(st.ffPrstmux, "--"));
Cell *cell = st.dsp;
SigSpec &opmode = cell->connections_.at(ID(OPMODE));
if (st.preAdd) {
log(" preadder %s (%s)\n", log_id(st.preAdd), log_id(st.preAdd->type));
bool D_SIGNED = st.preAdd->getParam(ID(A_SIGNED)).as_bool();
bool B_SIGNED = st.preAdd->getParam(ID(B_SIGNED)).as_bool();
st.sigB.extend_u0(18, B_SIGNED);
st.sigD.extend_u0(18, D_SIGNED);
cell->setPort(ID(B), st.sigB);
cell->setPort(ID(D), st.sigD);
opmode[4] = State::S1;
if (st.preAdd->type == ID($add))
opmode[6] = State::S0;
else if (st.preAdd->type == ID($sub))
opmode[6] = State::S1;
else
log_assert(!"strange pre-adder type");
pm.autoremove(st.preAdd);
}
if (st.postAdd) {
log(" postadder %s (%s)\n", log_id(st.postAdd), log_id(st.postAdd->type));
if (st.postAddMux) {
log_assert(st.ffP);
opmode[2] = st.postAddMux->getPort(ID(S));
pm.autoremove(st.postAddMux);
}
else if (st.ffP && st.sigC == st.sigP)
opmode[2] = State::S0;
else
opmode[2] = State::S1;
opmode[3] = State::S1;
if (opmode[2] != State::S0) {
if (st.postAddMuxAB == ID(A))
st.sigC.extend_u0(48, st.postAdd->getParam(ID(B_SIGNED)).as_bool());
else
st.sigC.extend_u0(48, st.postAdd->getParam(ID(A_SIGNED)).as_bool());
cell->setPort(ID(C), st.sigC);
}
pm.autoremove(st.postAdd);
}
if (st.clock != SigBit())
{
cell->setPort(ID(CLK), st.clock);
auto f = [&pm,cell](SigSpec &A, Cell* ff, Cell* cemux, bool cepol, IdString ceport, Cell* rstmux, bool rstpol, IdString rstport) {
SigSpec D = ff->getPort(ID(D));
SigSpec Q = pm.sigmap(ff->getPort(ID(Q)));
if (!A.empty())
A.replace(Q, D);
if (rstmux) {
SigSpec Y = rstmux->getPort(ID(Y));
SigSpec AB = rstmux->getPort(rstpol ? ID(A) : ID(B));
if (!A.empty())
A.replace(Y, AB);
if (rstport != IdString()) {
SigSpec S = rstmux->getPort(ID(S));
cell->setPort(rstport, rstpol ? S : pm.module->Not(NEW_ID, S));
}
}
else if (rstport != IdString())
cell->setPort(rstport, State::S0);
if (cemux) {
SigSpec Y = cemux->getPort(ID(Y));
SigSpec BA = cemux->getPort(cepol ? ID(B) : ID(A));
SigSpec S = cemux->getPort(ID(S));
if (!A.empty())
A.replace(Y, BA);
cell->setPort(ceport, cepol ? S : pm.module->Not(NEW_ID, S));
}
else
cell->setPort(ceport, State::S1);
for (auto c : Q.chunks()) {
auto it = c.wire->attributes.find(ID(init));
if (it == c.wire->attributes.end())
continue;
for (int i = c.offset; i < c.offset+c.width; i++) {
log_assert(it->second[i] == State::S0 || it->second[i] == State::Sx);
it->second[i] = State::Sx;
}
}
};
if (st.ffA0 || st.ffA1) {
SigSpec A = cell->getPort(ID(A));
if (st.ffA1) {
f(A, st.ffA1, st.ffA1cemux, st.ffAcepol, ID(CEA), st.ffA1rstmux, st.ffArstpol, ID(RSTA));
cell->setParam(ID(A1REG), 1);
}
if (st.ffA0) {
f(A, st.ffA0, st.ffA0cemux, st.ffAcepol, ID(CEA), st.ffA0rstmux, st.ffArstpol, ID(RSTA));
cell->setParam(ID(A0REG), 1);
}
pm.add_siguser(A, cell);
cell->setPort(ID(A), A);
}
if (st.ffB0 || st.ffB1) {
SigSpec B = cell->getPort(ID(B));
if (st.ffB1) {
f(B, st.ffB1, st.ffB1cemux, st.ffBcepol, ID(CEB), st.ffB1rstmux, st.ffBrstpol, ID(RSTB));
cell->setParam(ID(B1REG), 1);
}
if (st.ffB0) {
f(B, st.ffB0, st.ffB0cemux, st.ffBcepol, ID(CEB), st.ffB0rstmux, st.ffBrstpol, ID(RSTB));
cell->setParam(ID(B0REG), 1);
}
pm.add_siguser(B, cell);
cell->setPort(ID(B), B);
}
if (st.ffD) {
SigSpec D = cell->getPort(ID(D));
f(D, st.ffD, st.ffDcemux, st.ffDcepol, ID(CED), st.ffDrstmux, st.ffDrstpol, ID(RSTD));
pm.add_siguser(D, cell);
cell->setPort(ID(D), D);
cell->setParam(ID(DREG), 1);
}
if (st.ffM) {
SigSpec M; // unused
f(M, st.ffM, st.ffMcemux, st.ffMcepol, ID(CEM), st.ffMrstmux, st.ffMrstpol, ID(RSTM));
st.ffM->connections_.at(ID(Q)).replace(st.sigM, pm.module->addWire(NEW_ID, GetSize(st.sigM)));
cell->setParam(ID(MREG), State::S1);
}
if (st.ffP) {
SigSpec P; // unused
f(P, st.ffP, st.ffPcemux, st.ffPcepol, ID(CEP), st.ffPrstmux, st.ffPrstpol, ID(RSTP));
st.ffP->connections_.at(ID(Q)).replace(st.sigP, pm.module->addWire(NEW_ID, GetSize(st.sigP)));
cell->setParam(ID(PREG), State::S1);
}
log(" clock: %s (%s)", log_signal(st.clock), "posedge");
if (st.ffA0)
log(" ffA0:%s", log_id(st.ffA0));
if (st.ffA1)
log(" ffA1:%s", log_id(st.ffA1));
if (st.ffB0)
log(" ffB0:%s", log_id(st.ffB0));
if (st.ffB1)
log(" ffB1:%s", log_id(st.ffB1));
if (st.ffD)
log(" ffD:%s", log_id(st.ffD));
if (st.ffM)
log(" ffM:%s", log_id(st.ffM));
if (st.ffP)
log(" ffP:%s", log_id(st.ffP));
}
log("\n");
SigSpec P = st.sigP;
if (GetSize(P) < 48)
P.append(pm.module->addWire(NEW_ID, 48-GetSize(P)));
cell->setPort(ID(P), P);
pm.blacklist(cell);
}
void xilinx_dsp_packC(xilinx_dsp_CREG_pm &pm)
{
auto &st = pm.st_xilinx_dsp_packC;
@ -592,33 +777,48 @@ struct XilinxDspPass : public Pass {
log("P output implementing the operation \"(P >= <power-of-2>)\" will be transformed\n");
log("into using the DSP48E1's pattern detector feature for overflow detection.\n");
log("\n");
log(" -family {xcup|xcu|xc7|xc6v|xc5v|xc4v|xc6s|xc3sda}\n");
log(" select the family to target\n");
log(" default: xc7\n");
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
{
log_header(design, "Executing XILINX_DSP pass (pack resources into DSPs).\n");
std::string family = "xc7";
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++)
{
// if (args[argidx] == "-singleton") {
// singleton_mode = true;
// continue;
// }
if ((args[argidx] == "-family" || args[argidx] == "-arch") && argidx+1 < args.size()) {
family = args[++argidx];
continue;
}
break;
}
extra_args(args, argidx, design);
// Don't bother distinguishing between those.
if (family == "xc6v")
family = "xc7";
if (family == "xcup")
family = "xcu";
for (auto module : design->selected_modules()) {
// Experimental feature: pack $add/$sub cells with
// (* use_dsp48="simd" *) into DSP48E1's using its
// SIMD feature
xilinx_simd_pack(module, module->selected_cells());
if (family == "xc7")
xilinx_simd_pack(module, module->selected_cells());
// Match for all features ([ABDMP][12]?REG, pre-adder,
// post-adder, pattern detector, etc.) except for CREG
{
if (family == "xc7") {
xilinx_dsp_pm pm(module, module->selected_cells());
pm.run_xilinx_dsp_pack(xilinx_dsp_pack);
} else if (family == "xc6s" || family == "xc3sda") {
xilinx_dsp48a_pm pm(module, module->selected_cells());
pm.run_xilinx_dsp48a_pack(xilinx_dsp48a_pack);
}
// Separating out CREG packing is necessary since there
// is no guarantee that the cell ordering corresponds

View File

@ -120,7 +120,7 @@ endcode
// reset functionality, using a subpattern discussed above)
// If matched, treat 'A' input as input of ADREG
code argQ ffAD ffADcemux ffADrstmux ffADcepol ffADrstpol sigA clock
if (param(dsp, \ADREG).as_int() == 0) {
if (param(dsp, \ADREG, 1).as_int() == 0) {
argQ = sigA;
subpattern(in_dffe);
if (dff) {
@ -176,7 +176,7 @@ code argQ ffAD ffADcemux ffADrstmux ffADcepol ffADrstpol sigA clock ffA2 ffA2cem
// Only search for ffA2 if there was a pre-adder
// (otherwise ffA2 would have been matched as ffAD)
if (preAdd) {
if (param(dsp, \AREG).as_int() == 0) {
if (param(dsp, \AREG, 1).as_int() == 0) {
argQ = sigA;
subpattern(in_dffe);
if (dff) {
@ -237,7 +237,7 @@ endcode
// (5) Match 'B' input for B2REG
// If B2REG, then match 'B' input for B1REG
code argQ ffB2 ffB2cemux ffB2rstmux ffB2cepol ffBrstpol sigB clock ffB1 ffB1cemux ffB1rstmux ffB1cepol
if (param(dsp, \BREG).as_int() == 0) {
if (param(dsp, \BREG, 1).as_int() == 0) {
argQ = sigB;
subpattern(in_dffe);
if (dff) {
@ -287,7 +287,7 @@ endcode
// (6) Match 'D' input for DREG
code argQ ffD ffDcemux ffDrstmux ffDcepol ffDrstpol sigD clock
if (param(dsp, \DREG).as_int() == 0) {
if (param(dsp, \DREG, 1).as_int() == 0) {
argQ = sigD;
subpattern(in_dffe);
if (dff) {
@ -308,7 +308,7 @@ endcode
// (7) Match 'P' output that exclusively drives an MREG
code argD ffM ffMcemux ffMrstmux ffMcepol ffMrstpol sigM sigP clock
if (param(dsp, \MREG).as_int() == 0 && nusers(sigM) == 2) {
if (param(dsp, \MREG, 1).as_int() == 0 && nusers(sigM) == 2) {
argD = sigM;
subpattern(out_dffe);
if (dff) {
@ -335,7 +335,7 @@ endcode
// recognised in xilinx_dsp.cc).
match postAdd
// Ensure that Z mux is not already used
if port(dsp, \OPMODE, SigSpec()).extract(4,3).is_fully_zero()
if port(dsp, \OPMODE, SigSpec(0, 7)).extract(4,3).is_fully_zero()
select postAdd->type.in($add)
select GetSize(port(postAdd, \Y)) <= 48
@ -363,7 +363,7 @@ endcode
// (9) Match 'P' output that exclusively drives a PREG
code argD ffP ffPcemux ffPrstmux ffPcepol ffPrstpol sigP clock
if (param(dsp, \PREG).as_int() == 0) {
if (param(dsp, \PREG, 1).as_int() == 0) {
int users = 2;
// If ffMcemux and no postAdd new-value net must have three users: ffMcemux, ffM and ffPcemux
if (ffMcemux && !postAdd) users++;
@ -460,7 +460,7 @@ arg argD argQ clock
code
dff = nullptr;
if (GetSize(argQ) == 0)
if (argQ.empty())
reject;
for (const auto &c : argQ.chunks()) {
// Abandon matches when 'Q' is a constant

View File

@ -0,0 +1,673 @@
// This file describes the main pattern matcher setup (of three total) that
// forms the `xilinx_dsp` pass described in xilinx_dsp.cc - version for
// DSP48A/DSP48A1 (Spartan 3A DSP, Spartan 6).
// At a high level, it works as follows:
// ( 1) Starting from a DSP48A/DSP48A1 cell
// ( 2) Match the driver of the 'B' input to a possible $dff cell (B1REG)
// (attached to at most two $mux cells that implement clock-enable or
// reset functionality, using a subpattern discussed below)
// If B1REG matched, treat 'B' input as input of B1REG
// ( 3) Match the driver of the 'B' and 'D' inputs for a possible $add cell
// (pre-adder)
// ( 4) Match 'B' input for B0REG
// ( 5) Match 'A' input for A1REG
// If A1REG, then match 'A' input for A0REG
// ( 6) Match 'D' input for DREG
// ( 7) Match 'P' output that exclusively drives an MREG
// ( 8) Match 'P' output that exclusively drives one of two inputs to an $add
// cell (post-adder).
// The other input to the adder is assumed to come in from the 'C' input
// (note: 'P' -> 'C' connections that exist for accumulators are
// recognised in xilinx_dsp.cc).
// ( 9) Match 'P' output that exclusively drives a PREG
// (10) If post-adder and PREG both present, match for a $mux cell driving
// the 'C' input, where one of the $mux's inputs is the PREG output.
// This indicates an accumulator situation, and one where a $mux exists
// to override the accumulated value:
// +--------------------------------+
// | ____ |
// +--| \ |
// |$mux|-+ |
// 'C' ---|____/ | |
// | /-------\ +----+ |
// +----+ +-| post- |___|PREG|---+ 'P'
// |MREG|------ | adder | +----+
// +----+ \-------/
// Notes: see the notes in xilinx_dsp.pmg
pattern xilinx_dsp48a_pack
state <SigBit> clock
state <SigSpec> sigA sigB sigC sigD sigM sigP
state <IdString> postAddAB postAddMuxAB
state <bool> ffAcepol ffBcepol ffDcepol ffMcepol ffPcepol
state <bool> ffArstpol ffBrstpol ffDrstpol ffMrstpol ffPrstpol
state <Cell*> ffA0 ffA0cemux ffA0rstmux ffA1 ffA1cemux ffA1rstmux
state <Cell*> ffB0 ffB0cemux ffB0rstmux ffB1 ffB1cemux ffB1rstmux
state <Cell*> ffD ffDcemux ffDrstmux ffM ffMcemux ffMrstmux ffP ffPcemux ffPrstmux
// Variables used for subpatterns
state <SigSpec> argQ argD
state <bool> ffcepol ffrstpol
state <int> ffoffset
udata <SigSpec> dffD dffQ
udata <SigBit> dffclock
udata <Cell*> dff dffcemux dffrstmux
udata <bool> dffcepol dffrstpol
// (1) Starting from a DSP48A/DSP48A1 cell
match dsp
select dsp->type.in(\DSP48A, \DSP48A1)
endmatch
code sigA sigB sigC sigD sigM clock
auto unextend = [](const SigSpec &sig) {
int i;
for (i = GetSize(sig)-1; i > 0; i--)
if (sig[i] != sig[i-1])
break;
// Do not remove non-const sign bit
if (sig[i].wire)
++i;
return sig.extract(0, i);
};
sigA = unextend(port(dsp, \A));
sigB = unextend(port(dsp, \B));
sigC = port(dsp, \C, SigSpec());
sigD = port(dsp, \D, SigSpec());
SigSpec P = port(dsp, \P);
// Only care about those bits that are used
int i;
for (i = GetSize(P)-1; i >= 0; i--)
if (nusers(P[i]) > 1)
break;
i++;
log_assert(nusers(P.extract_end(i)) <= 1);
// This sigM could have no users if downstream sinks (e.g. $add) is
// narrower than $mul result, for example
if (i == 0)
reject;
sigM = P.extract(0, i);
clock = port(dsp, \CLK, SigBit());
endcode
// (2) Match the driver of the 'B' input to a possible $dff cell (B1REG)
// (attached to at most two $mux cells that implement clock-enable or
// reset functionality, using a subpattern discussed above)
// If matched, treat 'B' input as input of B1REG
code argQ ffB1 ffB1cemux ffB1rstmux ffBcepol ffBrstpol sigB clock
if (param(dsp, \B1REG).as_int() == 0 && param(dsp, \B0REG).as_int() == 0 && port(dsp, \OPMODE, SigSpec()).extract(4, 1).is_fully_zero()) {
argQ = sigB;
subpattern(in_dffe);
if (dff) {
ffB1 = dff;
clock = dffclock;
if (dffrstmux) {
ffB1rstmux = dffrstmux;
ffBrstpol = dffrstpol;
}
if (dffcemux) {
ffB1cemux = dffcemux;
ffBcepol = dffcepol;
}
sigB = dffD;
}
}
endcode
// (3) Match the driver of the 'B' and 'D' inputs for a possible $add cell
// (pre-adder)
match preAdd
if sigD.empty() || sigD.is_fully_zero()
if param(dsp, \B0REG).as_int() == 0
// Ensure that preAdder not already used
if port(dsp, \OPMODE, SigSpec()).extract(4, 1).is_fully_zero()
select preAdd->type.in($add, $sub)
// Output has to be 18 bits or less
select GetSize(port(preAdd, \Y)) <= 18
select nusers(port(preAdd, \Y)) == 2
// D port has to be 18 bits or less
select GetSize(port(preAdd, \A)) <= 18
// B port has to be 18 bits or less
select GetSize(port(preAdd, \B)) <= 18
index <SigSpec> port(preAdd, \Y) === sigB
optional
endmatch
code sigB sigD
if (preAdd) {
sigD = port(preAdd, \A);
sigB = port(preAdd, \B);
}
endcode
// (4) Match 'B' input for B0REG
code argQ ffB0 ffB0cemux ffB0rstmux ffBcepol ffBrstpol sigB clock
if (param(dsp, \B0REG).as_int() == 0) {
argQ = sigB;
subpattern(in_dffe);
if (dff) {
if (ffB1) {
if ((ffB1rstmux != nullptr) ^ (dffrstmux != nullptr))
goto ffB0_end;
if ((ffB1cemux != nullptr) ^ (dffcemux != nullptr))
goto ffB0_end;
if (dffrstmux) {
if (ffBrstpol != dffrstpol)
goto ffB0_end;
if (port(ffB1rstmux, \S) != port(dffrstmux, \S))
goto ffB0_end;
ffB0rstmux = dffrstmux;
}
if (dffcemux) {
if (ffBcepol != dffcepol)
goto ffB0_end;
if (port(ffB1cemux, \S) != port(dffcemux, \S))
goto ffB0_end;
ffB0cemux = dffcemux;
}
}
ffB0 = dff;
clock = dffclock;
if (dffrstmux) {
ffB0rstmux = dffrstmux;
ffBrstpol = dffrstpol;
}
if (dffcemux) {
ffB0cemux = dffcemux;
ffBcepol = dffcepol;
}
sigB = dffD;
}
}
ffB0_end:
endcode
// (5) Match 'A' input for A1REG
// If A1REG, then match 'A' input for A0REG
code argQ ffA1 ffA1cemux ffA1rstmux ffAcepol ffArstpol sigA clock ffA0 ffA0cemux ffA0rstmux
if (param(dsp, \A0REG).as_int() == 0 && param(dsp, \A1REG).as_int() == 0) {
argQ = sigA;
subpattern(in_dffe);
if (dff) {
ffA1 = dff;
clock = dffclock;
if (dffrstmux) {
ffA1rstmux = dffrstmux;
ffArstpol = dffrstpol;
}
if (dffcemux) {
ffA1cemux = dffcemux;
ffAcepol = dffcepol;
}
sigA = dffD;
// Now attempt to match A0
if (ffA1) {
argQ = sigA;
subpattern(in_dffe);
if (dff) {
if ((ffA1rstmux != nullptr) ^ (dffrstmux != nullptr))
goto ffA0_end;
if ((ffA1cemux != nullptr) ^ (dffcemux != nullptr))
goto ffA0_end;
if (dffrstmux) {
if (ffArstpol != dffrstpol)
goto ffA0_end;
if (port(ffA1rstmux, \S) != port(dffrstmux, \S))
goto ffA0_end;
ffA0rstmux = dffrstmux;
}
if (dffcemux) {
if (ffAcepol != dffcepol)
goto ffA0_end;
if (port(ffA1cemux, \S) != port(dffcemux, \S))
goto ffA0_end;
ffA0cemux = dffcemux;
}
ffA0 = dff;
clock = dffclock;
if (dffcemux) {
ffA0cemux = dffcemux;
ffAcepol = dffcepol;
}
sigA = dffD;
ffA0_end: ;
}
}
}
}
endcode
// (6) Match 'D' input for DREG
code argQ ffD ffDcemux ffDrstmux ffDcepol ffDrstpol sigD clock
if (param(dsp, \DREG).as_int() == 0) {
argQ = sigD;
subpattern(in_dffe);
if (dff) {
ffD = dff;
clock = dffclock;
if (dffrstmux) {
ffDrstmux = dffrstmux;
ffDrstpol = dffrstpol;
}
if (dffcemux) {
ffDcemux = dffcemux;
ffDcepol = dffcepol;
}
sigD = dffD;
}
}
endcode
// (7) Match 'P' output that exclusively drives an MREG
code argD ffM ffMcemux ffMrstmux ffMcepol ffMrstpol sigM sigP clock
if (param(dsp, \MREG).as_int() == 0 && nusers(sigM) == 2) {
argD = sigM;
subpattern(out_dffe);
if (dff) {
ffM = dff;
clock = dffclock;
if (dffrstmux) {
ffMrstmux = dffrstmux;
ffMrstpol = dffrstpol;
}
if (dffcemux) {
ffMcemux = dffcemux;
ffMcepol = dffcepol;
}
sigM = dffQ;
}
}
sigP = sigM;
endcode
// (8) Match 'P' output that exclusively drives one of two inputs to an $add
// cell (post-adder).
// The other input to the adder is assumed to come in from the 'C' input
// (note: 'P' -> 'C' connections that exist for accumulators are
// recognised in xilinx_dsp.cc).
match postAdd
// Ensure that Z mux is not already used
if port(dsp, \OPMODE, SigSpec()).extract(2,2).is_fully_zero()
select postAdd->type.in($add)
select GetSize(port(postAdd, \Y)) <= 48
choice <IdString> AB {\A, \B}
select nusers(port(postAdd, AB)) <= 3
filter ffMcemux || nusers(port(postAdd, AB)) == 2
filter !ffMcemux || nusers(port(postAdd, AB)) == 3
index <SigBit> port(postAdd, AB)[0] === sigP[0]
filter GetSize(port(postAdd, AB)) >= GetSize(sigP)
filter port(postAdd, AB).extract(0, GetSize(sigP)) == sigP
// Check that remainder of AB is a sign- or zero-extension
filter port(postAdd, AB).extract_end(GetSize(sigP)) == SigSpec(sigP[GetSize(sigP)-1], GetSize(port(postAdd, AB))-GetSize(sigP)) || port(postAdd, AB).extract_end(GetSize(sigP)) == SigSpec(State::S0, GetSize(port(postAdd, AB))-GetSize(sigP))
set postAddAB AB
optional
endmatch
code sigC sigP
if (postAdd) {
sigC = port(postAdd, postAddAB == \A ? \B : \A);
sigP = port(postAdd, \Y);
}
endcode
// (9) Match 'P' output that exclusively drives a PREG
code argD ffP ffPcemux ffPrstmux ffPcepol ffPrstpol sigP clock
if (param(dsp, \PREG).as_int() == 0) {
int users = 2;
// If ffMcemux and no postAdd new-value net must have three users: ffMcemux, ffM and ffPcemux
if (ffMcemux && !postAdd) users++;
if (nusers(sigP) == users) {
argD = sigP;
subpattern(out_dffe);
if (dff) {
ffP = dff;
clock = dffclock;
if (dffrstmux) {
ffPrstmux = dffrstmux;
ffPrstpol = dffrstpol;
}
if (dffcemux) {
ffPcemux = dffcemux;
ffPcepol = dffcepol;
}
sigP = dffQ;
}
}
}
endcode
// (10) If post-adder and PREG both present, match for a $mux cell driving
// the 'C' input, where one of the $mux's inputs is the PREG output.
// This indicates an accumulator situation, and one where a $mux exists
// to override the accumulated value:
// +--------------------------------+
// | ____ |
// +--| \ |
// |$mux|-+ |
// 'C' ---|____/ | |
// | /-------\ +----+ |
// +----+ +-| post- |___|PREG|---+ 'P'
// |MREG|------ | adder | +----+
// +----+ \-------/
match postAddMux
if postAdd
if ffP
select postAddMux->type.in($mux)
select nusers(port(postAddMux, \Y)) == 2
choice <IdString> AB {\A, \B}
index <SigSpec> port(postAddMux, AB) === sigP
index <SigSpec> port(postAddMux, \Y) === sigC
set postAddMuxAB AB
optional
endmatch
code sigC
if (postAddMux)
sigC = port(postAddMux, postAddMuxAB == \A ? \B : \A);
endcode
code
accept;
endcode
// #######################
// Subpattern for matching against input registers, based on knowledge of the
// 'Q' input. Typically, identifying registers with clock-enable and reset
// capability would be a task would be handled by other Yosys passes such as
// dff2dffe, but since DSP inference happens much before this, these patterns
// have to be manually identified.
// At a high level:
// (1) Starting from a $dff cell that (partially or fully) drives the given
// 'Q' argument
// (2) Match for a $mux cell implementing synchronous reset semantics ---
// one that exclusively drives the 'D' input of the $dff, with one of its
// $mux inputs being fully zero
// (3) Match for a $mux cell implement clock enable semantics --- one that
// exclusively drives the 'D' input of the $dff (or the other input of
// the reset $mux) and where one of this $mux's inputs is connected to
// the 'Q' output of the $dff
subpattern in_dffe
arg argD argQ clock
code
dff = nullptr;
if (GetSize(argQ) == 0)
reject;
for (const auto &c : argQ.chunks()) {
// Abandon matches when 'Q' is a constant
if (!c.wire)
reject;
// Abandon matches when 'Q' has the keep attribute set
if (c.wire->get_bool_attribute(\keep))
reject;
// Abandon matches when 'Q' has a non-zero init attribute set
// (not supported by DSP48E1)
Const init = c.wire->attributes.at(\init, Const());
if (!init.empty())
for (auto b : init.extract(c.offset, c.width))
if (b != State::Sx && b != State::S0)
reject;
}
endcode
// (1) Starting from a $dff cell that (partially or fully) drives the given
// 'Q' argument
match ff
select ff->type.in($dff)
// DSP48E1 does not support clock inversion
select param(ff, \CLK_POLARITY).as_bool()
slice offset GetSize(port(ff, \D))
index <SigBit> port(ff, \Q)[offset] === argQ[0]
// Check that the rest of argQ is present
filter GetSize(port(ff, \Q)) >= offset + GetSize(argQ)
filter port(ff, \Q).extract(offset, GetSize(argQ)) == argQ
filter clock == SigBit() || port(ff, \CLK) == clock
set ffoffset offset
endmatch
code argQ argD
SigSpec Q = port(ff, \Q);
dff = ff;
dffclock = port(ff, \CLK);
dffD = argQ;
argD = port(ff, \D);
argQ = Q;
dffD.replace(argQ, argD);
// Only search for ffrstmux if dffD only
// has two (ff, ffrstmux) users
if (nusers(dffD) > 2)
argD = SigSpec();
endcode
// (2) Match for a $mux cell implementing synchronous reset semantics ---
// exclusively drives the 'D' input of the $dff, with one of the $mux
// inputs being fully zero
match ffrstmux
if !argD.empty()
select ffrstmux->type.in($mux)
index <SigSpec> port(ffrstmux, \Y) === argD
choice <IdString> BA {\B, \A}
// DSP48E1 only supports reset to zero
select port(ffrstmux, BA).is_fully_zero()
define <bool> pol (BA == \B)
set ffrstpol pol
semioptional
endmatch
code argD
if (ffrstmux) {
dffrstmux = ffrstmux;
dffrstpol = ffrstpol;
argD = port(ffrstmux, ffrstpol ? \A : \B);
dffD.replace(port(ffrstmux, \Y), argD);
// Only search for ffcemux if argQ has at
// least 3 users (ff, <upstream>, ffrstmux) and
// dffD only has two (ff, ffrstmux)
if (!(nusers(argQ) >= 3 && nusers(dffD) == 2))
argD = SigSpec();
}
else
dffrstmux = nullptr;
endcode
// (3) Match for a $mux cell implement clock enable semantics --- one that
// exclusively drives the 'D' input of the $dff (or the other input of
// the reset $mux) and where one of this $mux's inputs is connected to
// the 'Q' output of the $dff
match ffcemux
if !argD.empty()
select ffcemux->type.in($mux)
index <SigSpec> port(ffcemux, \Y) === argD
choice <IdString> AB {\A, \B}
index <SigSpec> port(ffcemux, AB) === argQ
define <bool> pol (AB == \A)
set ffcepol pol
semioptional
endmatch
code argD
if (ffcemux) {
dffcemux = ffcemux;
dffcepol = ffcepol;
argD = port(ffcemux, ffcepol ? \B : \A);
dffD.replace(port(ffcemux, \Y), argD);
}
else
dffcemux = nullptr;
endcode
// #######################
// Subpattern for matching against output registers, based on knowledge of the
// 'D' input.
// At a high level:
// (1) Starting from an optional $mux cell that implements clock enable
// semantics --- one where the given 'D' argument (partially or fully)
// drives one of its two inputs
// (2) Starting from, or continuing onto, another optional $mux cell that
// implements synchronous reset semantics --- one where the given 'D'
// argument (or the clock enable $mux output) drives one of its two inputs
// and where the other input is fully zero
// (3) Match for a $dff cell (whose 'D' input is the 'D' argument, or the
// output of the previous clock enable or reset $mux cells)
subpattern out_dffe
arg argD argQ clock
code
dff = nullptr;
for (auto c : argD.chunks())
// Abandon matches when 'D' has the keep attribute set
if (c.wire->get_bool_attribute(\keep))
reject;
endcode
// (1) Starting from an optional $mux cell that implements clock enable
// semantics --- one where the given 'D' argument (partially or fully)
// drives one of its two inputs
match ffcemux
select ffcemux->type.in($mux)
// ffcemux output must have two users: ffcemux and ff.D
select nusers(port(ffcemux, \Y)) == 2
choice <IdString> AB {\A, \B}
// keep-last-value net must have at least three users: ffcemux, ff, downstream sink(s)
select nusers(port(ffcemux, AB)) >= 3
slice offset GetSize(port(ffcemux, \Y))
define <IdString> BA (AB == \A ? \B : \A)
index <SigBit> port(ffcemux, BA)[offset] === argD[0]
// Check that the rest of argD is present
filter GetSize(port(ffcemux, BA)) >= offset + GetSize(argD)
filter port(ffcemux, BA).extract(offset, GetSize(argD)) == argD
set ffoffset offset
define <bool> pol (AB == \A)
set ffcepol pol
semioptional
endmatch
code argD argQ
dffcemux = ffcemux;
if (ffcemux) {
SigSpec BA = port(ffcemux, ffcepol ? \B : \A);
SigSpec Y = port(ffcemux, \Y);
argQ = argD;
argD.replace(BA, Y);
argQ.replace(BA, port(ffcemux, ffcepol ? \A : \B));
dffcemux = ffcemux;
dffcepol = ffcepol;
}
endcode
// (2) Starting from, or continuing onto, another optional $mux cell that
// implements synchronous reset semantics --- one where the given 'D'
// argument (or the clock enable $mux output) drives one of its two inputs
// and where the other input is fully zero
match ffrstmux
select ffrstmux->type.in($mux)
// ffrstmux output must have two users: ffrstmux and ff.D
select nusers(port(ffrstmux, \Y)) == 2
choice <IdString> BA {\B, \A}
// DSP48E1 only supports reset to zero
select port(ffrstmux, BA).is_fully_zero()
slice offset GetSize(port(ffrstmux, \Y))
define <IdString> AB (BA == \B ? \A : \B)
index <SigBit> port(ffrstmux, AB)[offset] === argD[0]
// Check that offset is consistent
filter !ffcemux || ffoffset == offset
// Check that the rest of argD is present
filter GetSize(port(ffrstmux, AB)) >= offset + GetSize(argD)
filter port(ffrstmux, AB).extract(offset, GetSize(argD)) == argD
set ffoffset offset
define <bool> pol (AB == \A)
set ffrstpol pol
semioptional
endmatch
code argD argQ
dffrstmux = ffrstmux;
if (ffrstmux) {
SigSpec AB = port(ffrstmux, ffrstpol ? \A : \B);
SigSpec Y = port(ffrstmux, \Y);
argD.replace(AB, Y);
dffrstmux = ffrstmux;
dffrstpol = ffrstpol;
}
endcode
// (3) Match for a $dff cell (whose 'D' input is the 'D' argument, or the
// output of the previous clock enable or reset $mux cells)
match ff
select ff->type.in($dff)
// DSP48E1 does not support clock inversion
select param(ff, \CLK_POLARITY).as_bool()
slice offset GetSize(port(ff, \D))
index <SigBit> port(ff, \D)[offset] === argD[0]
// Check that offset is consistent
filter (!ffcemux && !ffrstmux) || ffoffset == offset
// Check that the rest of argD is present
filter GetSize(port(ff, \D)) >= offset + GetSize(argD)
filter port(ff, \D).extract(offset, GetSize(argD)) == argD
// Check that FF.Q is connected to CE-mux
filter !ffcemux || port(ff, \Q).extract(offset, GetSize(argQ)) == argQ
filter clock == SigBit() || port(ff, \CLK) == clock
set ffoffset offset
endmatch
code argQ
SigSpec D = port(ff, \D);
SigSpec Q = port(ff, \Q);
if (!ffcemux) {
argQ = argD;
argQ.replace(D, Q);
}
// Abandon matches when 'Q' has a non-zero init attribute set
// (not supported by DSP48E1)
for (auto c : argQ.chunks()) {
Const init = c.wire->attributes.at(\init, Const());
if (!init.empty())
for (auto b : init.extract(c.offset, c.width))
if (b != State::Sx && b != State::S0)
reject;
}
dff = ff;
dffQ = argQ;
dffclock = port(ff, \CLK);
endcode

View File

@ -1,7 +1,7 @@
// This file describes the second of three pattern matcher setups that
// forms the `xilinx_dsp` pass described in xilinx_dsp.cc
// At a high level, it works as follows:
// (1) Starting from a DSP48E1 cell that (a) doesn't have a CREG already,
// (1) Starting from a DSP48* cell that (a) doesn't have a CREG already,
// and (b) uses the 'C' port
// (2) Match the driver of the 'C' input to a possible $dff cell (CREG)
// (attached to at most two $mux cells that implement clock-enable or
@ -38,10 +38,10 @@ udata <SigBit> dffclock
udata <Cell*> dff dffcemux dffrstmux
udata <bool> dffcepol dffrstpol
// (1) Starting from a DSP48E1 cell that (a) doesn't have a CREG already,
// (1) Starting from a DSP48* cell that (a) doesn't have a CREG already,
// and (b) uses the 'C' port
match dsp
select dsp->type.in(\DSP48E1)
select dsp->type.in(\DSP48A, \DSP48A1, \DSP48E1)
select param(dsp, \CREG, 1).as_int() == 0
select nusers(port(dsp, \C, SigSpec())) > 1
endmatch
@ -60,7 +60,8 @@ code sigC sigP clock
sigC = unextend(port(dsp, \C, SigSpec()));
SigSpec P = port(dsp, \P);
if (param(dsp, \USE_MULT, Const("MULTIPLY")).decode_string() == "MULTIPLY") {
if (!dsp->type.in(\DSP48E1) ||
param(dsp, \USE_MULT, Const("MULTIPLY")).decode_string() == "MULTIPLY") {
// Only care about those bits that are used
int i;
for (i = GetSize(P)-1; i >= 0; i--)

View File

@ -62,12 +62,11 @@ code
#define MAX_DSP_CASCADE 20
endcode
// (1) Starting from a DSP48E1 cell that (a) has the Z multiplexer
// (controlled by OPMODE[6:4]) set to zero and (b) doesn't already
// use the 'PCOUT' port
// (1) Starting from a DSP48* cell that (a) has the Z multiplexer
// (controlled by OPMODE[3:2] for DSP48A*, by OPMODE[6:4] for DSP48E1)
// set to zero and (b) doesn't already use the 'PCOUT' port
match first
select first->type.in(\DSP48E1)
select port(first, \OPMODE, Const(0, 7)).extract(4,3) == Const::from_string("000")
select (first->type.in(\DSP48A, \DSP48A1) && port(first, \OPMODE, Const(0, 8)).extract(2,2) == Const::from_string("00")) || (first->type.in(\DSP48E1) && port(first, \OPMODE, Const(0, 7)).extract(4,3) == Const::from_string("000"))
select nusers(port(first, \PCOUT, SigSpec())) <= 1
endmatch
@ -100,14 +99,21 @@ finally
add_siguser(cascade, dsp);
SigSpec opmode = port(dsp_pcin, \OPMODE, Const(0, 7));
if (P == 17)
opmode[6] = State::S1;
else if (P == 0)
opmode[6] = State::S0;
else log_abort();
if (dsp->type.in(\DSP48A, \DSP48A1)) {
log_assert(P == 0);
opmode[3] = State::S0;
opmode[2] = State::S1;
}
else if (dsp->type.in(\DSP48E1)) {
if (P == 17)
opmode[6] = State::S1;
else if (P == 0)
opmode[6] = State::S0;
else log_abort();
opmode[5] = State::S0;
opmode[4] = State::S1;
opmode[5] = State::S0;
opmode[4] = State::S1;
}
dsp_pcin->setPort(\OPMODE, opmode);
log_debug("PCOUT -> PCIN cascade for %s -> %s\n", log_id(dsp), log_id(dsp_pcin));
@ -120,21 +126,42 @@ finally
add_siguser(cascade, dsp_pcin);
add_siguser(cascade, dsp);
dsp->setParam(ID(ACASCREG), AREG);
if (dsp->type.in(\DSP48E1))
dsp->setParam(ID(ACASCREG), AREG);
dsp_pcin->setParam(ID(A_INPUT), Const("CASCADE"));
log_debug("ACOUT -> ACIN cascade for %s -> %s\n", log_id(dsp), log_id(dsp_pcin));
}
if (BREG >= 0) {
Wire *cascade = module->addWire(NEW_ID, 18);
dsp_pcin->setPort(ID(B), Const(0, 18));
dsp_pcin->setPort(ID(BCIN), cascade);
if (dsp->type.in(\DSP48A, \DSP48A1)) {
// According to UG389 p9 [https://www.xilinx.com/support/documentation/user_guides/ug389.pdf]
// "The DSP48A1 component uses this input when cascading
// BCOUT from an adjacent DSP48A1 slice. The tools then
// translate BCOUT cascading to the dedicated BCIN input
// and set the B_INPUT attribute for implementation."
dsp_pcin->setPort(ID(B), cascade);
}
else {
dsp_pcin->setPort(ID(B), Const(0, 18));
dsp_pcin->setPort(ID(BCIN), cascade);
}
dsp->setPort(ID(BCOUT), cascade);
add_siguser(cascade, dsp_pcin);
add_siguser(cascade, dsp);
dsp->setParam(ID(BCASCREG), BREG);
dsp_pcin->setParam(ID(B_INPUT), Const("CASCADE"));
if (dsp->type.in(\DSP48E1)) {
dsp->setParam(ID(BCASCREG), BREG);
// According to UG389 p13 [https://www.xilinx.com/support/documentation/user_guides/ug389.pdf]
// "The attribute is only used by place and route tools and
// is not necessary for the users to set for synthesis. The
// attribute is determined by the connection to the B port
// of the DSP48A1 slice. If the B port is connected to the
// BCOUT of another DSP48A1 slice, then the tools automatically
// set the attribute to 'CASCADE', otherwise it is set to
// 'DIRECT'".
dsp_pcin->setParam(ID(B_INPUT), Const("CASCADE"));
}
log_debug("BCOUT -> BCIN cascade for %s -> %s\n", log_id(dsp), log_id(dsp_pcin));
}
@ -156,22 +183,21 @@ subpattern tail
arg first
arg next
// (2.1) Match another DSP48E1 cell that (a) does not have the CREG enabled,
// (2.1) Match another DSP48* cell that (a) does not have the CREG enabled,
// (b) has its Z multiplexer output set to the 'C' port, which is
// driven by the 'P' output of the previous DSP cell, and (c) has its
// 'PCIN' port unused
match nextP
select nextP->type.in(\DSP48E1)
select !param(nextP, \CREG, State::S1).as_bool()
select port(nextP, \OPMODE, Const(0, 7)).extract(4,3) == Const::from_string("011")
select (nextP->type.in(\DSP48A, \DSP48A1) && port(nextP, \OPMODE, Const(0, 8)).extract(2,2) == Const::from_string("11")) || (nextP->type.in(\DSP48E1) && port(nextP, \OPMODE, Const(0, 7)).extract(4,3) == Const::from_string("011"))
select nusers(port(nextP, \C, SigSpec())) > 1
select nusers(port(nextP, \PCIN, SigSpec())) == 0
index <SigBit> port(nextP, \C)[0] === port(std::get<0>(chain.back()), \P)[0]
semioptional
endmatch
// (2.2) Same as (2.1) but with the 'C' port driven by the 'P' output of the
// previous DSP cell right-shifted by 17 bits
// (2.2) For DSP48E1 only, same as (2.1) but with the 'C' port driven
// by the 'P' output of the previous DSP cell right-shifted by 17 bits
match nextP_shift17
if !nextP
select nextP_shift17->type.in(\DSP48E1)
@ -188,6 +214,8 @@ code next
if (!nextP)
next = nextP_shift17;
if (next) {
if (next->type != first->type)
reject;
unextend = [](const SigSpec &sig) {
int i;
for (i = GetSize(sig)-1; i > 0; i--)
@ -202,38 +230,50 @@ code next
endcode
// (3) For this subequent DSP48E1 match (i.e. PCOUT -> PCIN cascade exists)
// if (a) the previous DSP48E1 uses either the A2REG or A1REG, (b) this
// DSP48 does not use A2REG nor A1REG, (c) this DSP48E1 does not already
// have an ACOUT -> ACIN cascade, (d) the previous DSP does not already
// use its ACOUT port, then examine if an ACOUT -> ACIN cascade
// opportunity exists by matching for a $dff-with-optional-clock-enable-
// or-reset and checking that the 'D' input of this register is the same
// as the 'A' input of the previous DSP
// if (a) this DSP48E1 does not already have an ACOUT -> ACIN cascade,
// (b) the previous DSP does not already use its ACOUT port, then
// examine if an ACOUT -> ACIN cascade opportunity exists if
// (i) A ports are identical, or (ii) separated by a
// $dff-with-optional-clock-enable-or-reset and checking that the 'D' input
// of this register is the same as the 'A' input of the previous DSP
// TODO: Check for two levels of flops, instead of just one
code argQ clock AREG
AREG = -1;
if (next) {
if (next && next->type.in(\DSP48E1)) {
Cell *prev = std::get<0>(chain.back());
if (param(prev, \AREG, 2).as_int() > 0 &&
param(next, \AREG, 2).as_int() > 0 &&
param(next, \A_INPUT, Const("DIRECT")).decode_string() == "DIRECT" &&
if (param(next, \A_INPUT, Const("DIRECT")).decode_string() == "DIRECT" &&
port(next, \ACIN, SigSpec()).is_fully_zero() &&
nusers(port(prev, \ACOUT, SigSpec())) <= 1) {
argQ = unextend(port(next, \A));
clock = port(prev, \CLK);
subpattern(in_dffe);
if (dff) {
if (!dffrstmux && port(prev, \RSTA, State::S0) != State::S0)
goto reject_AREG;
if (dffrstmux && port(dffrstmux, \S) != port(prev, \RSTA, State::S0))
goto reject_AREG;
if (!dffcemux && port(prev, \CEA2, State::S0) != State::S0)
goto reject_AREG;
if (dffcemux && port(dffcemux, \S) != port(prev, \CEA2, State::S0))
goto reject_AREG;
if (dffD == unextend(port(prev, \A)))
AREG = 1;
reject_AREG: ;
if (param(prev, \AREG, 2) == 0) {
if (port(prev, \A) == port(next, \A))
AREG = 0;
}
else {
argQ = unextend(port(next, \A));
clock = port(prev, \CLK);
subpattern(in_dffe);
if (dff) {
if (!dffrstmux && port(prev, \RSTA, State::S0) != State::S0)
goto reject_AREG;
if (dffrstmux && port(dffrstmux, \S) != port(prev, \RSTA, State::S0))
goto reject_AREG;
IdString CEA;
if (param(prev, \AREG, 2) == 1)
CEA = \CEA2;
else if (param(prev, \AREG, 2) == 2)
CEA = \CEA1;
else log_abort();
if (!dffcemux && port(prev, CEA, State::S0) != State::S1)
goto reject_AREG;
if (dffcemux && port(dffcemux, \S) != port(prev, CEA, State::S0))
goto reject_AREG;
if (dffD == unextend(port(prev, \A)))
AREG = 1;
}
}
}
reject_AREG: ;
}
endcode
@ -242,28 +282,47 @@ code argQ clock BREG
BREG = -1;
if (next) {
Cell *prev = std::get<0>(chain.back());
if (param(prev, \BREG, 2).as_int() > 0 &&
param(next, \BREG, 2).as_int() > 0 &&
param(next, \B_INPUT, Const("DIRECT")).decode_string() == "DIRECT" &&
if (param(next, \B_INPUT, Const("DIRECT")).decode_string() == "DIRECT" &&
port(next, \BCIN, SigSpec()).is_fully_zero() &&
nusers(port(prev, \BCOUT, SigSpec())) <= 1) {
argQ = unextend(port(next, \B));
clock = port(prev, \CLK);
subpattern(in_dffe);
if (dff) {
if (!dffrstmux && port(prev, \RSTB, State::S0) != State::S0)
goto reject_BREG;
if (dffrstmux && port(dffrstmux, \S) != port(prev, \RSTB, State::S0))
goto reject_BREG;
if (!dffcemux && port(prev, \CEB2, State::S0) != State::S0)
goto reject_BREG;
if (dffcemux && port(dffcemux, \S) != port(prev, \CEB2, State::S0))
goto reject_BREG;
if (dffD == unextend(port(prev, \B)))
BREG = 1;
reject_BREG: ;
if ((next->type.in(\DSP48A, \DSP48A1) && param(prev, \B0REG, 0) == 0 && param(prev, \B1REG, 1) == 0) ||
(next->type.in(\DSP48E1) && param(prev, \BREG, 2) == 0)) {
if (port(prev, \B) == port(next, \B))
BREG = 0;
}
else {
argQ = unextend(port(next, \B));
clock = port(prev, \CLK);
subpattern(in_dffe);
if (dff) {
if (!dffrstmux && port(prev, \RSTB, State::S0) != State::S0)
goto reject_BREG;
if (dffrstmux && port(dffrstmux, \S) != port(prev, \RSTB, State::S0))
goto reject_BREG;
IdString CEB;
if (next->type.in(\DSP48A, \DSP48A1))
CEB = \CEB;
else if (next->type.in(\DSP48E1)) {
if (param(prev, \BREG, 2) == 1)
CEB = \CEB2;
else if (param(prev, \BREG, 2) == 2)
CEB = \CEB1;
else log_abort();
}
else log_abort();
if (!dffcemux && port(prev, CEB, State::S0) != State::S1)
goto reject_BREG;
if (dffcemux && port(dffcemux, \S) != port(prev, CEB, State::S0))
goto reject_BREG;
if (dffD == unextend(port(prev, \B))) {
if (next->type.in(\DSP48A, \DSP48A1) && param(prev, \B0REG, 0) != 0)
goto reject_BREG;
BREG = 1;
}
}
}
}
reject_BREG: ;
}
endcode

View File

@ -12,4 +12,5 @@ OBJS += passes/sat/supercover.o
OBJS += passes/sat/fmcombine.o
OBJS += passes/sat/mutate.o
OBJS += passes/sat/cutpoint.o
OBJS += passes/sat/fminit.o

197
passes/sat/fminit.cc Normal file
View File

@ -0,0 +1,197 @@
/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/yosys.h"
#include "kernel/sigtools.h"
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
struct FminitPass : public Pass {
FminitPass() : Pass("fminit", "set init values/sequences for formal") { }
void help() YS_OVERRIDE
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" fminit [options] <selection>\n");
log("\n");
log("This pass creates init constraints (for example for reset sequences) in a formal\n");
log("model.\n");
log("\n");
log(" -seq <signal> <sequence>\n");
log(" Set sequence using comma-separated list of values, use 'z for\n");
log(" unconstrained bits. The last value is used for the remainder of the\n");
log(" trace.\n");
log("\n");
log(" -set <signal> <value>\n");
log(" Add constant value constraint\n");
log("\n");
log(" -posedge <signal>\n");
log(" -negedge <signal>\n");
log(" Set clock for init sequences\n");
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
{
vector<pair<string, vector<string>>> initdata;
vector<pair<string, string>> setdata;
string clocksignal;
bool clockedge;
log_header(design, "Executing FMINIT pass.\n");
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++)
{
// if (args[argidx] == "-o" && argidx+1 < args.size()) {
// filename = args[++argidx];
// continue;
// }
if (args[argidx] == "-seq" && argidx+2 < args.size()) {
string lhs = args[++argidx];
string rhs = args[++argidx];
initdata.push_back(make_pair(lhs, split_tokens(rhs, ",")));
continue;
}
if (args[argidx] == "-set" && argidx+2 < args.size()) {
string lhs = args[++argidx];
string rhs = args[++argidx];
setdata.push_back(make_pair(lhs, rhs));
continue;
}
if (args[argidx] == "-posedge" && argidx+1 < args.size()) {
clocksignal = args[++argidx];
clockedge = true;
continue;
}
if (args[argidx] == "-negedge" && argidx+1 < args.size()) {
clocksignal = args[++argidx];
clockedge = true;
continue;
}
break;
}
extra_args(args, argidx, design);
Module *module = nullptr;
for (auto mod : design->selected_modules()) {
if (module != nullptr)
log_error("'fminit' requires exactly one module to be selected.\n");
module = mod;
}
if (module == nullptr)
log_error("'fminit' requires exactly one module to be selected.\n");
SigSpec clksig;
if (!clocksignal.empty()) {
if (!SigSpec::parse(clksig, module, clocksignal))
log_error("Error parsing expression '%s'.\n", clocksignal.c_str());
}
for (auto &it : setdata)
{
SigSpec lhs, rhs;
if (!SigSpec::parse(lhs, module, it.first))
log_error("Error parsing expression '%s'.\n", it.first.c_str());
if (!SigSpec::parse_rhs(lhs, rhs, module, it.second))
log_error("Error parsing expression '%s'.\n", it.second.c_str());
SigSpec final_lhs, final_rhs;
for (int i = 0; i < GetSize(rhs); i++)
if (rhs[i] != State::Sz) {
final_lhs.append(lhs[i]);
final_rhs.append(rhs[i]);
}
if (!final_lhs.empty()) {
SigSpec eq = module->Eq(NEW_ID, final_lhs, final_rhs);
module->addAssume(NEW_ID, eq, State::S1);
}
}
vector<SigSpec> ctrlsig;
vector<SigSpec> ctrlsig_latched;
for (auto &it : initdata)
{
SigSpec lhs, rhs;
if (!SigSpec::parse(lhs, module, it.first))
log_error("Error parsing expression '%s'.\n", it.first.c_str());
for (int i = 0; i < GetSize(it.second); i++)
{
if (i >= GetSize(ctrlsig))
{
SigSpec insig = i > 0 ? ctrlsig.at(i-1) : State::S0;
Wire *outwire = module->addWire(NEW_ID);
outwire->attributes[ID(init)] = i > 0 ? State::S0 : State::S1;
if (clksig.empty())
module->addFf(NEW_ID, insig, outwire);
else
module->addDff(NEW_ID, clksig, insig, outwire, clockedge);
ctrlsig.push_back(outwire);
ctrlsig_latched.push_back(SigSpec());
}
if (i+1 == GetSize(it.second) && ctrlsig_latched[i].empty())
{
Wire *ffwire = module->addWire(NEW_ID);
ffwire->attributes[ID(init)] = State::S0;
SigSpec outsig = module->Or(NEW_ID, ffwire, ctrlsig[i]);
if (clksig.empty())
module->addFf(NEW_ID, outsig, ffwire);
else
module->addDff(NEW_ID, clksig, outsig, ffwire, clockedge);
ctrlsig_latched[i] = outsig;
}
SigSpec ctrl = i+1 == GetSize(it.second) ? ctrlsig_latched[i] : ctrlsig[i];
SigSpec final_lhs, final_rhs;
if (!SigSpec::parse_rhs(lhs, rhs, module, it.second[i]))
log_error("Error parsing expression '%s'.\n", it.second[i].c_str());
for (int i = 0; i < GetSize(rhs); i++)
if (rhs[i] != State::Sz) {
final_lhs.append(lhs[i]);
final_rhs.append(rhs[i]);
}
if (!final_lhs.empty()) {
SigSpec eq = module->Eq(NEW_ID, final_lhs, final_rhs);
module->addAssume(NEW_ID, eq, ctrl);
}
}
}
}
} FminitPass;
PRIVATE_NAMESPACE_END

View File

@ -269,7 +269,8 @@ struct SatHelper
for (int i = 0; i < lhs.size(); i++) {
RTLIL::SigSpec bit = lhs.extract(i, 1);
if (rhs[i] == State::Sx || !satgen.initial_state.check_all(bit)) {
removed_bits.append(bit);
if (rhs[i] != State::Sx)
removed_bits.append(bit);
lhs.remove(i, 1);
rhs.remove(i, 1);
i--;

View File

@ -230,7 +230,7 @@ struct SimInstance
bool did_something = false;
sig = sigmap(sig);
log_assert(GetSize(sig) == GetSize(value));
log_assert(GetSize(sig) <= GetSize(value));
for (int i = 0; i < GetSize(sig); i++)
if (state_nets.at(sig[i]) != value[i]) {

View File

@ -8,6 +8,8 @@ OBJS += passes/techmap/libparse.o
ifeq ($(ENABLE_ABC),1)
OBJS += passes/techmap/abc.o
OBJS += passes/techmap/abc9.o
OBJS += passes/techmap/abc9_exe.o
OBJS += passes/techmap/abc9_ops.o
ifneq ($(ABCEXTERNAL),)
passes/techmap/abc.o: CXXFLAGS += -DABCEXTERNAL='"$(ABCEXTERNAL)"'
passes/techmap/abc9.o: CXXFLAGS += -DABCEXTERNAL='"$(ABCEXTERNAL)"'

View File

@ -29,17 +29,17 @@
// Kahn, Arthur B. (1962), "Topological sorting of large networks", Communications of the ACM 5 (11): 558-562, doi:10.1145/368996.369025
// http://en.wikipedia.org/wiki/Topological_sorting
#define ABC_COMMAND_LIB "strash; ifraig; scorr; dc2; dretime; retime {D}; strash; &get -n; &dch -f; &nf {D}; &put"
#define ABC_COMMAND_CTR "strash; ifraig; scorr; dc2; dretime; retime {D}; strash; &get -n; &dch -f; &nf {D}; &put; buffer; upsize {D}; dnsize {D}; stime -p"
#define ABC_COMMAND_LUT "strash; ifraig; scorr; dc2; dretime; retime {D}; strash; dch -f; if; mfs2"
#define ABC_COMMAND_SOP "strash; ifraig; scorr; dc2; dretime; retime {D}; strash; dch -f; cover {I} {P}"
#define ABC_COMMAND_DFL "strash; ifraig; scorr; dc2; dretime; retime {D}; strash; &get -n; &dch -f; &nf {D}; &put"
#define ABC_COMMAND_LIB "strash; ifraig; scorr; dc2; dretime; strash; &get -n; &dch -f; &nf {D}; &put"
#define ABC_COMMAND_CTR "strash; ifraig; scorr; dc2; dretime; strash; &get -n; &dch -f; &nf {D}; &put; buffer; upsize {D}; dnsize {D}; stime -p"
#define ABC_COMMAND_LUT "strash; ifraig; scorr; dc2; dretime; strash; dch -f; if; mfs2"
#define ABC_COMMAND_SOP "strash; ifraig; scorr; dc2; dretime; strash; dch -f; cover {I} {P}"
#define ABC_COMMAND_DFL "strash; ifraig; scorr; dc2; dretime; strash; &get -n; &dch -f; &nf {D}; &put"
#define ABC_FAST_COMMAND_LIB "strash; dretime; retime {D}; map {D}"
#define ABC_FAST_COMMAND_CTR "strash; dretime; retime {D}; map {D}; buffer; upsize {D}; dnsize {D}; stime -p"
#define ABC_FAST_COMMAND_LUT "strash; dretime; retime {D}; if"
#define ABC_FAST_COMMAND_SOP "strash; dretime; retime {D}; cover -I {I} -P {P}"
#define ABC_FAST_COMMAND_DFL "strash; dretime; retime {D}; map"
#define ABC_FAST_COMMAND_LIB "strash; dretime; map {D}"
#define ABC_FAST_COMMAND_CTR "strash; dretime; map {D}; buffer; upsize {D}; dnsize {D}; stime -p"
#define ABC_FAST_COMMAND_LUT "strash; dretime; if"
#define ABC_FAST_COMMAND_SOP "strash; dretime; cover -I {I} -P {P}"
#define ABC_FAST_COMMAND_DFL "strash; dretime; map"
#include "kernel/register.h"
#include "kernel/sigtools.h"
@ -747,6 +747,10 @@ void abc_module(RTLIL::Design *design, RTLIL::Module *current_module, std::strin
else
abc_script += fast_mode ? ABC_FAST_COMMAND_DFL : ABC_COMMAND_DFL;
if (script_file.empty() && !delay_target.empty())
for (size_t pos = abc_script.find("dretime;"); pos != std::string::npos; pos = abc_script.find("dretime;", pos+1))
abc_script = abc_script.substr(0, pos) + "dretime; retime -o {D};" + abc_script.substr(pos+8);
for (size_t pos = abc_script.find("{D}"); pos != std::string::npos; pos = abc_script.find("{D}", pos))
abc_script = abc_script.substr(0, pos) + delay_target + abc_script.substr(pos+3);
@ -1510,7 +1514,47 @@ struct AbcPass : public Pass {
#endif
#endif
size_t argidx;
// get arguments from scratchpad first, then override by command arguments
std::string lut_arg, luts_arg, g_arg;
exe_file = design->scratchpad_get_string("abc.exe", exe_file /* inherit default value if not set */);
script_file = design->scratchpad_get_string("abc.script", script_file);
liberty_file = design->scratchpad_get_string("abc.liberty", liberty_file);
constr_file = design->scratchpad_get_string("abc.constr", constr_file);
if (design->scratchpad.count("abc.D")) {
delay_target = "-D " + design->scratchpad_get_string("abc.D");
}
if (design->scratchpad.count("abc.I")) {
sop_inputs = "-I " + design->scratchpad_get_string("abc.I");
}
if (design->scratchpad.count("abc.P")) {
sop_products = "-P " + design->scratchpad_get_string("abc.P");
}
if (design->scratchpad.count("abc.S")) {
lutin_shared = "-S " + design->scratchpad_get_string("abc.S");
}
lut_arg = design->scratchpad_get_string("abc.lut", lut_arg);
luts_arg = design->scratchpad_get_string("abc.luts", luts_arg);
sop_mode = design->scratchpad_get_bool("abc.sop", sop_mode);
map_mux4 = design->scratchpad_get_bool("abc.mux4", map_mux4);
map_mux8 = design->scratchpad_get_bool("abc.mux8", map_mux8);
map_mux16 = design->scratchpad_get_bool("abc.mux16", map_mux16);
abc_dress = design->scratchpad_get_bool("abc.dress", abc_dress);
g_arg = design->scratchpad_get_string("abc.g", g_arg);
fast_mode = design->scratchpad_get_bool("abc.fast", fast_mode);
dff_mode = design->scratchpad_get_bool("abc.dff", dff_mode);
if (design->scratchpad.count("abc.clk")) {
clk_str = design->scratchpad_get_string("abc.clk");
dff_mode = true;
}
keepff = design->scratchpad_get_bool("abc.keepff", keepff);
cleanup = !design->scratchpad_get_bool("abc.nocleanup", !cleanup);
keepff = design->scratchpad_get_bool("abc.keepff", keepff);
show_tempdir = design->scratchpad_get_bool("abc.showtmp", show_tempdir);
markgroups = design->scratchpad_get_bool("abc.markgroups", markgroups);
size_t argidx, g_argidx;
bool g_arg_from_cmd = false;
char pwd [PATH_MAX];
if (!getcwd(pwd, sizeof(pwd))) {
log_cmd_error("getcwd failed: %s\n", strerror(errno));
@ -1524,23 +1568,14 @@ struct AbcPass : public Pass {
}
if (arg == "-script" && argidx+1 < args.size()) {
script_file = args[++argidx];
rewrite_filename(script_file);
if (!script_file.empty() && !is_absolute_path(script_file) && script_file[0] != '+')
script_file = std::string(pwd) + "/" + script_file;
continue;
}
if (arg == "-liberty" && argidx+1 < args.size()) {
liberty_file = args[++argidx];
rewrite_filename(liberty_file);
if (!liberty_file.empty() && !is_absolute_path(liberty_file))
liberty_file = std::string(pwd) + "/" + liberty_file;
continue;
}
if (arg == "-constr" && argidx+1 < args.size()) {
rewrite_filename(constr_file);
constr_file = args[++argidx];
if (!constr_file.empty() && !is_absolute_path(constr_file))
constr_file = std::string(pwd) + "/" + constr_file;
continue;
}
if (arg == "-D" && argidx+1 < args.size()) {
@ -1560,37 +1595,11 @@ struct AbcPass : public Pass {
continue;
}
if (arg == "-lut" && argidx+1 < args.size()) {
string arg = args[++argidx];
size_t pos = arg.find_first_of(':');
int lut_mode = 0, lut_mode2 = 0;
if (pos != string::npos) {
lut_mode = atoi(arg.substr(0, pos).c_str());
lut_mode2 = atoi(arg.substr(pos+1).c_str());
} else {
lut_mode = atoi(arg.c_str());
lut_mode2 = lut_mode;
}
lut_costs.clear();
for (int i = 0; i < lut_mode; i++)
lut_costs.push_back(1);
for (int i = lut_mode; i < lut_mode2; i++)
lut_costs.push_back(2 << (i - lut_mode));
lut_arg = args[++argidx];
continue;
}
if (arg == "-luts" && argidx+1 < args.size()) {
lut_costs.clear();
for (auto &tok : split_tokens(args[++argidx], ",")) {
auto parts = split_tokens(tok, ":");
if (GetSize(parts) == 0 && !lut_costs.empty())
lut_costs.push_back(lut_costs.back());
else if (GetSize(parts) == 1)
lut_costs.push_back(atoi(parts.at(0).c_str()));
else if (GetSize(parts) == 2)
while (GetSize(lut_costs) < std::atoi(parts.at(0).c_str()))
lut_costs.push_back(atoi(parts.at(1).c_str()));
else
log_cmd_error("Invalid -luts syntax.\n");
}
luts_arg = args[++argidx];
continue;
}
if (arg == "-sop") {
@ -1614,123 +1623,11 @@ struct AbcPass : public Pass {
continue;
}
if (arg == "-g" && argidx+1 < args.size()) {
for (auto g : split_tokens(args[++argidx], ",")) {
vector<string> gate_list;
bool remove_gates = false;
if (GetSize(g) > 0 && g[0] == '-') {
remove_gates = true;
g = g.substr(1);
}
if (g == "AND") goto ok_gate;
if (g == "NAND") goto ok_gate;
if (g == "OR") goto ok_gate;
if (g == "NOR") goto ok_gate;
if (g == "XOR") goto ok_gate;
if (g == "XNOR") goto ok_gate;
if (g == "ANDNOT") goto ok_gate;
if (g == "ORNOT") goto ok_gate;
if (g == "MUX") goto ok_gate;
if (g == "NMUX") goto ok_gate;
if (g == "AOI3") goto ok_gate;
if (g == "OAI3") goto ok_gate;
if (g == "AOI4") goto ok_gate;
if (g == "OAI4") goto ok_gate;
if (g == "simple") {
gate_list.push_back("AND");
gate_list.push_back("OR");
gate_list.push_back("XOR");
gate_list.push_back("MUX");
goto ok_alias;
}
if (g == "cmos2") {
if (!remove_gates)
cmos_cost = true;
gate_list.push_back("NAND");
gate_list.push_back("NOR");
goto ok_alias;
}
if (g == "cmos3") {
if (!remove_gates)
cmos_cost = true;
gate_list.push_back("NAND");
gate_list.push_back("NOR");
gate_list.push_back("AOI3");
gate_list.push_back("OAI3");
goto ok_alias;
}
if (g == "cmos4") {
if (!remove_gates)
cmos_cost = true;
gate_list.push_back("NAND");
gate_list.push_back("NOR");
gate_list.push_back("AOI3");
gate_list.push_back("OAI3");
gate_list.push_back("AOI4");
gate_list.push_back("OAI4");
goto ok_alias;
}
if (g == "cmos") {
if (!remove_gates)
cmos_cost = true;
gate_list.push_back("NAND");
gate_list.push_back("NOR");
gate_list.push_back("AOI3");
gate_list.push_back("OAI3");
gate_list.push_back("AOI4");
gate_list.push_back("OAI4");
gate_list.push_back("NMUX");
gate_list.push_back("MUX");
gate_list.push_back("XOR");
gate_list.push_back("XNOR");
goto ok_alias;
}
if (g == "gates") {
gate_list.push_back("AND");
gate_list.push_back("NAND");
gate_list.push_back("OR");
gate_list.push_back("NOR");
gate_list.push_back("XOR");
gate_list.push_back("XNOR");
gate_list.push_back("ANDNOT");
gate_list.push_back("ORNOT");
goto ok_alias;
}
if (g == "aig") {
gate_list.push_back("AND");
gate_list.push_back("NAND");
gate_list.push_back("OR");
gate_list.push_back("NOR");
gate_list.push_back("ANDNOT");
gate_list.push_back("ORNOT");
goto ok_alias;
}
if (g == "all") {
gate_list.push_back("AND");
gate_list.push_back("NAND");
gate_list.push_back("OR");
gate_list.push_back("NOR");
gate_list.push_back("XOR");
gate_list.push_back("XNOR");
gate_list.push_back("ANDNOT");
gate_list.push_back("ORNOT");
gate_list.push_back("AOI3");
gate_list.push_back("OAI3");
gate_list.push_back("AOI4");
gate_list.push_back("OAI4");
gate_list.push_back("MUX");
gate_list.push_back("NMUX");
}
cmd_error(args, argidx, stringf("Unsupported gate type: %s", g.c_str()));
ok_gate:
gate_list.push_back(g);
ok_alias:
for (auto gate : gate_list) {
if (remove_gates)
enabled_gates.erase(gate);
else
enabled_gates.insert(gate);
}
}
if (g_arg_from_cmd)
log_cmd_error("Can only use -g once. Please combine.");
g_arg = args[++argidx];
g_argidx = argidx;
g_arg_from_cmd = true;
continue;
}
if (arg == "-fast") {
@ -1766,8 +1663,176 @@ struct AbcPass : public Pass {
}
extra_args(args, argidx, design);
rewrite_filename(script_file);
if (!script_file.empty() && !is_absolute_path(script_file) && script_file[0] != '+')
script_file = std::string(pwd) + "/" + script_file;
rewrite_filename(liberty_file);
if (!liberty_file.empty() && !is_absolute_path(liberty_file))
liberty_file = std::string(pwd) + "/" + liberty_file;
rewrite_filename(constr_file);
if (!constr_file.empty() && !is_absolute_path(constr_file))
constr_file = std::string(pwd) + "/" + constr_file;
// handle -lut argument
if (!lut_arg.empty()) {
size_t pos = lut_arg.find_first_of(':');
int lut_mode = 0, lut_mode2 = 0;
if (pos != string::npos) {
lut_mode = atoi(lut_arg.substr(0, pos).c_str());
lut_mode2 = atoi(lut_arg.substr(pos+1).c_str());
} else {
lut_mode = atoi(lut_arg.c_str());
lut_mode2 = lut_mode;
}
lut_costs.clear();
for (int i = 0; i < lut_mode; i++)
lut_costs.push_back(1);
for (int i = lut_mode; i < lut_mode2; i++)
lut_costs.push_back(2 << (i - lut_mode));
}
//handle -luts argument
if (!luts_arg.empty()){
lut_costs.clear();
for (auto &tok : split_tokens(luts_arg, ",")) {
auto parts = split_tokens(tok, ":");
if (GetSize(parts) == 0 && !lut_costs.empty())
lut_costs.push_back(lut_costs.back());
else if (GetSize(parts) == 1)
lut_costs.push_back(atoi(parts.at(0).c_str()));
else if (GetSize(parts) == 2)
while (GetSize(lut_costs) < std::atoi(parts.at(0).c_str()))
lut_costs.push_back(atoi(parts.at(1).c_str()));
else
log_cmd_error("Invalid -luts syntax.\n");
}
}
// handle -g argument
if (!g_arg.empty()){
for (auto g : split_tokens(g_arg, ",")) {
vector<string> gate_list;
bool remove_gates = false;
if (GetSize(g) > 0 && g[0] == '-') {
remove_gates = true;
g = g.substr(1);
}
if (g == "AND") goto ok_gate;
if (g == "NAND") goto ok_gate;
if (g == "OR") goto ok_gate;
if (g == "NOR") goto ok_gate;
if (g == "XOR") goto ok_gate;
if (g == "XNOR") goto ok_gate;
if (g == "ANDNOT") goto ok_gate;
if (g == "ORNOT") goto ok_gate;
if (g == "MUX") goto ok_gate;
if (g == "NMUX") goto ok_gate;
if (g == "AOI3") goto ok_gate;
if (g == "OAI3") goto ok_gate;
if (g == "AOI4") goto ok_gate;
if (g == "OAI4") goto ok_gate;
if (g == "simple") {
gate_list.push_back("AND");
gate_list.push_back("OR");
gate_list.push_back("XOR");
gate_list.push_back("MUX");
goto ok_alias;
}
if (g == "cmos2") {
if (!remove_gates)
cmos_cost = true;
gate_list.push_back("NAND");
gate_list.push_back("NOR");
goto ok_alias;
}
if (g == "cmos3") {
if (!remove_gates)
cmos_cost = true;
gate_list.push_back("NAND");
gate_list.push_back("NOR");
gate_list.push_back("AOI3");
gate_list.push_back("OAI3");
goto ok_alias;
}
if (g == "cmos4") {
if (!remove_gates)
cmos_cost = true;
gate_list.push_back("NAND");
gate_list.push_back("NOR");
gate_list.push_back("AOI3");
gate_list.push_back("OAI3");
gate_list.push_back("AOI4");
gate_list.push_back("OAI4");
goto ok_alias;
}
if (g == "cmos") {
if (!remove_gates)
cmos_cost = true;
gate_list.push_back("NAND");
gate_list.push_back("NOR");
gate_list.push_back("AOI3");
gate_list.push_back("OAI3");
gate_list.push_back("AOI4");
gate_list.push_back("OAI4");
gate_list.push_back("NMUX");
gate_list.push_back("MUX");
gate_list.push_back("XOR");
gate_list.push_back("XNOR");
goto ok_alias;
}
if (g == "gates") {
gate_list.push_back("AND");
gate_list.push_back("NAND");
gate_list.push_back("OR");
gate_list.push_back("NOR");
gate_list.push_back("XOR");
gate_list.push_back("XNOR");
gate_list.push_back("ANDNOT");
gate_list.push_back("ORNOT");
goto ok_alias;
}
if (g == "aig") {
gate_list.push_back("AND");
gate_list.push_back("NAND");
gate_list.push_back("OR");
gate_list.push_back("NOR");
gate_list.push_back("ANDNOT");
gate_list.push_back("ORNOT");
goto ok_alias;
}
if (g == "all") {
gate_list.push_back("AND");
gate_list.push_back("NAND");
gate_list.push_back("OR");
gate_list.push_back("NOR");
gate_list.push_back("XOR");
gate_list.push_back("XNOR");
gate_list.push_back("ANDNOT");
gate_list.push_back("ORNOT");
gate_list.push_back("AOI3");
gate_list.push_back("OAI3");
gate_list.push_back("AOI4");
gate_list.push_back("OAI4");
gate_list.push_back("MUX");
gate_list.push_back("NMUX");
}
if (g_arg_from_cmd)
cmd_error(args, g_argidx, stringf("Unsupported gate type: %s", g.c_str()));
else
log_cmd_error("Unsupported gate type: %s", g.c_str());
ok_gate:
gate_list.push_back(g);
ok_alias:
for (auto gate : gate_list) {
if (remove_gates)
enabled_gates.erase(gate);
else
enabled_gates.insert(gate);
}
}
}
if (!lut_costs.empty() && !liberty_file.empty())
log_cmd_error("Got -lut and -liberty! This two options are exclusive.\n");
log_cmd_error("Got -lut and -liberty! These two options are exclusive.\n");
if (!constr_file.empty() && liberty_file.empty())
log_cmd_error("Got -constr but no -liberty!\n");

File diff suppressed because it is too large Load Diff

531
passes/techmap/abc9_exe.cc Normal file
View File

@ -0,0 +1,531 @@
/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
* 2019 Eddie Hung <eddie@fpgeh.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
// [[CITE]] ABC
// Berkeley Logic Synthesis and Verification Group, ABC: A System for Sequential Synthesis and Verification
// http://www.eecs.berkeley.edu/~alanmi/abc/
#include "kernel/register.h"
#include "kernel/log.h"
#ifndef _WIN32
# include <unistd.h>
# include <dirent.h>
#endif
#ifdef YOSYS_LINK_ABC
extern "C" int Abc_RealMain(int argc, char *argv[]);
#endif
std::string fold_abc9_cmd(std::string str)
{
std::string token, new_str = " ";
int char_counter = 10;
for (size_t i = 0; i <= str.size(); i++) {
if (i < str.size())
token += str[i];
if (i == str.size() || str[i] == ';') {
if (char_counter + token.size() > 75)
new_str += "\n ", char_counter = 14;
new_str += token, char_counter += token.size();
token.clear();
}
}
return new_str;
}
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
std::string add_echos_to_abc9_cmd(std::string str)
{
std::string new_str, token;
for (size_t i = 0; i < str.size(); i++) {
token += str[i];
if (str[i] == ';') {
while (i+1 < str.size() && str[i+1] == ' ')
i++;
new_str += "echo + " + token + " " + token + " ";
token.clear();
}
}
if (!token.empty()) {
if (!new_str.empty())
new_str += "echo + " + token + "; ";
new_str += token;
}
return new_str;
}
std::string replace_tempdir(std::string text, std::string tempdir_name, bool show_tempdir)
{
if (show_tempdir)
return text;
while (1) {
size_t pos = text.find(tempdir_name);
if (pos == std::string::npos)
break;
text = text.substr(0, pos) + "<abc-temp-dir>" + text.substr(pos + GetSize(tempdir_name));
}
std::string selfdir_name = proc_self_dirname();
if (selfdir_name != "/") {
while (1) {
size_t pos = text.find(selfdir_name);
if (pos == std::string::npos)
break;
text = text.substr(0, pos) + "<yosys-exe-dir>/" + text.substr(pos + GetSize(selfdir_name));
}
}
return text;
}
struct abc9_output_filter
{
bool got_cr;
int escape_seq_state;
std::string linebuf;
std::string tempdir_name;
bool show_tempdir;
abc9_output_filter(std::string tempdir_name, bool show_tempdir) : tempdir_name(tempdir_name), show_tempdir(show_tempdir)
{
got_cr = false;
escape_seq_state = 0;
}
void next_char(char ch)
{
if (escape_seq_state == 0 && ch == '\033') {
escape_seq_state = 1;
return;
}
if (escape_seq_state == 1) {
escape_seq_state = ch == '[' ? 2 : 0;
return;
}
if (escape_seq_state == 2) {
if ((ch < '0' || '9' < ch) && ch != ';')
escape_seq_state = 0;
return;
}
escape_seq_state = 0;
if (ch == '\r') {
got_cr = true;
return;
}
if (ch == '\n') {
log("ABC: %s\n", replace_tempdir(linebuf, tempdir_name, show_tempdir).c_str());
got_cr = false, linebuf.clear();
return;
}
if (got_cr)
got_cr = false, linebuf.clear();
linebuf += ch;
}
void next_line(const std::string &line)
{
//int pi, po;
//if (sscanf(line.c_str(), "Start-point = pi%d. End-point = po%d.", &pi, &po) == 2) {
// log("ABC: Start-point = pi%d (%s). End-point = po%d (%s).\n",
// pi, pi_map.count(pi) ? pi_map.at(pi).c_str() : "???",
// po, po_map.count(po) ? po_map.at(po).c_str() : "???");
// return;
//}
for (char ch : line)
next_char(ch);
}
};
void abc9_module(RTLIL::Design *design, std::string script_file, std::string exe_file,
vector<int> lut_costs, bool dff_mode, std::string delay_target, std::string /*lutin_shared*/, bool fast_mode,
bool show_tempdir, std::string box_file, std::string lut_file,
std::string wire_delay, std::string tempdir_name
)
{
std::string abc9_script;
if (!lut_costs.empty())
abc9_script += stringf("read_lut %s/lutdefs.txt; ", tempdir_name.c_str());
else if (!lut_file.empty())
abc9_script += stringf("read_lut %s; ", lut_file.c_str());
else
log_abort();
log_assert(!box_file.empty());
abc9_script += stringf("read_box %s; ", box_file.c_str());
abc9_script += stringf("&read %s/input.xaig; &ps; ", tempdir_name.c_str());
if (!script_file.empty()) {
if (script_file[0] == '+') {
for (size_t i = 1; i < script_file.size(); i++)
if (script_file[i] == '\'')
abc9_script += "'\\''";
else if (script_file[i] == ',')
abc9_script += " ";
else
abc9_script += script_file[i];
} else
abc9_script += stringf("source %s", script_file.c_str());
} else if (!lut_costs.empty() || !lut_file.empty()) {
abc9_script += fast_mode ? RTLIL::constpad.at("abc9.script.default.fast").substr(1,std::string::npos)
: RTLIL::constpad.at("abc9.script.default").substr(1,std::string::npos);
} else
log_abort();
for (size_t pos = abc9_script.find("{D}"); pos != std::string::npos; pos = abc9_script.find("{D}", pos))
abc9_script = abc9_script.substr(0, pos) + delay_target + abc9_script.substr(pos+3);
//for (size_t pos = abc9_script.find("{S}"); pos != std::string::npos; pos = abc9_script.find("{S}", pos))
// abc9_script = abc9_script.substr(0, pos) + lutin_shared + abc9_script.substr(pos+3);
for (size_t pos = abc9_script.find("{W}"); pos != std::string::npos; pos = abc9_script.find("{W}", pos))
abc9_script = abc9_script.substr(0, pos) + wire_delay + abc9_script.substr(pos+3);
std::string C;
if (design->scratchpad.count("abc9.if.C"))
C = "-C " + design->scratchpad_get_string("abc9.if.C");
for (size_t pos = abc9_script.find("{C}"); pos != std::string::npos; pos = abc9_script.find("{C}", pos))
abc9_script = abc9_script.substr(0, pos) + C + abc9_script.substr(pos+3);
std::string R;
if (design->scratchpad.count("abc9.if.R"))
R = "-R " + design->scratchpad_get_string("abc9.if.R");
for (size_t pos = abc9_script.find("{R}"); pos != std::string::npos; pos = abc9_script.find("{R}", pos))
abc9_script = abc9_script.substr(0, pos) + R + abc9_script.substr(pos+3);
abc9_script += stringf("; &ps -l; &write -n %s/output.aig", tempdir_name.c_str());
if (design->scratchpad_get_bool("abc9.verify")) {
if (dff_mode)
abc9_script += "; verify -s";
else
abc9_script += "; verify";
}
abc9_script += "; time";
abc9_script = add_echos_to_abc9_cmd(abc9_script);
for (size_t i = 0; i+1 < abc9_script.size(); i++)
if (abc9_script[i] == ';' && abc9_script[i+1] == ' ')
abc9_script[i+1] = '\n';
FILE *f = fopen(stringf("%s/abc.script", tempdir_name.c_str()).c_str(), "wt");
fprintf(f, "%s\n", abc9_script.c_str());
fclose(f);
std::string buffer;
log_header(design, "Executing ABC9.\n");
if (!lut_costs.empty()) {
buffer = stringf("%s/lutdefs.txt", tempdir_name.c_str());
f = fopen(buffer.c_str(), "wt");
if (f == NULL)
log_error("Opening %s for writing failed: %s\n", buffer.c_str(), strerror(errno));
for (int i = 0; i < GetSize(lut_costs); i++)
fprintf(f, "%d %d.00 1.00\n", i+1, lut_costs.at(i));
fclose(f);
}
buffer = stringf("%s -s -f %s/abc.script 2>&1", exe_file.c_str(), tempdir_name.c_str());
log("Running ABC command: %s\n", replace_tempdir(buffer, tempdir_name, show_tempdir).c_str());
#ifndef YOSYS_LINK_ABC
abc9_output_filter filt(tempdir_name, show_tempdir);
int ret = run_command(buffer, std::bind(&abc9_output_filter::next_line, filt, std::placeholders::_1));
#else
// These needs to be mutable, supposedly due to getopt
char *abc9_argv[5];
string tmp_script_name = stringf("%s/abc.script", tempdir_name.c_str());
abc9_argv[0] = strdup(exe_file.c_str());
abc9_argv[1] = strdup("-s");
abc9_argv[2] = strdup("-f");
abc9_argv[3] = strdup(tmp_script_name.c_str());
abc9_argv[4] = 0;
int ret = Abc_RealMain(4, abc9_argv);
free(abc9_argv[0]);
free(abc9_argv[1]);
free(abc9_argv[2]);
free(abc9_argv[3]);
#endif
if (ret != 0)
log_error("ABC: execution of command \"%s\" failed: return code %d.\n", buffer.c_str(), ret);
}
struct Abc9ExePass : public Pass {
Abc9ExePass() : Pass("abc9_exe", "use ABC9 for technology mapping") { }
void help() YS_OVERRIDE
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" abc9_exe [options]\n");
log("\n");
log(" \n");
log("This pass uses the ABC tool [1] for technology mapping of the top module\n");
log("(according to the (* top *) attribute or if only one module is currently selected)\n");
log("to a target FPGA architecture.\n");
log("\n");
log(" -exe <command>\n");
#ifdef ABCEXTERNAL
log(" use the specified command instead of \"" ABCEXTERNAL "\" to execute ABC.\n");
#else
log(" use the specified command instead of \"<yosys-bindir>/yosys-abc\" to execute ABC.\n");
#endif
log(" This can e.g. be used to call a specific version of ABC or a wrapper.\n");
log("\n");
log(" -script <file>\n");
log(" use the specified ABC script file instead of the default script.\n");
log("\n");
log(" if <file> starts with a plus sign (+), then the rest of the filename\n");
log(" string is interpreted as the command string to be passed to ABC. The\n");
log(" leading plus sign is removed and all commas (,) in the string are\n");
log(" replaced with blanks before the string is passed to ABC.\n");
log("\n");
log(" if no -script parameter is given, the following scripts are used:\n");
log("%s\n", fold_abc9_cmd(RTLIL::constpad.at("abc9.script.default").substr(1,std::string::npos)).c_str());
log("\n");
log(" -fast\n");
log(" use different default scripts that are slightly faster (at the cost\n");
log(" of output quality):\n");
log("%s\n", fold_abc9_cmd(RTLIL::constpad.at("abc9.script.default.fast").substr(1,std::string::npos)).c_str());
log("\n");
log(" -D <picoseconds>\n");
log(" set delay target. the string {D} in the default scripts above is\n");
log(" replaced by this option when used, and an empty string otherwise\n");
log(" (indicating best possible delay).\n");
log("\n");
// log(" -S <num>\n");
// log(" maximum number of LUT inputs shared.\n");
// log(" (replaces {S} in the default scripts above, default: -S 1)\n");
// log("\n");
log(" -lut <width>\n");
log(" generate netlist using luts of (max) the specified width.\n");
log("\n");
log(" -lut <w1>:<w2>\n");
log(" generate netlist using luts of (max) the specified width <w2>. All\n");
log(" luts with width <= <w1> have constant cost. for luts larger than <w1>\n");
log(" the area cost doubles with each additional input bit. the delay cost\n");
log(" is still constant for all lut widths.\n");
log("\n");
log(" -lut <file>\n");
log(" pass this file with lut library to ABC.\n");
log("\n");
log(" -luts <cost1>,<cost2>,<cost3>,<sizeN>:<cost4-N>,..\n");
log(" generate netlist using luts. Use the specified costs for luts with 1,\n");
log(" 2, 3, .. inputs.\n");
log("\n");
log(" -showtmp\n");
log(" print the temp dir name in log. usually this is suppressed so that the\n");
log(" command output is identical across runs.\n");
log("\n");
log(" -box <file>\n");
log(" pass this file with box library to ABC.\n");
log("\n");
log(" -cwd <dir>\n");
log(" use this as the current working directory, inside which the 'input.xaig'\n");
log(" file is expected. temporary files will be created in this directory, and\n");
log(" the mapped result will be written to 'output.aig'.\n");
log("\n");
log("Note that this is a logic optimization pass within Yosys that is calling ABC\n");
log("internally. This is not going to \"run ABC on your design\". It will instead run\n");
log("ABC on logic snippets extracted from your design. You will not get any useful\n");
log("output when passing an ABC script that writes a file. Instead write your full\n");
log("design as BLIF file with write_blif and then load that into ABC externally if\n");
log("you want to use ABC to convert your design into another format.\n");
log("\n");
log("[1] http://www.eecs.berkeley.edu/~alanmi/abc/\n");
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
{
log_header(design, "Executing ABC9_MAP pass (technology mapping using ABC9).\n");
#ifdef ABCEXTERNAL
std::string exe_file = ABCEXTERNAL;
#else
std::string exe_file = proc_self_dirname() + "yosys-abc";
#endif
std::string script_file, clk_str, box_file, lut_file;
std::string delay_target, lutin_shared = "-S 1", wire_delay;
std::string tempdir_name;
bool fast_mode = false, dff_mode = false;
bool show_tempdir = false;
vector<int> lut_costs;
#if 0
cleanup = false;
show_tempdir = true;
#endif
#ifdef _WIN32
#ifndef ABCEXTERNAL
if (!check_file_exists(exe_file + ".exe") && check_file_exists(proc_self_dirname() + "..\\yosys-abc.exe"))
exe_file = proc_self_dirname() + "..\\yosys-abc";
#endif
#endif
std::string lut_arg, luts_arg;
exe_file = design->scratchpad_get_string("abc9.exe", exe_file /* inherit default value if not set */);
script_file = design->scratchpad_get_string("abc9.script", script_file);
if (design->scratchpad.count("abc9.D")) {
delay_target = "-D " + design->scratchpad_get_string("abc9.D");
}
lut_arg = design->scratchpad_get_string("abc9.lut", lut_arg);
luts_arg = design->scratchpad_get_string("abc9.luts", luts_arg);
fast_mode = design->scratchpad_get_bool("abc9.fast", fast_mode);
dff_mode = design->scratchpad_get_bool("abc9.dff", dff_mode);
show_tempdir = design->scratchpad_get_bool("abc9.showtmp", show_tempdir);
box_file = design->scratchpad_get_string("abc9.box", box_file);
if (design->scratchpad.count("abc9.W")) {
wire_delay = "-W " + design->scratchpad_get_string("abc9.W");
}
size_t argidx;
char pwd [PATH_MAX];
if (!getcwd(pwd, sizeof(pwd))) {
log_cmd_error("getcwd failed: %s\n", strerror(errno));
log_abort();
}
for (argidx = 1; argidx < args.size(); argidx++) {
std::string arg = args[argidx];
if (arg == "-exe" && argidx+1 < args.size()) {
exe_file = args[++argidx];
continue;
}
if (arg == "-script" && argidx+1 < args.size()) {
script_file = args[++argidx];
continue;
}
if (arg == "-D" && argidx+1 < args.size()) {
delay_target = "-D " + args[++argidx];
continue;
}
//if (arg == "-S" && argidx+1 < args.size()) {
// lutin_shared = "-S " + args[++argidx];
// continue;
//}
if (arg == "-lut" && argidx+1 < args.size()) {
lut_arg = args[++argidx];
continue;
}
if (arg == "-luts" && argidx+1 < args.size()) {
lut_arg = args[++argidx];
continue;
}
if (arg == "-fast") {
fast_mode = true;
continue;
}
if (arg == "-dff") {
dff_mode = true;
continue;
}
if (arg == "-showtmp") {
show_tempdir = true;
continue;
}
if (arg == "-box" && argidx+1 < args.size()) {
box_file = args[++argidx];
continue;
}
if (arg == "-W" && argidx+1 < args.size()) {
wire_delay = "-W " + args[++argidx];
continue;
}
if (arg == "-cwd" && argidx+1 < args.size()) {
tempdir_name = args[++argidx];
continue;
}
break;
}
extra_args(args, argidx, design);
rewrite_filename(script_file);
if (!script_file.empty() && !is_absolute_path(script_file) && script_file[0] != '+')
script_file = std::string(pwd) + "/" + script_file;
// handle -lut / -luts args
if (!lut_arg.empty()) {
string arg = lut_arg;
if (arg.find_first_not_of("0123456789:") == std::string::npos) {
size_t pos = arg.find_first_of(':');
int lut_mode = 0, lut_mode2 = 0;
if (pos != string::npos) {
lut_mode = atoi(arg.substr(0, pos).c_str());
lut_mode2 = atoi(arg.substr(pos+1).c_str());
} else {
lut_mode = atoi(arg.c_str());
lut_mode2 = lut_mode;
}
lut_costs.clear();
for (int i = 0; i < lut_mode; i++)
lut_costs.push_back(1);
for (int i = lut_mode; i < lut_mode2; i++)
lut_costs.push_back(2 << (i - lut_mode));
}
else {
lut_file = arg;
rewrite_filename(lut_file);
if (!lut_file.empty() && !is_absolute_path(lut_file) && lut_file[0] != '+')
lut_file = std::string(pwd) + "/" + lut_file;
}
}
if (!luts_arg.empty()) {
lut_costs.clear();
for (auto &tok : split_tokens(luts_arg, ",")) {
auto parts = split_tokens(tok, ":");
if (GetSize(parts) == 0 && !lut_costs.empty())
lut_costs.push_back(lut_costs.back());
else if (GetSize(parts) == 1)
lut_costs.push_back(atoi(parts.at(0).c_str()));
else if (GetSize(parts) == 2)
while (GetSize(lut_costs) < atoi(parts.at(0).c_str()))
lut_costs.push_back(atoi(parts.at(1).c_str()));
else
log_cmd_error("Invalid -luts syntax.\n");
}
}
// ABC expects a box file for XAIG
if (box_file.empty())
box_file = "+/dummy.box";
rewrite_filename(box_file);
if (!box_file.empty() && !is_absolute_path(box_file) && box_file[0] != '+')
box_file = std::string(pwd) + "/" + box_file;
if (tempdir_name.empty())
log_cmd_error("abc9_exe '-cwd' option is mandatory.\n");
abc9_module(design, script_file, exe_file, lut_costs, dff_mode,
delay_target, lutin_shared, fast_mode, show_tempdir,
box_file, lut_file, wire_delay, tempdir_name);
}
} Abc9ExePass;
PRIVATE_NAMESPACE_END

825
passes/techmap/abc9_ops.cc Normal file
View File

@ -0,0 +1,825 @@
/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
* 2019 Eddie Hung <eddie@fpgeh.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/register.h"
#include "kernel/sigtools.h"
#include "kernel/utils.h"
#include "kernel/celltypes.h"
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
int map_autoidx;
inline std::string remap_name(RTLIL::IdString abc9_name)
{
return stringf("$abc$%d$%s", map_autoidx, abc9_name.c_str()+1);
}
void mark_scc(RTLIL::Module *module)
{
// For every unique SCC found, (arbitrarily) find the first
// cell in the component, and convert all wires driven by
// its output ports into a new PO, and drive its previous
// sinks with a new PI
pool<RTLIL::Const> ids_seen;
for (auto cell : module->cells()) {
auto it = cell->attributes.find(ID(abc9_scc_id));
if (it == cell->attributes.end())
continue;
auto id = it->second;
auto r = ids_seen.insert(id);
cell->attributes.erase(it);
if (!r.second)
continue;
for (auto &c : cell->connections_) {
if (c.second.is_fully_const()) continue;
if (cell->output(c.first)) {
SigBit b = c.second.as_bit();
Wire *w = b.wire;
w->set_bool_attribute(ID::keep);
w->attributes[ID(abc9_scc_id)] = id.as_int();
}
}
}
module->fixup_ports();
}
void prep_dff(RTLIL::Module *module)
{
auto design = module->design;
log_assert(design);
SigMap assign_map(module);
typedef SigSpec clkdomain_t;
dict<clkdomain_t, int> clk_to_mergeability;
for (auto cell : module->cells()) {
if (cell->type != "$__ABC9_FF_")
continue;
Wire *abc9_clock_wire = module->wire(stringf("%s.clock", cell->name.c_str()));
if (abc9_clock_wire == NULL)
log_error("'%s.clock' is not a wire present in module '%s'.\n", cell->name.c_str(), log_id(module));
SigSpec abc9_clock = assign_map(abc9_clock_wire);
clkdomain_t key(abc9_clock);
auto r = clk_to_mergeability.insert(std::make_pair(abc9_clock, clk_to_mergeability.size() + 1));
auto r2 YS_ATTRIBUTE(unused) = cell->attributes.insert(std::make_pair(ID(abc9_mergeability), r.first->second));
log_assert(r2.second);
Wire *abc9_init_wire = module->wire(stringf("%s.init", cell->name.c_str()));
if (abc9_init_wire == NULL)
log_error("'%s.init' is not a wire present in module '%s'.\n", cell->name.c_str(), log_id(module));
log_assert(GetSize(abc9_init_wire) == 1);
SigSpec abc9_init = assign_map(abc9_init_wire);
if (!abc9_init.is_fully_const())
log_error("'%s.init' is not a constant wire present in module '%s'.\n", cell->name.c_str(), log_id(module));
if (abc9_init == State::S1)
log_error("'%s.init' in module '%s' has value 1'b1 which is not supported by 'abc9 -dff'.\n", cell->name.c_str(), log_id(module));
r2 = cell->attributes.insert(std::make_pair(ID(abc9_init), abc9_init.as_const()));
log_assert(r2.second);
}
RTLIL::Module *holes_module = design->module(stringf("%s$holes", module->name.c_str()));
if (holes_module) {
SigMap sigmap(holes_module);
dict<SigSpec, SigSpec> replace;
for (auto cell : holes_module->cells().to_vector()) {
if (!cell->type.in("$_DFF_N_", "$_DFF_NN0_", "$_DFF_NN1_", "$_DFF_NP0_", "$_DFF_NP1_",
"$_DFF_P_", "$_DFF_PN0_", "$_DFF_PN1", "$_DFF_PP0_", "$_DFF_PP1_"))
continue;
SigBit D = cell->getPort("\\D");
SigBit Q = cell->getPort("\\Q");
// Emulate async control embedded inside $_DFF_* cell with mux in front of D
if (cell->type.in("$_DFF_NN0_", "$_DFF_PN0_"))
D = holes_module->MuxGate(NEW_ID, State::S0, D, cell->getPort("\\R"));
else if (cell->type.in("$_DFF_NN1_", "$_DFF_PN1_"))
D = holes_module->MuxGate(NEW_ID, State::S1, D, cell->getPort("\\R"));
else if (cell->type.in("$_DFF_NP0_", "$_DFF_PP0_"))
D = holes_module->MuxGate(NEW_ID, D, State::S0, cell->getPort("\\R"));
else if (cell->type.in("$_DFF_NP1_", "$_DFF_PP1_"))
D = holes_module->MuxGate(NEW_ID, D, State::S1, cell->getPort("\\R"));
// Remove the $_DFF_* cell from what needs to be a combinatorial box
holes_module->remove(cell);
Wire *port;
if (GetSize(Q.wire) == 1)
port = holes_module->wire(stringf("$abc%s", Q.wire->name.c_str()));
else
port = holes_module->wire(stringf("$abc%s[%d]", Q.wire->name.c_str(), Q.offset));
log_assert(port);
// Prepare to replace "assign <port> = $_DFF_*.Q;" with "assign <port> = $_DFF_*.D;"
// in order to extract just the combinatorial control logic that feeds the box
// (i.e. clock enable, synchronous reset, etc.)
replace.insert(std::make_pair(Q,D));
// Since `flatten` above would have created wires named "<cell>.Q",
// extract the pre-techmap cell name
auto pos = Q.wire->name.str().rfind(".");
log_assert(pos != std::string::npos);
IdString driver = Q.wire->name.substr(0, pos);
// And drive the signal that was previously driven by "DFF.Q" (typically
// used to implement clock-enable functionality) with the "<cell>.$abc9_currQ"
// wire (which itself is driven an by input port) we inserted above
Wire *currQ = holes_module->wire(stringf("%s.abc9_ff.Q", driver.c_str()));
log_assert(currQ);
holes_module->connect(Q, currQ);
}
for (auto &conn : holes_module->connections_)
conn.second = replace.at(sigmap(conn.second), conn.second);
}
}
void prep_xaiger(RTLIL::Module *module, bool dff)
{
auto design = module->design;
log_assert(design);
SigMap sigmap(module);
dict<SigBit, pool<IdString>> bit_drivers, bit_users;
TopoSort<IdString, RTLIL::sort_by_id_str> toposort;
dict<IdString, std::vector<IdString>> box_ports;
for (auto cell : module->cells()) {
if (cell->type == "$__ABC9_FF_")
continue;
if (cell->has_keep_attr())
continue;
auto inst_module = module->design->module(cell->type);
bool abc9_box = inst_module && inst_module->attributes.count("\\abc9_box_id");
bool abc9_flop = false;
if (abc9_box) {
abc9_flop = inst_module->get_bool_attribute("\\abc9_flop");
if (abc9_flop && !dff)
continue;
auto r = box_ports.insert(cell->type);
if (r.second) {
// Make carry in the last PI, and carry out the last PO
// since ABC requires it this way
IdString carry_in, carry_out;
for (const auto &port_name : inst_module->ports) {
auto w = inst_module->wire(port_name);
log_assert(w);
if (w->get_bool_attribute("\\abc9_carry")) {
if (w->port_input) {
if (carry_in != IdString())
log_error("Module '%s' contains more than one 'abc9_carry' input port.\n", log_id(inst_module));
carry_in = port_name;
}
if (w->port_output) {
if (carry_out != IdString())
log_error("Module '%s' contains more than one 'abc9_carry' output port.\n", log_id(inst_module));
carry_out = port_name;
}
}
else
r.first->second.push_back(port_name);
}
if (carry_in != IdString() && carry_out == IdString())
log_error("Module '%s' contains an 'abc9_carry' input port but no output port.\n", log_id(inst_module));
if (carry_in == IdString() && carry_out != IdString())
log_error("Module '%s' contains an 'abc9_carry' output port but no input port.\n", log_id(inst_module));
if (carry_in != IdString()) {
r.first->second.push_back(carry_in);
r.first->second.push_back(carry_out);
}
}
}
else if (!yosys_celltypes.cell_known(cell->type))
continue;
// TODO: Speed up toposort -- we care about box ordering only
for (auto conn : cell->connections()) {
if (cell->input(conn.first))
for (auto bit : sigmap(conn.second))
bit_users[bit].insert(cell->name);
if (cell->output(conn.first) && !abc9_flop)
for (auto bit : sigmap(conn.second))
bit_drivers[bit].insert(cell->name);
}
toposort.node(cell->name);
}
if (box_ports.empty())
return;
for (auto &it : bit_users)
if (bit_drivers.count(it.first))
for (auto driver_cell : bit_drivers.at(it.first))
for (auto user_cell : it.second)
toposort.edge(driver_cell, user_cell);
if (ys_debug(1))
toposort.analyze_loops = true;
bool no_loops YS_ATTRIBUTE(unused) = toposort.sort();
if (ys_debug(1)) {
unsigned i = 0;
for (auto &it : toposort.loops) {
log(" loop %d\n", i++);
for (auto cell_name : it) {
auto cell = module->cell(cell_name);
log_assert(cell);
log("\t%s (%s @ %s)\n", log_id(cell), log_id(cell->type), cell->get_src_attribute().c_str());
}
}
}
log_assert(no_loops);
RTLIL::Module *holes_module = design->addModule(stringf("%s$holes", module->name.c_str()));
log_assert(holes_module);
holes_module->set_bool_attribute("\\abc9_holes");
dict<IdString, Cell*> cell_cache;
int port_id = 1, box_count = 0;
for (auto cell_name : toposort.sorted) {
RTLIL::Cell *cell = module->cell(cell_name);
log_assert(cell);
RTLIL::Module* box_module = design->module(cell->type);
if (!box_module || !box_module->attributes.count("\\abc9_box_id"))
continue;
cell->attributes["\\abc9_box_seq"] = box_count++;
IdString derived_name = box_module->derive(design, cell->parameters);
box_module = design->module(derived_name);
auto r = cell_cache.insert(derived_name);
auto &holes_cell = r.first->second;
if (r.second) {
if (box_module->has_processes())
Pass::call_on_module(design, box_module, "proc");
if (box_module->get_bool_attribute("\\whitebox")) {
holes_cell = holes_module->addCell(cell->name, derived_name);
int box_inputs = 0;
for (auto port_name : box_ports.at(cell->type)) {
RTLIL::Wire *w = box_module->wire(port_name);
log_assert(w);
log_assert(!w->port_input || !w->port_output);
auto &conn = holes_cell->connections_[port_name];
if (w->port_input) {
for (int i = 0; i < GetSize(w); i++) {
box_inputs++;
RTLIL::Wire *holes_wire = holes_module->wire(stringf("\\i%d", box_inputs));
if (!holes_wire) {
holes_wire = holes_module->addWire(stringf("\\i%d", box_inputs));
holes_wire->port_input = true;
holes_wire->port_id = port_id++;
holes_module->ports.push_back(holes_wire->name);
}
conn.append(holes_wire);
}
}
else if (w->port_output)
conn = holes_module->addWire(stringf("%s.%s", derived_name.c_str(), log_id(port_name)), GetSize(w));
}
// For flops only, create an extra 1-bit input that drives a new wire
// called "<cell>.abc9_ff.Q" that is used below
if (box_module->get_bool_attribute("\\abc9_flop")) {
box_inputs++;
Wire *holes_wire = holes_module->wire(stringf("\\i%d", box_inputs));
if (!holes_wire) {
holes_wire = holes_module->addWire(stringf("\\i%d", box_inputs));
holes_wire->port_input = true;
holes_wire->port_id = port_id++;
holes_module->ports.push_back(holes_wire->name);
}
Wire *Q = holes_module->addWire(stringf("%s.abc9_ff.Q", cell->name.c_str()));
holes_module->connect(Q, holes_wire);
}
}
else // box_module is a blackbox
log_assert(holes_cell == nullptr);
}
for (auto port_name : box_ports.at(cell->type)) {
RTLIL::Wire *w = box_module->wire(port_name);
log_assert(w);
if (!w->port_output)
continue;
Wire *holes_wire = holes_module->addWire(stringf("$abc%s.%s", cell->name.c_str(), log_id(port_name)), GetSize(w));
holes_wire->port_output = true;
holes_wire->port_id = port_id++;
holes_module->ports.push_back(holes_wire->name);
if (holes_cell) // whitebox
holes_module->connect(holes_wire, holes_cell->getPort(port_name));
else // blackbox
holes_module->connect(holes_wire, Const(State::S0, GetSize(w)));
}
}
}
void reintegrate(RTLIL::Module *module)
{
auto design = module->design;
log_assert(design);
map_autoidx = autoidx++;
RTLIL::Module *mapped_mod = design->module(stringf("%s$abc9", module->name.c_str()));
if (mapped_mod == NULL)
log_error("ABC output file does not contain a module `%s$abc'.\n", log_id(module));
for (auto w : mapped_mod->wires())
module->addWire(remap_name(w->name), GetSize(w));
dict<IdString,std::vector<IdString>> box_ports;
for (auto m : design->modules()) {
if (!m->attributes.count(ID(abc9_box_id)))
continue;
auto r = box_ports.insert(m->name);
if (r.second) {
// Make carry in the last PI, and carry out the last PO
// since ABC requires it this way
IdString carry_in, carry_out;
for (const auto &port_name : m->ports) {
auto w = m->wire(port_name);
log_assert(w);
if (w->get_bool_attribute("\\abc9_carry")) {
if (w->port_input) {
if (carry_in != IdString())
log_error("Module '%s' contains more than one 'abc9_carry' input port.\n", log_id(m));
carry_in = port_name;
}
if (w->port_output) {
if (carry_out != IdString())
log_error("Module '%s' contains more than one 'abc9_carry' output port.\n", log_id(m));
carry_out = port_name;
}
}
else
r.first->second.push_back(port_name);
}
if (carry_in != IdString() && carry_out == IdString())
log_error("Module '%s' contains an 'abc9_carry' input port but no output port.\n", log_id(m));
if (carry_in == IdString() && carry_out != IdString())
log_error("Module '%s' contains an 'abc9_carry' output port but no input port.\n", log_id(m));
if (carry_in != IdString()) {
r.first->second.push_back(carry_in);
r.first->second.push_back(carry_out);
}
}
}
std::vector<Cell*> boxes;
for (auto cell : module->cells().to_vector()) {
if (cell->has_keep_attr())
continue;
if (cell->type.in(ID($_AND_), ID($_NOT_), ID($__ABC9_FF_)))
module->remove(cell);
else if (cell->attributes.erase("\\abc9_box_seq"))
boxes.emplace_back(cell);
}
dict<SigBit, pool<IdString>> bit_drivers, bit_users;
TopoSort<IdString, RTLIL::sort_by_id_str> toposort;
dict<RTLIL::Cell*,RTLIL::Cell*> not2drivers;
dict<SigBit, std::vector<RTLIL::Cell*>> bit2sinks;
std::map<IdString, int> cell_stats;
for (auto mapped_cell : mapped_mod->cells())
{
// TODO: Speed up toposort -- we care about NOT ordering only
toposort.node(mapped_cell->name);
if (mapped_cell->type == ID($_NOT_)) {
RTLIL::SigBit a_bit = mapped_cell->getPort(ID::A);
RTLIL::SigBit y_bit = mapped_cell->getPort(ID::Y);
bit_users[a_bit].insert(mapped_cell->name);
// Ignore inouts for topo ordering
if (y_bit.wire && !(y_bit.wire->port_input && y_bit.wire->port_output))
bit_drivers[y_bit].insert(mapped_cell->name);
if (!a_bit.wire) {
mapped_cell->setPort(ID::Y, module->addWire(NEW_ID));
RTLIL::Wire *wire = module->wire(remap_name(y_bit.wire->name));
log_assert(wire);
module->connect(RTLIL::SigBit(wire, y_bit.offset), State::S1);
}
else {
RTLIL::Cell* driver_lut = nullptr;
// ABC can return NOT gates that drive POs
if (!a_bit.wire->port_input) {
// If it's not a NOT gate that that comes from a PI directly,
// find the driver LUT and clone that to guarantee that we won't
// increase the max logic depth
// (TODO: Optimise by not cloning unless will increase depth)
RTLIL::IdString driver_name;
if (GetSize(a_bit.wire) == 1)
driver_name = stringf("$lut%s", a_bit.wire->name.c_str());
else
driver_name = stringf("$lut%s[%d]", a_bit.wire->name.c_str(), a_bit.offset);
driver_lut = mapped_mod->cell(driver_name);
}
if (!driver_lut) {
// If a driver couldn't be found (could be from PI or box CI)
// then implement using a LUT
RTLIL::Cell *cell = module->addLut(remap_name(stringf("$lut%s", mapped_cell->name.c_str())),
RTLIL::SigBit(module->wires_.at(remap_name(a_bit.wire->name)), a_bit.offset),
RTLIL::SigBit(module->wires_.at(remap_name(y_bit.wire->name)), y_bit.offset),
RTLIL::Const::from_string("01"));
bit2sinks[cell->getPort(ID::A)].push_back(cell);
cell_stats[ID($lut)]++;
}
else
not2drivers[mapped_cell] = driver_lut;
}
continue;
}
if (mapped_cell->type.in(ID($lut), ID($__ABC9_FF_))) {
// Convert buffer into direct connection
if (mapped_cell->type == ID($lut) &&
GetSize(mapped_cell->getPort(ID::A)) == 1 &&
mapped_cell->getParam(ID(LUT)) == RTLIL::Const::from_string("01")) {
SigSpec my_a = module->wires_.at(remap_name(mapped_cell->getPort(ID::A).as_wire()->name));
SigSpec my_y = module->wires_.at(remap_name(mapped_cell->getPort(ID::Y).as_wire()->name));
module->connect(my_y, my_a);
log_abort();
continue;
}
RTLIL::Cell *cell = module->addCell(remap_name(mapped_cell->name), mapped_cell->type);
cell->parameters = mapped_cell->parameters;
cell->attributes = mapped_cell->attributes;
for (auto &mapped_conn : mapped_cell->connections()) {
RTLIL::SigSpec newsig;
for (auto c : mapped_conn.second.chunks()) {
if (c.width == 0)
continue;
//log_assert(c.width == 1);
if (c.wire)
c.wire = module->wires_.at(remap_name(c.wire->name));
newsig.append(c);
}
cell->setPort(mapped_conn.first, newsig);
if (cell->input(mapped_conn.first)) {
for (auto i : newsig)
bit2sinks[i].push_back(cell);
for (auto i : mapped_conn.second)
bit_users[i].insert(mapped_cell->name);
}
if (cell->output(mapped_conn.first))
for (auto i : mapped_conn.second)
// Ignore inouts for topo ordering
if (i.wire && !(i.wire->port_input && i.wire->port_output))
bit_drivers[i].insert(mapped_cell->name);
}
}
else {
RTLIL::Cell *existing_cell = module->cell(mapped_cell->name);
log_assert(existing_cell);
RTLIL::Module* box_module = design->module(existing_cell->type);
auto it = box_module->attributes.find(ID(abc9_box_id));
log_assert(it != box_module->attributes.end());
log_assert(mapped_cell->type == stringf("$__boxid%d", it->second.as_int()));
mapped_cell->type = existing_cell->type;
RTLIL::Cell *cell = module->addCell(remap_name(mapped_cell->name), mapped_cell->type);
cell->parameters = existing_cell->parameters;
cell->attributes = existing_cell->attributes;
module->swap_names(cell, existing_cell);
auto jt = mapped_cell->connections_.find("\\i");
log_assert(jt != mapped_cell->connections_.end());
SigSpec inputs = std::move(jt->second);
mapped_cell->connections_.erase(jt);
jt = mapped_cell->connections_.find("\\o");
log_assert(jt != mapped_cell->connections_.end());
SigSpec outputs = std::move(jt->second);
mapped_cell->connections_.erase(jt);
auto abc9_flop = box_module->attributes.count("\\abc9_flop");
if (!abc9_flop) {
for (const auto &i : inputs)
bit_users[i].insert(mapped_cell->name);
for (const auto &i : outputs)
// Ignore inouts for topo ordering
if (i.wire && !(i.wire->port_input && i.wire->port_output))
bit_drivers[i].insert(mapped_cell->name);
}
int input_count = 0, output_count = 0;
for (const auto &port_name : box_ports.at(cell->type)) {
RTLIL::Wire *w = box_module->wire(port_name);
log_assert(w);
SigSpec sig;
if (w->port_input) {
sig = inputs.extract(input_count, GetSize(w));
input_count += GetSize(w);
}
if (w->port_output) {
sig = outputs.extract(output_count, GetSize(w));
output_count += GetSize(w);
}
SigSpec newsig;
for (auto c : sig.chunks()) {
if (c.width == 0)
continue;
//log_assert(c.width == 1);
if (c.wire)
c.wire = module->wires_.at(remap_name(c.wire->name));
newsig.append(c);
}
cell->setPort(port_name, newsig);
if (w->port_input && !abc9_flop)
for (const auto &i : newsig)
bit2sinks[i].push_back(cell);
}
}
cell_stats[mapped_cell->type]++;
}
for (auto cell : boxes)
module->remove(cell);
// Copy connections (and rename) from mapped_mod to module
for (auto conn : mapped_mod->connections()) {
if (!conn.first.is_fully_const()) {
auto chunks = conn.first.chunks();
for (auto &c : chunks)
c.wire = module->wires_.at(remap_name(c.wire->name));
conn.first = std::move(chunks);
}
if (!conn.second.is_fully_const()) {
auto chunks = conn.second.chunks();
for (auto &c : chunks)
if (c.wire)
c.wire = module->wires_.at(remap_name(c.wire->name));
conn.second = std::move(chunks);
}
module->connect(conn);
}
for (auto &it : cell_stats)
log("ABC RESULTS: %15s cells: %8d\n", it.first.c_str(), it.second);
int in_wires = 0, out_wires = 0;
// Stitch in mapped_mod's inputs/outputs into module
for (auto port : mapped_mod->ports) {
RTLIL::Wire *mapped_wire = mapped_mod->wire(port);
RTLIL::Wire *wire = module->wire(port);
log_assert(wire);
if (wire->attributes.erase(ID(abc9_scc_id))) {
auto r YS_ATTRIBUTE(unused) = wire->attributes.erase(ID::keep);
log_assert(r);
}
RTLIL::Wire *remap_wire = module->wire(remap_name(port));
RTLIL::SigSpec signal(wire, 0, GetSize(remap_wire));
log_assert(GetSize(signal) >= GetSize(remap_wire));
RTLIL::SigSig conn;
if (mapped_wire->port_output) {
conn.first = signal;
conn.second = remap_wire;
out_wires++;
module->connect(conn);
}
else if (mapped_wire->port_input) {
conn.first = remap_wire;
conn.second = signal;
in_wires++;
module->connect(conn);
}
}
// ABC9 will return $_NOT_ gates in its mapping (since they are
// treated as being "free"), in particular driving primary
// outputs (real primary outputs, or cells treated as blackboxes)
// or driving box inputs.
// Instead of just mapping those $_NOT_ gates into 2-input $lut-s
// at an area and delay cost, see if it is possible to push
// this $_NOT_ into the driving LUT, or into all sink LUTs.
// When this is not possible, (i.e. this signal drives two primary
// outputs, only one of which is complemented) and when the driver
// is a LUT, then clone the LUT so that it can be inverted without
// increasing depth/delay.
for (auto &it : bit_users)
if (bit_drivers.count(it.first))
for (auto driver_cell : bit_drivers.at(it.first))
for (auto user_cell : it.second)
toposort.edge(driver_cell, user_cell);
bool no_loops YS_ATTRIBUTE(unused) = toposort.sort();
log_assert(no_loops);
for (auto ii = toposort.sorted.rbegin(); ii != toposort.sorted.rend(); ii++) {
RTLIL::Cell *not_cell = mapped_mod->cell(*ii);
log_assert(not_cell);
if (not_cell->type != ID($_NOT_))
continue;
auto it = not2drivers.find(not_cell);
if (it == not2drivers.end())
continue;
RTLIL::Cell *driver_lut = it->second;
RTLIL::SigBit a_bit = not_cell->getPort(ID::A);
RTLIL::SigBit y_bit = not_cell->getPort(ID::Y);
RTLIL::Const driver_mask;
a_bit.wire = module->wires_.at(remap_name(a_bit.wire->name));
y_bit.wire = module->wires_.at(remap_name(y_bit.wire->name));
auto jt = bit2sinks.find(a_bit);
if (jt == bit2sinks.end())
goto clone_lut;
for (auto sink_cell : jt->second)
if (sink_cell->type != ID($lut))
goto clone_lut;
// Push downstream LUTs past inverter
for (auto sink_cell : jt->second) {
SigSpec A = sink_cell->getPort(ID::A);
RTLIL::Const mask = sink_cell->getParam(ID(LUT));
int index = 0;
for (; index < GetSize(A); index++)
if (A[index] == a_bit)
break;
log_assert(index < GetSize(A));
int i = 0;
while (i < GetSize(mask)) {
for (int j = 0; j < (1 << index); j++)
std::swap(mask[i+j], mask[i+j+(1 << index)]);
i += 1 << (index+1);
}
A[index] = y_bit;
sink_cell->setPort(ID::A, A);
sink_cell->setParam(ID(LUT), mask);
}
// Since we have rewritten all sinks (which we know
// to be only LUTs) to be after the inverter, we can
// go ahead and clone the LUT with the expectation
// that the original driving LUT will become dangling
// and get cleaned away
clone_lut:
driver_mask = driver_lut->getParam(ID(LUT));
for (auto &b : driver_mask.bits) {
if (b == RTLIL::State::S0) b = RTLIL::State::S1;
else if (b == RTLIL::State::S1) b = RTLIL::State::S0;
}
auto cell = module->addLut(NEW_ID,
driver_lut->getPort(ID::A),
y_bit,
driver_mask);
for (auto &bit : cell->connections_.at(ID::A)) {
bit.wire = module->wires_.at(remap_name(bit.wire->name));
bit2sinks[bit].push_back(cell);
}
}
//log("ABC RESULTS: internal signals: %8d\n", int(signal_list.size()) - in_wires - out_wires);
log("ABC RESULTS: input signals: %8d\n", in_wires);
log("ABC RESULTS: output signals: %8d\n", out_wires);
design->remove(mapped_mod);
}
struct Abc9OpsPass : public Pass {
Abc9OpsPass() : Pass("abc9_ops", "helper functions for ABC9") { }
void help() YS_OVERRIDE
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" abc9_ops [options] [selection]\n");
log("\n");
log("This pass contains a set of supporting operations for use during ABC technology\n");
log("mapping, and is expected to be called in conjunction with other operations from\n");
log("the `abc9' script pass. Only fully-selected modules are supported.\n");
log("\n");
log(" -mark_scc\n");
log(" for an arbitrarily chosen cell in each unique SCC of each selected module\n");
log(" (tagged with an (* abc9_scc_id = <int> *) attribute), temporarily mark all\n");
log(" wires driven by this cell's outputs with a (* keep *) attribute in order\n");
log(" to break the SCC. this temporary attribute will be removed on -reintegrate.\n");
log("\n");
log(" -prep_xaiger\n");
log(" prepare the design for XAIGER output. this includes computing the\n");
log(" topological ordering of ABC9 boxes, as well as preparing the\n");
log(" '<module-name>$holes' module that contains the logic behaviour of ABC9\n");
log(" whiteboxes.\n");
log("\n");
log(" -dff\n");
log(" consider flop cells (those instantiating modules marked with (* abc9_flop *)\n");
log(" during -prep_xaiger.\n");
log("\n");
log(" -prep_dff\n");
log(" compute the clock domain and initial value of each flop in the design.\n");
log(" process the '$holes' module to support clock-enable functionality.\n");
log("\n");
log(" -reintegrate\n");
log(" for each selected module, re-intergrate the module '<module-name>$abc9'\n");
log(" by first recovering ABC9 boxes, and then stitching in the remaining primary\n");
log(" inputs and outputs.\n");
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
{
log_header(design, "Executing ABC9_OPS pass (helper functions for ABC9).\n");
bool mark_scc_mode = false;
bool prep_dff_mode = false;
bool prep_xaiger_mode = false;
bool reintegrate_mode = false;
bool dff_mode = false;
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) {
std::string arg = args[argidx];
if (arg == "-mark_scc") {
mark_scc_mode = true;
continue;
}
if (arg == "-prep_dff") {
prep_dff_mode = true;
continue;
}
if (arg == "-prep_xaiger") {
prep_xaiger_mode = true;
continue;
}
if (arg == "-reintegrate") {
reintegrate_mode = true;
continue;
}
if (arg == "-dff") {
dff_mode = true;
continue;
}
break;
}
extra_args(args, argidx, design);
if (!(mark_scc_mode || prep_dff_mode || reintegrate_mode))
log_cmd_error("At least one of -mark_scc, -prep_{xaiger,dff}, -reintegrate must be specified.\n");
if (dff_mode && !prep_xaiger_mode)
log_cmd_error("'-dff' option is only relevant for -prep_xaiger.\n");
for (auto mod : design->selected_modules()) {
if (mod->get_bool_attribute("\\abc9_holes"))
continue;
if (mod->processes.size() > 0) {
log("Skipping module %s as it contains processes.\n", log_id(mod));
continue;
}
if (!design->selected_whole_module(mod))
log_error("Can't handle partially selected module %s!\n", log_id(mod));
if (mark_scc_mode)
mark_scc(mod);
if (prep_dff_mode)
prep_dff(mod);
if (prep_xaiger_mode)
prep_xaiger(mod, dff_mode);
if (reintegrate_mode)
reintegrate(mod);
}
}
} Abc9OpsPass;
PRIVATE_NAMESPACE_END

View File

@ -192,11 +192,28 @@ struct IopadmapPass : public Pass {
if (!toutpad_celltype.empty() || !tinoutpad_celltype.empty())
{
dict<SigBit, Cell *> tbuf_bits;
pool<SigBit> driven_bits;
// Gather tristate buffers and always-on drivers.
for (auto cell : module->cells())
if (cell->type == ID($_TBUF_)) {
SigBit bit = cell->getPort(ID::Y).as_bit();
tbuf_bits[bit] = cell;
} else {
for (auto port : cell->connections())
if (!cell->known() || cell->output(port.first))
for (auto bit : port.second)
driven_bits.insert(bit);
}
// If a wire is a target of an assignment, it is driven, unless the source is 'z.
for (auto &conn : module->connections())
for (int i = 0; i < GetSize(conn.first); i++) {
SigBit dstbit = conn.first[i];
SigBit srcbit = conn.second[i];
if (!srcbit.wire && srcbit.data == State::Sz)
continue;
driven_bits.insert(dstbit);
}
for (auto wire : module->selected_wires())
@ -204,41 +221,71 @@ struct IopadmapPass : public Pass {
if (!wire->port_output)
continue;
// Don't handle inout ports if we have no suitable buffer type.
if (wire->port_input && tinoutpad_celltype.empty())
continue;
// likewise for output ports.
if (!wire->port_input && toutpad_celltype.empty())
continue;
for (int i = 0; i < GetSize(wire); i++)
{
SigBit wire_bit(wire, i);
Cell *tbuf_cell = nullptr;
if (tbuf_bits.count(wire_bit) == 0)
if (skip_wire_bits.count(wire_bit))
continue;
Cell *tbuf_cell = tbuf_bits.at(wire_bit);
if (tbuf_bits.count(wire_bit))
tbuf_cell = tbuf_bits.at(wire_bit);
if (tbuf_cell == nullptr)
continue;
SigBit en_sig;
SigBit data_sig;
bool is_driven = driven_bits.count(wire_bit);
SigBit en_sig = tbuf_cell->getPort(ID(E)).as_bit();
SigBit data_sig = tbuf_cell->getPort(ID::A).as_bit();
if (tbuf_cell != nullptr) {
// Found a tristate buffer — use it.
en_sig = tbuf_cell->getPort(ID(E)).as_bit();
data_sig = tbuf_cell->getPort(ID::A).as_bit();
} else if (is_driven) {
// No tristate buffer, but an always-on driver is present.
// If this is an inout port, we're creating a tinoutpad
// anyway, just with a constant 1 as enable.
if (!wire->port_input)
continue;
en_sig = SigBit(State::S1);
data_sig = wire_bit;
} else {
// No driver on a wire. Create a tristate pad with always-0
// enable.
en_sig = SigBit(State::S0);
data_sig = SigBit(State::Sx);
}
if (wire->port_input && !tinoutpad_celltype.empty())
if (wire->port_input)
{
log("Mapping port %s.%s[%d] using %s.\n", log_id(module), log_id(wire), i, tinoutpad_celltype.c_str());
Cell *cell = module->addCell(NEW_ID, RTLIL::escape_id(tinoutpad_celltype));
cell->setPort(RTLIL::escape_id(tinoutpad_portname_oe), en_sig);
cell->setPort(RTLIL::escape_id(tinoutpad_portname_o), wire_bit);
cell->setPort(RTLIL::escape_id(tinoutpad_portname_i), data_sig);
cell->attributes[ID::keep] = RTLIL::Const(1);
module->remove(tbuf_cell);
if (tbuf_cell) {
module->remove(tbuf_cell);
cell->setPort(RTLIL::escape_id(tinoutpad_portname_o), wire_bit);
cell->setPort(RTLIL::escape_id(tinoutpad_portname_i), data_sig);
} else if (is_driven) {
cell->setPort(RTLIL::escape_id(tinoutpad_portname_i), wire_bit);
} else {
cell->setPort(RTLIL::escape_id(tinoutpad_portname_o), wire_bit);
cell->setPort(RTLIL::escape_id(tinoutpad_portname_i), data_sig);
}
skip_wire_bits.insert(wire_bit);
if (!tinoutpad_portname_pad.empty())
rewrite_bits[wire][i] = make_pair(cell, RTLIL::escape_id(tinoutpad_portname_pad));
continue;
}
if (!wire->port_input && !toutpad_celltype.empty())
{
} else {
log("Mapping port %s.%s[%d] using %s.\n", log_id(module), log_id(wire), i, toutpad_celltype.c_str());
Cell *cell = module->addCell(NEW_ID, RTLIL::escape_id(toutpad_celltype));
@ -247,12 +294,13 @@ struct IopadmapPass : public Pass {
cell->setPort(RTLIL::escape_id(toutpad_portname_i), data_sig);
cell->attributes[ID::keep] = RTLIL::Const(1);
module->remove(tbuf_cell);
module->connect(wire_bit, data_sig);
if (tbuf_cell) {
module->remove(tbuf_cell);
module->connect(wire_bit, data_sig);
}
skip_wire_bits.insert(wire_bit);
if (!toutpad_portname_pad.empty())
rewrite_bits[wire][i] = make_pair(cell, RTLIL::escape_id(toutpad_portname_pad));
continue;
}
}
}

View File

@ -86,6 +86,7 @@ struct TribufWorker {
cell->unsetPort(ID(S));
cell->type = tri_type;
tribuf_cells[sigmap(cell->getPort(ID::Y))].push_back(cell);
module->design->scratchpad_set_bool("tribuf.added_something", true);
continue;
}
@ -95,6 +96,7 @@ struct TribufWorker {
cell->unsetPort(ID(S));
cell->type = tri_type;
tribuf_cells[sigmap(cell->getPort(ID::Y))].push_back(cell);
module->design->scratchpad_set_bool("tribuf.added_something", true);
continue;
}
}
@ -130,8 +132,10 @@ struct TribufWorker {
if (no_tribuf)
module->connect(it.first, muxout);
else
else {
module->addTribuf(NEW_ID, muxout, module->ReduceOr(NEW_ID, pmux_s), it.first);
module->design->scratchpad_set_bool("tribuf.added_something", true);
}
}
}
}

View File

@ -52,7 +52,7 @@ struct SynthAchronixPass : public ScriptPass {
log(" do not flatten design before synthesis\n");
log("\n");
log(" -retime\n");
log(" run 'abc' with -dff option\n");
log(" run 'abc' with '-dff -D 1' options\n");
log("\n");
log("\n");
log("The following commands are executed by this synthesis command:\n");
@ -152,12 +152,12 @@ struct SynthAchronixPass : public ScriptPass {
run("clean -purge");
run("setundef -undriven -zero");
if (retime || help_mode)
run("abc -markgroups -dff", "(only if -retime)");
run("abc -markgroups -dff -D 1", "(only if -retime)");
}
if (check_label("map_luts"))
{
run("abc -lut 4" + string(retime ? " -dff" : ""));
run("abc -lut 4" + string(retime ? " -dff -D 1" : ""));
run("clean");
}

View File

@ -7,6 +7,6 @@ $(eval $(call add_share_file,share/anlogic,techlibs/anlogic/cells_map.v))
$(eval $(call add_share_file,share/anlogic,techlibs/anlogic/arith_map.v))
$(eval $(call add_share_file,share/anlogic,techlibs/anlogic/cells_sim.v))
$(eval $(call add_share_file,share/anlogic,techlibs/anlogic/eagle_bb.v))
$(eval $(call add_share_file,share/anlogic,techlibs/anlogic/drams.txt))
$(eval $(call add_share_file,share/anlogic,techlibs/anlogic/drams_map.v))
$(eval $(call add_share_file,share/anlogic,techlibs/anlogic/dram_init_16x4.vh))
$(eval $(call add_share_file,share/anlogic,techlibs/anlogic/lutrams.txt))
$(eval $(call add_share_file,share/anlogic,techlibs/anlogic/lutrams_map.v))
$(eval $(call add_share_file,share/anlogic,techlibs/anlogic/lutram_init_16x4.vh))

View File

@ -6,14 +6,14 @@ module \$_DFFE_NP_ (input D, C, E, output Q); AL_MAP_SEQ #(.DFFMODE("FF"), .REG
module \$_DFFE_PN_ (input D, C, E, output Q); AL_MAP_SEQ #(.DFFMODE("FF"), .REGSET(1'bx), .SRMUX("SR"), .SRMODE("SYNC")) _TECHMAP_REPLACE_ (.d(D), .q(Q), .clk(C), .ce(E), .sr(1'b0)); endmodule
module \$_DFFE_PP_ (input D, C, E, output Q); AL_MAP_SEQ #(.DFFMODE("FF"), .REGSET(1'bx), .SRMUX("SR"), .SRMODE("SYNC")) _TECHMAP_REPLACE_ (.d(D), .q(Q), .clk(C), .ce(E), .sr(1'b0)); endmodule
module \$_DFF_NN0_ (input D, C, R, output Q); AL_MAP_SEQ #(.DFFMODE("FF"), .REGSET(1'b0), .SRMUX("INV"), .SRMODE("SYNC")) _TECHMAP_REPLACE_ (.d(D), .q(Q), .clk(~C), .ce(1'b1), .sr(R)); endmodule
module \$_DFF_NN1_ (input D, C, R, output Q); AL_MAP_SEQ #(.DFFMODE("FF"), .REGSET(1'b1), .SRMUX("INV"), .SRMODE("SYNC")) _TECHMAP_REPLACE_ (.d(D), .q(Q), .clk(~C), .ce(1'b1), .sr(R)); endmodule
module \$_DFF_NP0_ (input D, C, R, output Q); AL_MAP_SEQ #(.DFFMODE("FF"), .REGSET(1'b0), .SRMUX("SR"), .SRMODE("SYNC")) _TECHMAP_REPLACE_ (.d(D), .q(Q), .clk(~C), .ce(1'b1), .sr(R)); endmodule
module \$_DFF_NP1_ (input D, C, R, output Q); AL_MAP_SEQ #(.DFFMODE("FF"), .REGSET(1'b1), .SRMUX("SR"), .SRMODE("SYNC")) _TECHMAP_REPLACE_ (.d(D), .q(Q), .clk(~C), .ce(1'b1), .sr(R)); endmodule
module \$_DFF_PN0_ (input D, C, R, output Q); AL_MAP_SEQ #(.DFFMODE("FF"), .REGSET(1'b0), .SRMUX("INV"), .SRMODE("SYNC")) _TECHMAP_REPLACE_ (.d(D), .q(Q), .clk(C) , .ce(1'b1), .sr(R)); endmodule
module \$_DFF_PN1_ (input D, C, R, output Q); AL_MAP_SEQ #(.DFFMODE("FF"), .REGSET(1'b1), .SRMUX("INV"), .SRMODE("SYNC")) _TECHMAP_REPLACE_ (.d(D), .q(Q), .clk(C), .ce(1'b1), .sr(R)); endmodule
module \$_DFF_PP0_ (input D, C, R, output Q); AL_MAP_SEQ #(.DFFMODE("FF"), .REGSET(1'b0), .SRMUX("SR"), .SRMODE("SYNC")) _TECHMAP_REPLACE_ (.d(D), .q(Q), .clk(C), .ce(1'b1), .sr(R)); endmodule
module \$_DFF_PP1_ (input D, C, R, output Q); AL_MAP_SEQ #(.DFFMODE("FF"), .REGSET(1'b1), .SRMUX("SR"), . SRMODE("SYNC")) _TECHMAP_REPLACE_ (.d(D), .q(Q), .clk(C), .ce(1'b1), .sr(R)); endmodule
module \$_DFF_NN0_ (input D, C, R, output Q); AL_MAP_SEQ #(.DFFMODE("FF"), .REGSET(1'b0), .SRMUX("INV"), .SRMODE("ASYNC")) _TECHMAP_REPLACE_ (.d(D), .q(Q), .clk(~C), .ce(1'b1), .sr(R)); endmodule
module \$_DFF_NN1_ (input D, C, R, output Q); AL_MAP_SEQ #(.DFFMODE("FF"), .REGSET(1'b1), .SRMUX("INV"), .SRMODE("ASYNC")) _TECHMAP_REPLACE_ (.d(D), .q(Q), .clk(~C), .ce(1'b1), .sr(R)); endmodule
module \$_DFF_NP0_ (input D, C, R, output Q); AL_MAP_SEQ #(.DFFMODE("FF"), .REGSET(1'b0), .SRMUX("SR"), .SRMODE("ASYNC")) _TECHMAP_REPLACE_ (.d(D), .q(Q), .clk(~C), .ce(1'b1), .sr(R)); endmodule
module \$_DFF_NP1_ (input D, C, R, output Q); AL_MAP_SEQ #(.DFFMODE("FF"), .REGSET(1'b1), .SRMUX("SR"), .SRMODE("ASYNC")) _TECHMAP_REPLACE_ (.d(D), .q(Q), .clk(~C), .ce(1'b1), .sr(R)); endmodule
module \$_DFF_PN0_ (input D, C, R, output Q); AL_MAP_SEQ #(.DFFMODE("FF"), .REGSET(1'b0), .SRMUX("INV"), .SRMODE("ASYNC")) _TECHMAP_REPLACE_ (.d(D), .q(Q), .clk(C) , .ce(1'b1), .sr(R)); endmodule
module \$_DFF_PN1_ (input D, C, R, output Q); AL_MAP_SEQ #(.DFFMODE("FF"), .REGSET(1'b1), .SRMUX("INV"), .SRMODE("ASYNC")) _TECHMAP_REPLACE_ (.d(D), .q(Q), .clk(C), .ce(1'b1), .sr(R)); endmodule
module \$_DFF_PP0_ (input D, C, R, output Q); AL_MAP_SEQ #(.DFFMODE("FF"), .REGSET(1'b0), .SRMUX("SR"), .SRMODE("ASYNC")) _TECHMAP_REPLACE_ (.d(D), .q(Q), .clk(C), .ce(1'b1), .sr(R)); endmodule
module \$_DFF_PP1_ (input D, C, R, output Q); AL_MAP_SEQ #(.DFFMODE("FF"), .REGSET(1'b1), .SRMUX("SR"), . SRMODE("ASYNC")) _TECHMAP_REPLACE_ (.d(D), .q(Q), .clk(C), .ce(1'b1), .sr(R)); endmodule
module \$_DLATCH_N_ (E, D, Q);
wire [1023:0] _TECHMAP_DO_ = "simplemap; opt";

View File

@ -10,7 +10,7 @@ module \$__ANLOGIC_DRAM16X4 (CLK1, A1ADDR, A1DATA, B1ADDR, B1DATA, B1EN);
input B1EN;
EG_LOGIC_DRAM16X4 #(
`include "dram_init_16x4.vh"
`include "lutram_init_16x4.vh"
) _TECHMAP_REPLACE_ (
.di(B1DATA),
.waddr(B1ADDR),

View File

@ -58,7 +58,10 @@ struct SynthAnlogicPass : public ScriptPass
log(" do not flatten design before synthesis\n");
log("\n");
log(" -retime\n");
log(" run 'abc' with -dff option\n");
log(" run 'abc' with '-dff -D 1' options\n");
log("\n");
log(" -nolutram\n");
log(" do not use EG_LOGIC_DRAM16X4 cells in output netlist\n");
log("\n");
log("\n");
log("The following commands are executed by this synthesis command:\n");
@ -67,7 +70,7 @@ struct SynthAnlogicPass : public ScriptPass
}
string top_opt, edif_file, json_file;
bool flatten, retime;
bool flatten, retime, nolutram;
void clear_flags() YS_OVERRIDE
{
@ -76,6 +79,7 @@ struct SynthAnlogicPass : public ScriptPass
json_file = "";
flatten = true;
retime = false;
nolutram = false;
}
void execute(std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
@ -110,6 +114,10 @@ struct SynthAnlogicPass : public ScriptPass
flatten = false;
continue;
}
if (args[argidx] == "-nolutram") {
nolutram = true;
continue;
}
if (args[argidx] == "-retime") {
retime = true;
continue;
@ -150,21 +158,25 @@ struct SynthAnlogicPass : public ScriptPass
run("synth -run coarse");
}
if (check_label("dram"))
if (!nolutram && check_label("map_lutram", "(skip if -nolutram)"))
{
run("memory_bram -rules +/anlogic/drams.txt");
run("techmap -map +/anlogic/drams_map.v");
run("memory_bram -rules +/anlogic/lutrams.txt");
run("techmap -map +/anlogic/lutrams_map.v");
run("setundef -zero -params t:EG_LOGIC_DRAM16X4");
}
if (check_label("fine"))
if (check_label("map_ffram"))
{
run("opt -fast -mux_undef -undriven -fine");
run("memory_map");
run("opt -undriven -fine");
}
if (check_label("map_gates"))
{
run("techmap -map +/techmap.v -map +/anlogic/arith_map.v");
if (retime || help_mode)
run("abc -dff", "(only if -retime)");
run("abc -dff -D 1", "(only if -retime)");
}
if (check_label("map_ffs"))

View File

@ -55,7 +55,7 @@ struct SynthCoolrunner2Pass : public ScriptPass
log(" do not flatten design before synthesis\n");
log("\n");
log(" -retime\n");
log(" run 'abc' with -dff option\n");
log(" run 'abc' with '-dff -D 1' options\n");
log("\n");
log("\n");
log("The following commands are executed by this synthesis command:\n");
@ -161,7 +161,7 @@ struct SynthCoolrunner2Pass : public ScriptPass
if (check_label("map_pla"))
{
run("abc -sop -I 40 -P 56");
run("abc -sop -I 40 -P 56" + string(retime ? " -dff -D 1" : ""));
run("clean");
}

View File

@ -56,7 +56,7 @@ struct SynthEasicPass : public ScriptPass
log(" do not flatten design before synthesis\n");
log("\n");
log(" -retime\n");
log(" run 'abc' with -dff option\n");
log(" run 'abc' with '-dff -D 1' options\n");
log("\n");
log("\n");
log("The following commands are executed by this synthesis command:\n");
@ -158,7 +158,7 @@ struct SynthEasicPass : public ScriptPass
run("techmap");
run("opt -fast");
if (retime || help_mode) {
run("abc -dff", " (only if -retime)");
run("abc -dff -D 1", " (only if -retime)");
run("opt_clean", "(only if -retime)");
}
}

View File

@ -8,9 +8,9 @@ $(eval $(call add_share_file,share/ecp5,techlibs/ecp5/cells_map.v))
$(eval $(call add_share_file,share/ecp5,techlibs/ecp5/cells_sim.v))
$(eval $(call add_share_file,share/ecp5,techlibs/ecp5/cells_bb.v))
$(eval $(call add_share_file,share/ecp5,techlibs/ecp5/lutrams_map.v))
$(eval $(call add_share_file,share/ecp5,techlibs/ecp5/lutram.txt))
$(eval $(call add_share_file,share/ecp5,techlibs/ecp5/lutrams.txt))
$(eval $(call add_share_file,share/ecp5,techlibs/ecp5/brams_map.v))
$(eval $(call add_share_file,share/ecp5,techlibs/ecp5/bram.txt))
$(eval $(call add_share_file,share/ecp5,techlibs/ecp5/brams.txt))
$(eval $(call add_share_file,share/ecp5,techlibs/ecp5/arith_map.v))
$(eval $(call add_share_file,share/ecp5,techlibs/ecp5/latches_map.v))
$(eval $(call add_share_file,share/ecp5,techlibs/ecp5/dsp_map.v))

View File

@ -1,43 +1,36 @@
# NB: Inputs/Outputs must be ordered alphabetically
# (with exceptions for carry in/out)
# NB: Box inputs/outputs must each be in the same order
# as their corresponding module definition
# (with exceptions detailed below)
# Box 1 : CCU2C (2xCARRY + 2xLUT4)
# Outputs: S0, S1, COUT
# (NB: carry chain input/output must be last
# input/output and bus has been moved
# there overriding the otherwise
# (Exception: carry chain input/output must be the
# last input and output and the entire bus has been
# moved there overriding the otherwise
# alphabetical ordering)
# name ID w/b ins outs
CCU2C 1 1 9 3
#A0 A1 B0 B1 C0 C1 D0 D1 CIN
379 - 379 - 275 - 141 - 257
630 379 630 379 526 275 392 141 273
516 516 516 516 412 412 278 278 43
#A0 B0 C0 D0 A1 B1 C1 D1 CIN
379 379 275 141 - - - - 257 # S0
630 630 526 392 379 379 275 141 273 # S1
516 516 412 278 516 516 412 278 43 # COUT
# Box 2 : TRELLIS_DPR16X4_COMB (16x4 dist ram)
# Outputs: DO0, DO1, DO2, DO3
# name ID w/b ins outs
$__ABC9_DPR16X4_COMB 2 0 8 4
#A0 A1 A2 A3 RAD0 RAD1 RAD2 RAD3
0 0 0 0 141 379 275 379
0 0 0 0 141 379 275 379
0 0 0 0 141 379 275 379
0 0 0 0 141 379 275 379
#$DO0 $DO1 $DO2 $DO3 RAD0 RAD1 RAD2 RAD3
0 0 0 0 141 379 275 379 # DO0
0 0 0 0 141 379 275 379 # DO1
0 0 0 0 141 379 275 379 # DO2
0 0 0 0 141 379 275 379 # DO3
# Box 3 : PFUMX (MUX2)
# Outputs: Z
# name ID w/b ins outs
PFUMX 3 1 3 1
#ALUT BLUT C0
98 98 151
98 98 151 # Z
# Box 4 : L6MUX21 (MUX2)
# Outputs: Z
# name ID w/b ins outs
L6MUX21 4 1 3 1
#D0 D1 SD
140 141 148
140 141 148 # Z

View File

@ -1,24 +1,27 @@
// ---------------------------------------
// Attach a (combinatorial) black-box onto the output
// of this LUTRAM primitive to capture its
// asynchronous read behaviour
module TRELLIS_DPR16X4 (
input [3:0] DI,
input [3:0] WAD,
input WRE,
input WCK,
input [3:0] RAD,
(* techmap_autopurge *) input [3:0] DI,
(* techmap_autopurge *) input [3:0] WAD,
(* techmap_autopurge *) input WRE,
(* techmap_autopurge *) input WCK,
(* techmap_autopurge *) input [3:0] RAD,
output [3:0] DO
);
parameter WCKMUX = "WCK";
parameter WREMUX = "WRE";
parameter [63:0] INITVAL = 64'h0000000000000000;
wire [3:0] \$DO ;
wire [3:0] $DO;
TRELLIS_DPR16X4 #(
.WCKMUX(WCKMUX), .WREMUX(WREMUX), .INITVAL(INITVAL)
) _TECHMAP_REPLACE_ (
.DI(DI), .WAD(WAD), .WRE(WRE), .WCK(WCK),
.RAD(RAD), .DO(\$DO )
.RAD(RAD), .DO($DO)
);
\$__ABC9_DPR16X4_COMB do (.A(\$DO ), .S(RAD), .Y(DO));
$__ABC9_DPR16X4_COMB do (.$DO($DO), .RAD(RAD), .DO(DO));
endmodule

View File

@ -1,5 +1,5 @@
// ---------------------------------------
(* abc9_box_id=2 *)
module \$__ABC9_DPR16X4_COMB (input [3:0] A, S, output [3:0] Y);
module \$__ABC9_DPR16X4_COMB (input [3:0] $DO, RAD, output [3:0] DO);
endmodule

View File

@ -1,5 +1,5 @@
// ---------------------------------------
module \$__ABC9_DPR16X4_COMB (input [3:0] A, S, output [3:0] Y);
assign Y = A;
module \$__ABC9_DPR16X4_COMB (input [3:0] $DO, RAD, output [3:0] DO);
assign DO = $DO;
endmodule

View File

@ -47,6 +47,21 @@ module \$__DFFSE_NP1 (input D, C, E, R, output Q); TRELLIS_FF #(.GSR("AUTO"), .
module \$__DFFSE_PP0 (input D, C, E, R, output Q); TRELLIS_FF #(.GSR("AUTO"), .CEMUX("CE"), .CLKMUX("CLK"), .LSRMUX("LSR"), .REGSET("RESET"), .SRMODE("LSR_OVER_CE")) _TECHMAP_REPLACE_ (.CLK(C), .CE(E), .LSR(R), .DI(D), .Q(Q)); endmodule
module \$__DFFSE_PP1 (input D, C, E, R, output Q); TRELLIS_FF #(.GSR("AUTO"), .CEMUX("CE"), .CLKMUX("CLK"), .LSRMUX("LSR"), .REGSET("SET"), .SRMODE("LSR_OVER_CE")) _TECHMAP_REPLACE_ (.CLK(C), .CE(E), .LSR(R), .DI(D), .Q(Q)); endmodule
`ifdef ASYNC_PRLD
module \$_DLATCH_N_ (input E, input D, output Q); TRELLIS_FF #(.GSR("DISABLED"), .CEMUX("1"), .LSRMODE("PRLD"), .LSRMUX("LSR"), .REGSET("RESET"), .SRMODE("ASYNC")) _TECHMAP_REPLACE_ (.LSR(!E), .DI(1'b0), .M(D), .Q(Q)); endmodule
module \$_DLATCH_P_ (input E, input D, output Q); TRELLIS_FF #(.GSR("DISABLED"), .CEMUX("1"), .LSRMODE("PRLD"), .LSRMUX("LSR"), .REGSET("RESET"), .SRMODE("ASYNC")) _TECHMAP_REPLACE_ (.LSR(E), .DI(1'b0), .M(D), .Q(Q)); endmodule
module \$_DFFSR_NNN_ (input C, S, R, D, output Q); TRELLIS_FF #(.GSR("DISABLED"), .CEMUX("1"), .CLKMUX("INV"), .LSRMODE("PRLD"), .LSRMUX("LSR"), .REGSET("RESET"), .SRMODE("ASYNC")) _TECHMAP_REPLACE_ (.CLK(C), .LSR(!S || !R), .DI(D), .M(R), .Q(Q)); endmodule
module \$_DFFSR_NNP_ (input C, S, R, D, output Q); TRELLIS_FF #(.GSR("DISABLED"), .CEMUX("1"), .CLKMUX("INV"), .LSRMODE("PRLD"), .LSRMUX("LSR"), .REGSET("RESET"), .SRMODE("ASYNC")) _TECHMAP_REPLACE_ (.CLK(C), .LSR(!S || R), .DI(D), .M(!R), .Q(Q)); endmodule
module \$_DFFSR_NPN_ (input C, S, R, D, output Q); TRELLIS_FF #(.GSR("DISABLED"), .CEMUX("1"), .CLKMUX("INV"), .LSRMODE("PRLD"), .LSRMUX("LSR"), .REGSET("RESET"), .SRMODE("ASYNC")) _TECHMAP_REPLACE_ (.CLK(C), .LSR(S || !R), .DI(D), .M(R), .Q(Q)); endmodule
module \$_DFFSR_NPP_ (input C, S, R, D, output Q); TRELLIS_FF #(.GSR("DISABLED"), .CEMUX("1"), .CLKMUX("INV"), .LSRMODE("PRLD"), .LSRMUX("LSR"), .REGSET("RESET"), .SRMODE("ASYNC")) _TECHMAP_REPLACE_ (.CLK(C), .LSR(S || R), .DI(D), .M(!R), .Q(Q)); endmodule
module \$_DFFSR_PNN_ (input C, S, R, D, output Q); TRELLIS_FF #(.GSR("DISABLED"), .CEMUX("1"), .CLKMUX("CLK"), .LSRMODE("PRLD"), .LSRMUX("LSR"), .REGSET("RESET"), .SRMODE("ASYNC")) _TECHMAP_REPLACE_ (.CLK(C), .LSR(!S || !R), .DI(D), .M(R), .Q(Q)); endmodule
module \$_DFFSR_PNP_ (input C, S, R, D, output Q); TRELLIS_FF #(.GSR("DISABLED"), .CEMUX("1"), .CLKMUX("CLK"), .LSRMODE("PRLD"), .LSRMUX("LSR"), .REGSET("RESET"), .SRMODE("ASYNC")) _TECHMAP_REPLACE_ (.CLK(C), .LSR(!S || R), .DI(D), .M(!R), .Q(Q)); endmodule
module \$_DFFSR_PPN_ (input C, S, R, D, output Q); TRELLIS_FF #(.GSR("DISABLED"), .CEMUX("1"), .CLKMUX("CLK"), .LSRMODE("PRLD"), .LSRMUX("LSR"), .REGSET("RESET"), .SRMODE("ASYNC")) _TECHMAP_REPLACE_ (.CLK(C), .LSR(S || !R), .DI(D), .M(R), .Q(Q)); endmodule
module \$_DFFSR_PPP_ (input C, S, R, D, output Q); TRELLIS_FF #(.GSR("DISABLED"), .CEMUX("1"), .CLKMUX("CLK"), .LSRMODE("PRLD"), .LSRMUX("LSR"), .REGSET("RESET"), .SRMODE("ASYNC")) _TECHMAP_REPLACE_ (.CLK(C), .LSR(S || R), .DI(D), .M(!R), .Q(Q)); endmodule
`endif
`include "cells_ff.vh"
`include "cells_io.vh"
@ -58,102 +73,80 @@ module \$lut (A, Y);
input [WIDTH-1:0] A;
output Y;
// Need to swap input ordering, and fix init accordingly,
// to match ABC's expectation of LUT inputs in non-decreasing
// delay order
localparam P_WIDTH = WIDTH < 4 ? 4 : WIDTH;
function [P_WIDTH-1:0] permute_index;
input [P_WIDTH-1:0] i;
integer j;
begin
permute_index = 0;
for (j = 0; j < P_WIDTH; j = j + 1)
permute_index[P_WIDTH-1 - j] = i[j];
end
endfunction
function [2**P_WIDTH-1:0] permute_init;
integer i;
begin
permute_init = 0;
for (i = 0; i < 2**P_WIDTH; i = i + 1)
permute_init[i] = LUT[permute_index(i)];
end
endfunction
parameter [2**P_WIDTH-1:0] P_LUT = permute_init();
generate
if (WIDTH == 1) begin
LUT4 #(.INIT(P_LUT)) _TECHMAP_REPLACE_ (.Z(Y),
localparam [15:0] INIT = {{8{LUT[1]}}, {8{LUT[0]}}};
LUT4 #(.INIT(INIT)) _TECHMAP_REPLACE_ (.Z(Y),
.A(1'b0), .B(1'b0), .C(1'b0), .D(A[0]));
end else
if (WIDTH == 2) begin
LUT4 #(.INIT(P_LUT)) _TECHMAP_REPLACE_ (.Z(Y),
.A(1'b0), .B(1'b0), .C(A[1]), .D(A[0]));
localparam [15:0] INIT = {{4{LUT[3]}}, {4{LUT[2]}}, {4{LUT[1]}}, {4{LUT[0]}}};
LUT4 #(.INIT(INIT)) _TECHMAP_REPLACE_ (.Z(Y),
.A(1'b0), .B(1'b0), .C(A[0]), .D(A[1]));
end else
if (WIDTH == 3) begin
LUT4 #(.INIT(P_LUT)) _TECHMAP_REPLACE_ (.Z(Y),
.A(1'b0), .B(A[2]), .C(A[1]), .D(A[0]));
localparam [15:0] INIT = {{2{LUT[7]}}, {2{LUT[6]}}, {2{LUT[5]}}, {2{LUT[4]}}, {2{LUT[3]}}, {2{LUT[2]}}, {2{LUT[1]}}, {2{LUT[0]}}};
LUT4 #(.INIT(INIT)) _TECHMAP_REPLACE_ (.Z(Y),
.A(1'b0), .B(A[0]), .C(A[1]), .D(A[2]));
end else
if (WIDTH == 4) begin
LUT4 #(.INIT(P_LUT)) _TECHMAP_REPLACE_ (.Z(Y),
.A(A[3]), .B(A[2]), .C(A[1]), .D(A[0]));
LUT4 #(.INIT(LUT)) _TECHMAP_REPLACE_ (.Z(Y),
.A(A[0]), .B(A[1]), .C(A[2]), .D(A[3]));
`ifndef NO_PFUMUX
end else
if (WIDTH == 5) begin
wire f0, f1;
LUT4 #(.INIT(P_LUT[15: 0])) lut0 (.Z(f0),
.A(A[4]), .B(A[3]), .C(A[2]), .D(A[1]));
LUT4 #(.INIT(P_LUT[31:16])) lut1 (.Z(f1),
.A(A[4]), .B(A[3]), .C(A[2]), .D(A[1]));
PFUMX mux5(.ALUT(f1), .BLUT(f0), .C0(A[0]), .Z(Y));
LUT4 #(.INIT(LUT[15: 0])) lut0 (.Z(f0),
.A(A[0]), .B(A[1]), .C(A[2]), .D(A[3]));
LUT4 #(.INIT(LUT[31:16])) lut1 (.Z(f1),
.A(A[0]), .B(A[1]), .C(A[2]), .D(A[3]));
PFUMX mux5(.ALUT(f1), .BLUT(f0), .C0(A[4]), .Z(Y));
end else
if (WIDTH == 6) begin
wire f0, f1, f2, f3, g0, g1;
LUT4 #(.INIT(P_LUT[15: 0])) lut0 (.Z(f0),
.A(A[5]), .B(A[4]), .C(A[3]), .D(A[2]));
LUT4 #(.INIT(P_LUT[31:16])) lut1 (.Z(f1),
.A(A[5]), .B(A[4]), .C(A[3]), .D(A[2]));
LUT4 #(.INIT(LUT[15: 0])) lut0 (.Z(f0),
.A(A[0]), .B(A[1]), .C(A[2]), .D(A[3]));
LUT4 #(.INIT(LUT[31:16])) lut1 (.Z(f1),
.A(A[0]), .B(A[1]), .C(A[2]), .D(A[3]));
LUT4 #(.INIT(P_LUT[47:32])) lut2 (.Z(f2),
.A(A[5]), .B(A[4]), .C(A[3]), .D(A[2]));
LUT4 #(.INIT(P_LUT[63:48])) lut3 (.Z(f3),
.A(A[5]), .B(A[4]), .C(A[3]), .D(A[2]));
LUT4 #(.INIT(LUT[47:32])) lut2 (.Z(f2),
.A(A[0]), .B(A[1]), .C(A[2]), .D(A[3]));
LUT4 #(.INIT(LUT[63:48])) lut3 (.Z(f3),
.A(A[0]), .B(A[1]), .C(A[2]), .D(A[3]));
PFUMX mux50(.ALUT(f1), .BLUT(f0), .C0(A[1]), .Z(g0));
PFUMX mux51(.ALUT(f3), .BLUT(f2), .C0(A[1]), .Z(g1));
L6MUX21 mux6 (.D0(g0), .D1(g1), .SD(A[0]), .Z(Y));
PFUMX mux50(.ALUT(f1), .BLUT(f0), .C0(A[4]), .Z(g0));
PFUMX mux51(.ALUT(f3), .BLUT(f2), .C0(A[4]), .Z(g1));
L6MUX21 mux6 (.D0(g0), .D1(g1), .SD(A[5]), .Z(Y));
end else
if (WIDTH == 7) begin
wire f0, f1, f2, f3, f4, f5, f6, f7, g0, g1, g2, g3, h0, h1;
LUT4 #(.INIT(P_LUT[15: 0])) lut0 (.Z(f0),
.A(A[6]), .B(A[5]), .C(A[4]), .D(A[3]));
LUT4 #(.INIT(P_LUT[31:16])) lut1 (.Z(f1),
.A(A[6]), .B(A[5]), .C(A[4]), .D(A[3]));
LUT4 #(.INIT(LUT[15: 0])) lut0 (.Z(f0),
.A(A[0]), .B(A[1]), .C(A[2]), .D(A[3]));
LUT4 #(.INIT(LUT[31:16])) lut1 (.Z(f1),
.A(A[0]), .B(A[1]), .C(A[2]), .D(A[3]));
LUT4 #(.INIT(P_LUT[47:32])) lut2 (.Z(f2),
.A(A[6]), .B(A[5]), .C(A[4]), .D(A[3]));
LUT4 #(.INIT(P_LUT[63:48])) lut3 (.Z(f3),
.A(A[6]), .B(A[5]), .C(A[4]), .D(A[3]));
LUT4 #(.INIT(LUT[47:32])) lut2 (.Z(f2),
.A(A[0]), .B(A[1]), .C(A[2]), .D(A[3]));
LUT4 #(.INIT(LUT[63:48])) lut3 (.Z(f3),
.A(A[0]), .B(A[1]), .C(A[2]), .D(A[3]));
LUT4 #(.INIT(P_LUT[79:64])) lut4 (.Z(f4),
.A(A[6]), .B(A[5]), .C(A[4]), .D(A[3]));
LUT4 #(.INIT(P_LUT[95:80])) lut5 (.Z(f5),
.A(A[6]), .B(A[5]), .C(A[4]), .D(A[3]));
LUT4 #(.INIT(LUT[79:64])) lut4 (.Z(f4),
.A(A[0]), .B(A[1]), .C(A[2]), .D(A[3]));
LUT4 #(.INIT(LUT[95:80])) lut5 (.Z(f5),
.A(A[0]), .B(A[1]), .C(A[2]), .D(A[3]));
LUT4 #(.INIT(P_LUT[111: 96])) lut6 (.Z(f6),
.A(A[6]), .B(A[5]), .C(A[4]), .D(A[3]));
LUT4 #(.INIT(P_LUT[127:112])) lut7 (.Z(f7),
.A(A[6]), .B(A[5]), .C(A[4]), .D(A[3]));
LUT4 #(.INIT(LUT[111: 96])) lut6 (.Z(f6),
.A(A[0]), .B(A[1]), .C(A[2]), .D(A[3]));
LUT4 #(.INIT(LUT[127:112])) lut7 (.Z(f7),
.A(A[0]), .B(A[1]), .C(A[2]), .D(A[3]));
PFUMX mux50(.ALUT(f1), .BLUT(f0), .C0(A[2]), .Z(g0));
PFUMX mux51(.ALUT(f3), .BLUT(f2), .C0(A[2]), .Z(g1));
PFUMX mux52(.ALUT(f5), .BLUT(f4), .C0(A[2]), .Z(g2));
PFUMX mux53(.ALUT(f7), .BLUT(f6), .C0(A[2]), .Z(g3));
L6MUX21 mux60 (.D0(g0), .D1(g1), .SD(A[1]), .Z(h0));
L6MUX21 mux61 (.D0(g2), .D1(g3), .SD(A[1]), .Z(h1));
L6MUX21 mux7 (.D0(h0), .D1(h1), .SD(A[0]), .Z(Y));
PFUMX mux50(.ALUT(f1), .BLUT(f0), .C0(A[4]), .Z(g0));
PFUMX mux51(.ALUT(f3), .BLUT(f2), .C0(A[4]), .Z(g1));
PFUMX mux52(.ALUT(f5), .BLUT(f4), .C0(A[4]), .Z(g2));
PFUMX mux53(.ALUT(f7), .BLUT(f6), .C0(A[4]), .Z(g3));
L6MUX21 mux60 (.D0(g0), .D1(g1), .SD(A[5]), .Z(h0));
L6MUX21 mux61 (.D0(g2), .D1(g3), .SD(A[5]), .Z(h1));
L6MUX21 mux7 (.D0(h0), .D1(h1), .SD(A[6]), .Z(Y));
`endif
end else begin
wire _TECHMAP_FAIL_ = 1;

View File

@ -1,5 +1,6 @@
// ---------------------------------------
(* lib_whitebox *)
module LUT4(input A, B, C, D, output Z);
parameter [15:0] INIT = 16'h0000;
wire [7:0] s3 = D ? INIT[15:8] : INIT[7:0];
@ -31,13 +32,8 @@ module CCU2C(
// First half
wire LUT4_0, LUT2_0;
`ifdef _ABC
assign LUT4_0 = INIT0[{D0, C0, B0, A0}];
assign LUT2_0 = INIT0[{2'b00, B0, A0}];
`else
LUT4 #(.INIT(INIT0)) lut4_0(.A(A0), .B(B0), .C(C0), .D(D0), .Z(LUT4_0));
LUT2 #(.INIT(INIT0[3:0])) lut2_0(.A(A0), .B(B0), .Z(LUT2_0));
`endif
wire gated_cin_0 = (INJECT1_0 == "YES") ? 1'b0 : CIN;
assign S0 = LUT4_0 ^ gated_cin_0;
@ -46,13 +42,8 @@ module CCU2C(
// Second half
wire LUT4_1, LUT2_1;
`ifdef _ABC
assign LUT4_1 = INIT1[{D1, C1, B1, A1}];
assign LUT2_1 = INIT1[{2'b00, B1, A1}];
`else
LUT4 #(.INIT(INIT1)) lut4_1(.A(A1), .B(B1), .C(C1), .D(D1), .Z(LUT4_1));
LUT2 #(.INIT(INIT1[3:0])) lut2_1(.A(A1), .B(B1), .Z(LUT2_1));
`endif
wire gated_cin_1 = (INJECT1_1 == "YES") ? 1'b0 : cout_0;
assign S1 = LUT4_1 ^ gated_cin_1;
@ -209,6 +200,7 @@ endmodule
// ---------------------------------------
(* lib_whitebox *)
module LUT2(input A, B, output Z);
parameter [3:0] INIT = 4'h0;
wire [1:0] s1 = B ? INIT[ 3:2] : INIT[1:0];

View File

@ -62,7 +62,7 @@ struct SynthEcp5Pass : public ScriptPass
log(" do not flatten design before synthesis\n");
log("\n");
log(" -retime\n");
log(" run 'abc' with -dff option\n");
log(" run 'abc' with '-dff -D 1' options\n");
log("\n");
log(" -noccu2\n");
log(" do not use CCU2 cells in output netlist\n");
@ -79,6 +79,9 @@ struct SynthEcp5Pass : public ScriptPass
log(" -nowidelut\n");
log(" do not use PFU muxes to implement LUTs larger than LUT4s\n");
log("\n");
log(" -asyncprld\n");
log(" use async PRLD mode to implement DLATCH and DFFSR (EXPERIMENTAL)\n");
log("\n");
log(" -abc2\n");
log(" run two passes of 'abc' for slightly improved logic density\n");
log("\n");
@ -99,7 +102,7 @@ struct SynthEcp5Pass : public ScriptPass
}
string top_opt, blif_file, edif_file, json_file;
bool noccu2, nodffe, nobram, nolutram, nowidelut, flatten, retime, abc2, abc9, nodsp, vpr;
bool noccu2, nodffe, nobram, nolutram, nowidelut, asyncprld, flatten, retime, abc2, abc9, nodsp, vpr;
void clear_flags() YS_OVERRIDE
{
@ -112,6 +115,7 @@ struct SynthEcp5Pass : public ScriptPass
nobram = false;
nolutram = false;
nowidelut = false;
asyncprld = false;
flatten = true;
retime = false;
abc2 = false;
@ -176,6 +180,10 @@ struct SynthEcp5Pass : public ScriptPass
nobram = true;
continue;
}
if (args[argidx] == "-asyncprld") {
asyncprld = true;
continue;
}
if (args[argidx] == "-nolutram" || /*deprecated alias*/ args[argidx] == "-nodram") {
nolutram = true;
continue;
@ -222,7 +230,7 @@ struct SynthEcp5Pass : public ScriptPass
{
if (check_label("begin"))
{
run("read_verilog -D_ABC -lib +/ecp5/cells_sim.v +/ecp5/cells_bb.v");
run("read_verilog -lib +/ecp5/cells_sim.v +/ecp5/cells_bb.v");
run(stringf("hierarchy -check %s", help_mode ? "-top <top>" : top_opt.c_str()));
}
@ -258,13 +266,13 @@ struct SynthEcp5Pass : public ScriptPass
if (!nobram && check_label("map_bram", "(skip if -nobram)"))
{
run("memory_bram -rules +/ecp5/bram.txt");
run("memory_bram -rules +/ecp5/brams.txt");
run("techmap -map +/ecp5/brams_map.v");
}
if (!nolutram && check_label("map_lutram", "(skip if -nolutram)"))
{
run("memory_bram -rules +/ecp5/lutram.txt");
run("memory_bram -rules +/ecp5/lutrams.txt");
run("techmap -map +/ecp5/lutrams_map.v");
}
@ -282,7 +290,7 @@ struct SynthEcp5Pass : public ScriptPass
else
run("techmap -map +/techmap.v -map +/ecp5/arith_map.v");
if (retime || help_mode)
run("abc -dff", "(only if -retime)");
run("abc -dff -D 1", "(only if -retime)");
}
if (check_label("map_ffs"))
@ -292,7 +300,7 @@ struct SynthEcp5Pass : public ScriptPass
run("opt_clean");
if (!nodffe)
run("dff2dffe -direct-match $_DFF_* -direct-match $__DFFS_*");
run("techmap -D NO_LUT -map +/ecp5/cells_map.v");
run(stringf("techmap -D NO_LUT %s -map +/ecp5/cells_map.v", help_mode ? "[-D ASYNC_PRLD]" : (asyncprld ? "-D ASYNC_PRLD" : "")));
run("opt_expr -undriven -mux_undef");
run("simplemap");
run("ecp5_ffinit");
@ -306,17 +314,18 @@ struct SynthEcp5Pass : public ScriptPass
if (abc2 || help_mode) {
run("abc", " (only if -abc2)");
}
std::string techmap_args = "-map +/ecp5/latches_map.v";
std::string techmap_args = asyncprld ? "" : "-map +/ecp5/latches_map.v";
if (abc9)
techmap_args += " -map +/ecp5/abc9_map.v -max_iter 1";
run("techmap " + techmap_args);
if (!asyncprld || abc9)
run("techmap " + techmap_args);
if (abc9) {
run("read_verilog -icells -lib +/ecp5/abc9_model.v");
if (nowidelut)
run("abc9 -lut +/ecp5/abc9_5g_nowide.lut -box +/ecp5/abc9_5g.box -W 200 -nomfs");
run("abc9 -lut +/ecp5/abc9_5g_nowide.lut -box +/ecp5/abc9_5g.box -W 200");
else
run("abc9 -lut +/ecp5/abc9_5g.lut -box +/ecp5/abc9_5g.box -W 200 -nomfs");
run("abc9 -lut +/ecp5/abc9_5g.lut -box +/ecp5/abc9_5g.box -W 200");
run("techmap -map +/ecp5/abc9_unmap.v");
} else {
if (nowidelut)

View File

@ -7,4 +7,4 @@ $(eval $(call add_share_file,share/efinix,techlibs/efinix/cells_map.v))
$(eval $(call add_share_file,share/efinix,techlibs/efinix/arith_map.v))
$(eval $(call add_share_file,share/efinix,techlibs/efinix/cells_sim.v))
$(eval $(call add_share_file,share/efinix,techlibs/efinix/brams_map.v))
$(eval $(call add_share_file,share/efinix,techlibs/efinix/bram.txt))
$(eval $(call add_share_file,share/efinix,techlibs/efinix/brams.txt))

View File

@ -58,7 +58,10 @@ struct SynthEfinixPass : public ScriptPass
log(" do not flatten design before synthesis\n");
log("\n");
log(" -retime\n");
log(" run 'abc' with -dff option\n");
log(" run 'abc' with '-dff -D 1' options\n");
log("\n");
log(" -nobram\n");
log(" do not use EFX_RAM_5K cells in output netlist\n");
log("\n");
log("\n");
log("The following commands are executed by this synthesis command:\n");
@ -67,7 +70,7 @@ struct SynthEfinixPass : public ScriptPass
}
string top_opt, edif_file, json_file;
bool flatten, retime;
bool flatten, retime, nobram;
void clear_flags() YS_OVERRIDE
{
@ -76,6 +79,7 @@ struct SynthEfinixPass : public ScriptPass
json_file = "";
flatten = true;
retime = false;
nobram = false;
}
void execute(std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
@ -114,6 +118,10 @@ struct SynthEfinixPass : public ScriptPass
retime = true;
continue;
}
if (args[argidx] == "-nobram") {
nobram = true;
continue;
}
break;
}
extra_args(args, argidx, design);
@ -150,21 +158,25 @@ struct SynthEfinixPass : public ScriptPass
run("synth -run coarse");
}
if (check_label("map_bram", "(skip if -nobram)"))
if (!nobram || check_label("map_bram", "(skip if -nobram)"))
{
run("memory_bram -rules +/efinix/bram.txt");
run("memory_bram -rules +/efinix/brams.txt");
run("techmap -map +/efinix/brams_map.v");
run("setundef -zero -params t:EFX_RAM_5K");
}
if (check_label("fine"))
if (check_label("map_ffram"))
{
run("opt -fast -mux_undef -undriven -fine");
run("memory_map");
run("opt -undriven -fine");
}
if (check_label("map_gates"))
{
run("techmap -map +/techmap.v -map +/efinix/arith_map.v");
if (retime || help_mode)
run("abc -dff", "(only if -retime)");
run("abc -dff -D 1", "(only if -retime)");
}
if (check_label("map_ffs"))

View File

@ -7,9 +7,9 @@ $(eval $(call add_share_file,share/gowin,techlibs/gowin/cells_map.v))
$(eval $(call add_share_file,share/gowin,techlibs/gowin/cells_sim.v))
$(eval $(call add_share_file,share/gowin,techlibs/gowin/arith_map.v))
$(eval $(call add_share_file,share/gowin,techlibs/gowin/brams_map.v))
$(eval $(call add_share_file,share/gowin,techlibs/gowin/bram.txt))
$(eval $(call add_share_file,share/gowin,techlibs/gowin/drams_map.v))
$(eval $(call add_share_file,share/gowin,techlibs/gowin/dram.txt))
$(eval $(call add_share_file,share/gowin,techlibs/gowin/brams.txt))
$(eval $(call add_share_file,share/gowin,techlibs/gowin/lutrams_map.v))
$(eval $(call add_share_file,share/gowin,techlibs/gowin/lutrams.txt))

View File

@ -55,23 +55,23 @@ struct SynthGowinPass : public ScriptPass
log(" -nobram\n");
log(" do not use BRAM cells in output netlist\n");
log("\n");
log(" -nodram\n");
log(" -nolutram\n");
log(" do not use distributed RAM cells in output netlist\n");
log("\n");
log(" -noflatten\n");
log(" do not flatten design before synthesis\n");
log("\n");
log(" -retime\n");
log(" run 'abc' with -dff option\n");
log(" run 'abc' with '-dff -D 1' options\n");
log("\n");
log(" -nowidelut\n");
log(" do not use muxes to implement LUTs larger than LUT4s\n");
log("\n");
log(" -noiopads\n");
log(" do not emit IOB at top level ports\n");
log("\n");
log(" -abc9\n");
log(" use new ABC9 flow (EXPERIMENTAL)\n");
//log("\n");
//log(" -abc9\n");
//log(" use new ABC9 flow (EXPERIMENTAL)\n");
log("\n");
log("\n");
log("The following commands are executed by this synthesis command:\n");
@ -80,7 +80,7 @@ struct SynthGowinPass : public ScriptPass
}
string top_opt, vout_file;
bool retime, nobram, nodram, flatten, nodffe, nowidelut, abc9, noiopads;
bool retime, nobram, nolutram, flatten, nodffe, nowidelut, abc9, noiopads;
void clear_flags() YS_OVERRIDE
{
@ -90,7 +90,7 @@ struct SynthGowinPass : public ScriptPass
flatten = true;
nobram = false;
nodffe = false;
nodram = false;
nolutram = false;
nowidelut = false;
abc9 = false;
noiopads = false;
@ -128,8 +128,8 @@ struct SynthGowinPass : public ScriptPass
nobram = true;
continue;
}
if (args[argidx] == "-nodram") {
nodram = true;
if (args[argidx] == "-nolutram" || /*deprecated*/args[argidx] == "-nodram") {
nolutram = true;
continue;
}
if (args[argidx] == "-nodffe") {
@ -144,10 +144,10 @@ struct SynthGowinPass : public ScriptPass
nowidelut = true;
continue;
}
if (args[argidx] == "-abc9") {
abc9 = true;
continue;
}
//if (args[argidx] == "-abc9") {
// abc9 = true;
// continue;
//}
if (args[argidx] == "-noiopads") {
noiopads = true;
continue;
@ -188,28 +188,32 @@ struct SynthGowinPass : public ScriptPass
run("synth -run coarse");
}
if (!nobram && check_label("bram", "(skip if -nobram)"))
if (!nobram && check_label("map_bram", "(skip if -nobram)"))
{
run("memory_bram -rules +/gowin/bram.txt");
run("memory_bram -rules +/gowin/brams.txt");
run("techmap -map +/gowin/brams_map.v -map +/gowin/cells_sim.v");
}
if (!nodram && check_label("dram", "(skip if -nodram)"))
if (!nolutram && check_label("map_lutram", "(skip if -nolutram)"))
{
run("memory_bram -rules +/gowin/dram.txt");
run("techmap -map +/gowin/drams_map.v");
run("memory_bram -rules +/gowin/lutrams.txt");
run("techmap -map +/gowin/lutrams_map.v");
run("determine_init");
}
if (check_label("fine"))
if (check_label("map_ffram"))
{
run("opt -fast -mux_undef -undriven -fine");
run("memory_map");
run("opt -undriven -fine");
}
if (check_label("map_gates"))
{
run("techmap -map +/techmap.v -map +/gowin/arith_map.v");
run("techmap -map +/techmap.v");
if (retime || help_mode)
run("abc -dff", "(only if -retime)");
run("abc -dff -D 1", "(only if -retime)");
run("splitnets");
}
@ -227,13 +231,13 @@ struct SynthGowinPass : public ScriptPass
if (check_label("map_luts"))
{
if (nowidelut && abc9) {
/*if (nowidelut && abc9) {
run("abc9 -lut 4");
} else if (nowidelut && !abc9) {
} else*/ if (nowidelut && !abc9) {
run("abc -lut 4");
} else if (!nowidelut && abc9) {
} else /*if (!nowidelut && abc9) {
run("abc9 -lut 4:8");
} else if (!nowidelut && !abc9) {
} else*/ if (!nowidelut && !abc9) {
run("abc -lut 4:8");
}
run("clean");
@ -248,7 +252,6 @@ struct SynthGowinPass : public ScriptPass
run("iopadmap -bits -inpad IBUF O:I -outpad OBUF I:O "
"-toutpad TBUF OEN:I:O -tinoutpad IOBUF OEN:O:I:IO", "(unless -noiopads)");
run("clean");
}
if (check_label("check"))

View File

@ -59,7 +59,7 @@ struct SynthGreenPAK4Pass : public ScriptPass
log(" do not flatten design before synthesis\n");
log("\n");
log(" -retime\n");
log(" run 'abc' with -dff option\n");
log(" run 'abc' with '-dff -D 1' options\n");
log("\n");
log("\n");
log("The following commands are executed by this synthesis command:\n");
@ -165,7 +165,7 @@ struct SynthGreenPAK4Pass : public ScriptPass
run("dfflibmap -prepare -liberty +/greenpak4/gp_dff.lib");
run("opt -fast");
if (retime || help_mode)
run("abc -dff", "(only if -retime)");
run("abc -dff -D 1", "(only if -retime)");
}
if (check_label("map_luts"))

View File

@ -1,13 +1,17 @@
# From https://github.com/cliffordwolf/icestorm/blob/be0bca0/icefuzz/timings_hx8k.txt
# NB: Inputs/Outputs must be ordered alphabetically
# (with exceptions for carry in/out)
# NB: Box inputs/outputs must each be in the same order
# as their corresponding module definition
# (with exceptions detailed below)
# Inputs: A B I0 I3 CI
# Outputs: O CO
# (NB: carry chain input/output must be last
# input/output and have been moved there
# overriding the alphabetical ordering)
$__ICE40_CARRY_WRAPPER 1 1 5 2
400 379 449 316 316
259 231 - - 126
# Box 1 : $__ICE40_CARRY_WRAPPER (private cell used to preserve
# SB_LUT4+SB_CARRY)
# (Exception: carry chain input/output must be the
# last input and output and the entire bus has been
# moved there overriding the otherwise
# alphabetical ordering)
# name ID w/b ins outs
$__ICE40_CARRY_WRAPPER 1 1 5 2
#A B I0 I3 CI
400 379 449 316 316 # O
259 231 - - 126 # CO

View File

@ -1,13 +1,17 @@
# From https://github.com/cliffordwolf/icestorm/blob/be0bca0/icefuzz/timings_lp8k.txt
# NB: Inputs/Outputs must be ordered alphabetically
# (with exceptions for carry in/out)
# NB: Box inputs/outputs must each be in the same order
# as their corresponding module definition
# (with exceptions detailed below)
# Inputs: A B I0 I3 CI
# Outputs: O CO
# (NB: carry chain input/output must be last
# input/output and have been moved there
# overriding the alphabetical ordering)
$__ICE40_CARRY_WRAPPER 1 1 5 2
589 558 661 465 465
675 609 - - 186
# Box 1 : $__ICE40_CARRY_WRAPPER (private cell used to preserve
# SB_LUT4+SB_CARRY)
# (Exception: carry chain input/output must be the
# last input and output and the entire bus has been
# moved there overriding the otherwise
# alphabetical ordering)
# name ID w/b ins outs
$__ICE40_CARRY_WRAPPER 1 1 5 2
#A B I0 I3 CI
589 558 661 465 465 # O
675 609 - - 186 # CO

View File

@ -9,6 +9,8 @@ module \$__ICE40_CARRY_WRAPPER (
input I0, I3
);
parameter LUT = 0;
parameter I3_IS_CI = 0;
wire I3_OR_CI = I3_IS_CI ? CI : I3;
SB_CARRY carry (
.I0(A),
.I1(B),
@ -21,7 +23,7 @@ module \$__ICE40_CARRY_WRAPPER (
.I0(I0),
.I1(A),
.I2(B),
.I3(I3),
.I3(I3_OR_CI),
.O(O)
);
endmodule

View File

@ -1,13 +1,17 @@
# From https://github.com/cliffordwolf/icestorm/blob/be0bca0/icefuzz/timings_up5k.txt
# NB: Inputs/Outputs must be ordered alphabetically
# (with exceptions for carry in/out)
# NB: Box inputs/outputs must each be in the same order
# as their corresponding module definition
# (with exceptions detailed below)
# Inputs: A B I0 I3 CI
# Outputs: O CO
# (NB: carry chain input/output must be last
# input/output and have been moved there
# overriding the alphabetical ordering)
$__ICE40_CARRY_WRAPPER 1 1 5 2
1231 1205 1285 874 874
675 609 - - 278
# Box 1 : $__ICE40_CARRY_WRAPPER (private cell used to preserve
# SB_LUT4+SB_CARRY)
# (Exception: carry chain input/output must be the
# last input and output and the entire bus has been
# moved there overriding the otherwise
# alphabetical ordering)
# name ID w/b ins outs
$__ICE40_CARRY_WRAPPER 1 1 5 2
#A B I0 I3 CI
1231 1205 1285 874 874 # O
675 609 - - 278 # CO

View File

@ -49,13 +49,14 @@ module _80_ice40_alu (A, B, CI, BI, X, Y, CO);
// A[1]: 1100 1100 1100 1100
// A[2]: 1111 0000 1111 0000
// A[3]: 1111 1111 0000 0000
.LUT(16'b 0110_1001_1001_0110)
.LUT(16'b 0110_1001_1001_0110),
.I3_IS_CI(1'b1)
) carry (
.A(AA[i]),
.B(BB[i]),
.CI(C[i]),
.I0(1'b0),
.I3(C[i]),
.I3(1'bx),
.CO(CO[i]),
.O(Y[i])
);

View File

@ -42,19 +42,18 @@ module \$lut (A, Y);
.I0(1'b0), .I1(1'b0), .I2(1'b0), .I3(A[0]));
end else
if (WIDTH == 2) begin
localparam [15:0] INIT = {{4{LUT[3]}}, {4{LUT[1]}}, {4{LUT[2]}}, {4{LUT[0]}}};
localparam [15:0] INIT = {{4{LUT[3]}}, {4{LUT[2]}}, {4{LUT[1]}}, {4{LUT[0]}}};
SB_LUT4 #(.LUT_INIT(INIT)) _TECHMAP_REPLACE_ (.O(Y),
.I0(1'b0), .I1(1'b0), .I2(A[1]), .I3(A[0]));
.I0(1'b0), .I1(1'b0), .I2(A[0]), .I3(A[1]));
end else
if (WIDTH == 3) begin
localparam [15:0] INIT = {{2{LUT[7]}}, {2{LUT[3]}}, {2{LUT[5]}}, {2{LUT[1]}}, {2{LUT[6]}}, {2{LUT[2]}}, {2{LUT[4]}}, {2{LUT[0]}}};
localparam [15:0] INIT = {{2{LUT[7]}}, {2{LUT[6]}}, {2{LUT[5]}}, {2{LUT[4]}}, {2{LUT[3]}}, {2{LUT[2]}}, {2{LUT[1]}}, {2{LUT[0]}}};
SB_LUT4 #(.LUT_INIT(INIT)) _TECHMAP_REPLACE_ (.O(Y),
.I0(1'b0), .I1(A[2]), .I2(A[1]), .I3(A[0]));
.I0(1'b0), .I1(A[0]), .I2(A[1]), .I3(A[2]));
end else
if (WIDTH == 4) begin
localparam [15:0] INIT = {LUT[15], LUT[7], LUT[11], LUT[3], LUT[13], LUT[5], LUT[9], LUT[1], LUT[14], LUT[6], LUT[10], LUT[2], LUT[12], LUT[4], LUT[8], LUT[0]};
SB_LUT4 #(.LUT_INIT(INIT)) _TECHMAP_REPLACE_ (.O(Y),
.I0(A[3]), .I1(A[2]), .I2(A[1]), .I3(A[0]));
SB_LUT4 #(.LUT_INIT(LUT)) _TECHMAP_REPLACE_ (.O(Y),
.I0(A[0]), .I1(A[1]), .I2(A[2]), .I3(A[3]));
end else begin
wire _TECHMAP_FAIL_ = 1;
end

View File

@ -1126,6 +1126,7 @@ module SB_SPRAM256KA (
input [15:0] DATAIN,
input [3:0] MASKWREN,
input WREN, CHIPSELECT, CLOCK, STANDBY, SLEEP, POWEROFF,
`ABC9_ARRIVAL_U(1821) // https://github.com/cliffordwolf/icestorm/blob/95949315364f8d9b0c693386aefadf44b28e2cf6/icefuzz/timings_up5k.txt#L13207
output reg [15:0] DATAOUT
);
`ifndef BLACKBOX

View File

@ -78,10 +78,12 @@ struct Ice40FfinitPass : public Pass {
continue;
if (initbits.count(bit)) {
if (initbits.at(bit) != val)
log_error("Conflicting init values for signal %s (%s = %s, %s = %s).\n",
if (initbits.at(bit) != val) {
log_warning("Conflicting init values for signal %s (%s = %s, %s = %s).\n",
log_signal(bit), log_signal(SigBit(wire, i)), log_signal(val),
log_signal(initbit_to_wire[bit]), log_signal(initbits.at(bit)));
initbits.at(bit) = State::Sx;
}
continue;
}
@ -114,6 +116,10 @@ struct Ice40FfinitPass : public Pass {
continue;
State val = initbits.at(bit_q);
if (val == State::Sx)
continue;
handled_initbits.insert(bit_q);
log("FF init value for cell %s (%s): %s = %c\n", log_id(cell), log_id(cell->type),

View File

@ -128,6 +128,8 @@ static void run_ice40_opts(Module *module)
new_attr.insert(std::make_pair(a.first, a.second));
else if (a.first.in(ID(SB_LUT4.name), ID::keep, ID(module_not_derived)))
continue;
else if (a.first.begins_with("\\SB_CARRY.\\"))
continue;
else
log_abort();
cell->attributes = std::move(new_attr);
@ -137,7 +139,8 @@ static void run_ice40_opts(Module *module)
log("Optimized $__ICE40_CARRY_WRAPPER cell back to logic (without SB_CARRY) %s.%s: CO=%s\n",
log_id(module), log_id(cell), log_signal(replacement_output));
cell->type = "$lut";
cell->setPort("\\A", { cell->getPort("\\I0"), inbit[0], inbit[1], cell->getPort("\\I3") });
auto I3 = get_bit_or_zero(cell->getPort(cell->getParam(ID(I3_IS_CI)).as_bool() ? ID(CI) : ID(I3)));
cell->setPort("\\A", { I3, inbit[1], inbit[0], get_bit_or_zero(cell->getPort("\\I0")) });
cell->setPort("\\Y", cell->getPort("\\O"));
cell->unsetPort("\\B");
cell->unsetPort("\\CI");
@ -146,6 +149,7 @@ static void run_ice40_opts(Module *module)
cell->unsetPort("\\CO");
cell->unsetPort("\\O");
cell->setParam("\\WIDTH", 4);
cell->unsetParam("\\I3_IS_CI");
}
continue;
}

View File

@ -65,7 +65,7 @@ struct SynthIce40Pass : public ScriptPass
log(" do not flatten design before synthesis\n");
log("\n");
log(" -retime\n");
log(" run 'abc' with -dff option\n");
log(" run 'abc' with '-dff -D 1' options\n");
log("\n");
log(" -nocarry\n");
log(" do not use SB_CARRY cells in output netlist\n");
@ -102,8 +102,8 @@ struct SynthIce40Pass : public ScriptPass
log("\n");
}
string top_opt, blif_file, edif_file, json_file, abc, device_opt;
bool nocarry, nodffe, nobram, dsp, flatten, retime, noabc, abc2, vpr;
string top_opt, blif_file, edif_file, json_file, device_opt;
bool nocarry, nodffe, nobram, dsp, flatten, retime, noabc, abc2, vpr, abc9;
int min_ce_use;
void clear_flags() YS_OVERRIDE
@ -122,7 +122,7 @@ struct SynthIce40Pass : public ScriptPass
noabc = false;
abc2 = false;
vpr = false;
abc = "abc";
abc9 = false;
device_opt = "hx";
}
@ -207,7 +207,7 @@ struct SynthIce40Pass : public ScriptPass
continue;
}
if (args[argidx] == "-abc9") {
abc = "abc9";
abc9 = true;
continue;
}
if (args[argidx] == "-device" && argidx+1 < args.size()) {
@ -223,7 +223,7 @@ struct SynthIce40Pass : public ScriptPass
if (device_opt != "hx" && device_opt != "lp" && device_opt !="u")
log_cmd_error("Invalid or no device specified: '%s'\n", device_opt.c_str());
if (abc == "abc9" && retime)
if (abc9 && retime)
log_cmd_error("-retime option not currently compatible with -abc9!\n");
log_header(design, "Executing SYNTH_ICE40 pass.\n");
@ -273,7 +273,8 @@ struct SynthIce40Pass : public ScriptPass
run("opt_expr");
run("opt_clean");
if (help_mode || dsp) {
run("memory_dff");
run("memory_dff"); // ice40_dsp will merge registers, reserve memory port registers first
run("wreduce t:$mul");
run("techmap -map +/mul2dsp.v -map +/ice40/dsp_map.v -D DSP_A_MAXWIDTH=16 -D DSP_B_MAXWIDTH=16 "
"-D DSP_A_MINWIDTH=2 -D DSP_B_MINWIDTH=2 -D DSP_Y_MINWIDTH=11 "
"-D DSP_NAME=$__MUL16X16", "(if -dsp)");
@ -316,7 +317,7 @@ struct SynthIce40Pass : public ScriptPass
run("techmap -map +/techmap.v -map +/ice40/arith_map.v");
}
if (retime || help_mode)
run(abc + " -dff", "(only if -retime)");
run("abc -dff -D 1", "(only if -retime)");
run("ice40_opt");
}
@ -340,7 +341,7 @@ struct SynthIce40Pass : public ScriptPass
if (check_label("map_luts"))
{
if (abc2 || help_mode) {
run(abc, " (only if -abc2)");
run("abc", " (only if -abc2)");
run("ice40_opt", "(only if -abc2)");
}
run("techmap -map +/ice40/latches_map.v");
@ -349,7 +350,7 @@ struct SynthIce40Pass : public ScriptPass
run("techmap -map +/gate2lut.v -D LUT_WIDTH=4", "(only if -noabc)");
}
if (!noabc) {
if (abc == "abc9") {
if (abc9) {
run("read_verilog -icells -lib +/ice40/abc9_model.v");
int wire_delay;
if (device_opt == "lp")
@ -358,10 +359,10 @@ struct SynthIce40Pass : public ScriptPass
wire_delay = 750;
else
wire_delay = 250;
run(abc + stringf(" -W %d -lut +/ice40/abc9_%s.lut -box +/ice40/abc9_%s.box", wire_delay, device_opt.c_str(), device_opt.c_str()), "(skip if -noabc)");
run(stringf("abc9 -W %d -lut +/ice40/abc9_%s.lut -box +/ice40/abc9_%s.box", wire_delay, device_opt.c_str(), device_opt.c_str()));
}
else
run(abc + " -dress -lut 4", "(skip if -noabc)");
run("abc -dress -lut 4", "(skip if -noabc)");
}
run("ice40_wrapcarry -unwrap");
run("techmap -D NO_LUT -map +/ice40/cells_map.v");

View File

@ -71,7 +71,7 @@ struct SynthIntelPass : public ScriptPass {
log(" do not flatten design before synthesis\n");
log("\n");
log(" -retime\n");
log(" run 'abc' with -dff option\n");
log(" run 'abc' with '-dff -D 1' options\n");
log("\n");
log("The following commands are executed by this synthesis command:\n");
help_script();
@ -187,10 +187,10 @@ struct SynthIntelPass : public ScriptPass {
}
if (!nobram && check_label("map_bram", "(skip if -nobram)")) {
if (family_opt == "cycloneiv" ||
family_opt == "cycloneive" ||
family_opt == "max10" ||
help_mode) {
if (family_opt == "cycloneiv" ||
family_opt == "cycloneive" ||
family_opt == "max10" ||
help_mode) {
run("memory_bram -rules +/intel/common/brams_m9k.txt", "(if applicable for family)");
run("techmap -map +/intel/common/brams_map_m9k.v", "(if applicable for family)");
} else {
@ -210,7 +210,7 @@ struct SynthIntelPass : public ScriptPass {
run("clean -purge");
run("setundef -undriven -zero");
if (retime || help_mode)
run("abc -markgroups -dff", "(only if -retime)");
run("abc -markgroups -dff -D 1", "(only if -retime)");
}
if (check_label("map_luts")) {
@ -224,7 +224,7 @@ struct SynthIntelPass : public ScriptPass {
if (check_label("map_cells")) {
if (iopads || help_mode)
run("iopadmap -bits -outpad $__outpad I:O -inpad $__inpad O:I", "(if -iopads)");
run(stringf("techmap -map +/intel/%s/cells_map.v", family_opt.c_str()));
run(stringf("techmap -map +/intel/%s/cells_map.v", family_opt.c_str()));
run("dffinit -highlow -ff dffeas q power_up");
run("clean -purge");
}

View File

@ -67,7 +67,7 @@ struct SynthSf2Pass : public ScriptPass
log(" insert direct PAD->global_net buffers\n");
log("\n");
log(" -retime\n");
log(" run 'abc' with -dff option\n");
log(" run 'abc' with '-dff -D 1' options\n");
log("\n");
log("\n");
log("The following commands are executed by this synthesis command:\n");
@ -181,7 +181,7 @@ struct SynthSf2Pass : public ScriptPass
run("opt -undriven -fine");
run("techmap -map +/techmap.v -map +/sf2/arith_map.v");
if (retime || help_mode)
run("abc -dff", "(only if -retime)");
run("abc -dff -D 1", "(only if -retime)");
}
if (check_label("map_ffs"))

View File

@ -1,5 +1,6 @@
OBJS += techlibs/xilinx/synth_xilinx.o
OBJS += techlibs/xilinx/xilinx_dffopt.o
GENFILES += techlibs/xilinx/brams_init_36.vh
GENFILES += techlibs/xilinx/brams_init_32.vh

View File

@ -18,8 +18,366 @@
*
*/
// ============================================================================
// The following techmapping rules are intended to be run (with -max_iter 1)
// before invoking the `abc9` pass in order to transform the design into
// a format that it understands.
`ifdef DFF_MODE
// For example, (complex) flip-flops are expected to be described as an
// combinatorial box (containing all control logic such as clock enable
// or synchronous resets) followed by a basic D-Q flop.
// Yosys will automatically analyse the simulation model (described in
// cells_sim.v) and detach any $_DFF_P_ or $_DFF_N_ cells present in
// order to extract the combinatorial control logic left behind.
// Specifically, a simulation model similar to the one below:
//
// ++===================================++
// || Sim model ||
// || /\/\/\/\ ||
// D -->>-----< > +------+ ||
// R -->>-----< Comb. > |$_DFF_| ||
// CE -->>-----< logic >-----| [NP]_|---+---->>-- Q
// || +--< > +------+ | ||
// || | \/\/\/\/ | ||
// || | | ||
// || +----------------------------+ ||
// || ||
// ++===================================++
//
// is transformed into:
//
// ++==================++
// || Comb box ||
// || ||
// || /\/\/\/\ ||
// D -->>-----< > ||
// R -->>-----< Comb. > || +-----------+
// CE -->>-----< logic >--->>-- $Q --|$__ABC9_FF_|--+-->> Q
// abc9_ff.Q +-->>-----< > || +-----------+ |
// | || \/\/\/\/ || |
// | || || |
// | ++==================++ |
// | |
// +-----------------------------------------------+
//
// The purpose of the following FD* rules are to wrap the flop with:
// (a) a special $__ABC9_FF_ in front of the FD*'s output, indicating to abc9
// the connectivity of its basic D-Q flop
// (b) an optional $__ABC9_ASYNC_ cell in front of $__ABC_FF_'s output to
// capture asynchronous behaviour
// (c) a special abc9_ff.clock wire to capture its clock domain and polarity
// (indicated to `abc9' so that it only performs sequential synthesis
// (with reachability analysis) correctly on one domain at a time)
// (d) a special abc9_ff.init wire to encode the flop's initial state
// NOTE: in order to perform sequential synthesis, `abc9' also requires
// that the initial value of all flops be zero
// (e) a special _TECHMAP_REPLACE_.abc9_ff.Q wire that will be used for feedback
// into the (combinatorial) FD* cell to facilitate clock-enable behaviour
module FDRE (output Q, (* techmap_autopurge *) input C, CE, D, R);
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_R_INVERTED = 1'b0;
wire QQ, $Q;
generate if (INIT == 1'b1) begin
assign Q = ~QQ;
FDSE #(
.INIT(1'b0),
.IS_C_INVERTED(IS_C_INVERTED),
.IS_D_INVERTED(IS_D_INVERTED),
.IS_S_INVERTED(IS_R_INVERTED)
) _TECHMAP_REPLACE_ (
.D(~D), .Q($Q), .C(C), .CE(CE), .S(R)
);
end
else begin
assign Q = QQ;
FDRE #(
.INIT(1'b0),
.IS_C_INVERTED(IS_C_INVERTED),
.IS_D_INVERTED(IS_D_INVERTED),
.IS_R_INVERTED(IS_R_INVERTED)
) _TECHMAP_REPLACE_ (
.D(D), .Q($Q), .C(C), .CE(CE), .R(R)
);
end
endgenerate
$__ABC9_FF_ abc9_ff (.D($Q), .Q(QQ));
// Special signals
wire [1:0] abc9_ff.clock = {C, IS_C_INVERTED};
wire [0:0] abc9_ff.init = 1'b0;
wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = QQ;
endmodule
module FDRE_1 (output Q, (* techmap_autopurge *) input C, CE, D, R);
parameter [0:0] INIT = 1'b0;
wire QQ, $Q;
generate if (INIT == 1'b1) begin
assign Q = ~QQ;
FDSE_1 #(
.INIT(1'b0)
) _TECHMAP_REPLACE_ (
.D(~D), .Q($Q), .C(C), .CE(CE), .S(R)
);
end
else begin
assign Q = QQ;
FDRE_1 #(
.INIT(1'b0)
) _TECHMAP_REPLACE_ (
.D(D), .Q($Q), .C(C), .CE(CE), .R(R)
);
end
endgenerate
$__ABC9_FF_ abc9_ff (.D($Q), .Q(QQ));
// Special signals
wire [1:0] abc9_ff.clock = {C, 1'b1 /* IS_C_INVERTED */};
wire [0:0] abc9_ff.init = 1'b0;
wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = QQ;
endmodule
module FDSE (output Q, (* techmap_autopurge *) input C, CE, D, S);
parameter [0:0] INIT = 1'b1;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_S_INVERTED = 1'b0;
wire QQ, $Q;
generate if (INIT == 1'b1) begin
assign Q = ~QQ;
FDRE #(
.INIT(1'b0),
.IS_C_INVERTED(IS_C_INVERTED),
.IS_D_INVERTED(IS_D_INVERTED),
.IS_R_INVERTED(IS_S_INVERTED)
) _TECHMAP_REPLACE_ (
.D(~D), .Q($Q), .C(C), .CE(CE), .R(S)
);
end
else begin
assign Q = QQ;
FDSE #(
.INIT(1'b0),
.IS_C_INVERTED(IS_C_INVERTED),
.IS_D_INVERTED(IS_D_INVERTED),
.IS_S_INVERTED(IS_S_INVERTED)
) _TECHMAP_REPLACE_ (
.D(D), .Q($Q), .C(C), .CE(CE), .S(S)
);
end endgenerate
$__ABC9_FF_ abc9_ff (.D($Q), .Q(QQ));
// Special signals
wire [1:0] abc9_ff.clock = {C, IS_C_INVERTED};
wire [0:0] abc9_ff.init = 1'b0;
wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = QQ;
endmodule
module FDSE_1 (output Q, (* techmap_autopurge *) input C, CE, D, S);
parameter [0:0] INIT = 1'b1;
wire QQ, $Q;
generate if (INIT == 1'b1) begin
assign Q = ~QQ;
FDRE_1 #(
.INIT(1'b0)
) _TECHMAP_REPLACE_ (
.D(~D), .Q($Q), .C(C), .CE(CE), .R(S)
);
end
else begin
assign Q = QQ;
FDSE_1 #(
.INIT(1'b0)
) _TECHMAP_REPLACE_ (
.D(D), .Q($Q), .C(C), .CE(CE), .S(S)
);
end endgenerate
$__ABC9_FF_ abc9_ff (.D($Q), .Q(QQ));
// Special signals
wire [1:0] abc9_ff.clock = {C, 1'b1 /* IS_C_INVERTED */};
wire [0:0] abc9_ff.init = 1'b0;
wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = QQ;
endmodule
module FDCE (output Q, (* techmap_autopurge *) input C, CE, D, CLR);
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_CLR_INVERTED = 1'b0;
wire QQ, $Q, $QQ;
generate if (INIT == 1'b1) begin
assign Q = ~QQ;
FDPE #(
.INIT(1'b0),
.IS_C_INVERTED(IS_C_INVERTED),
.IS_D_INVERTED(IS_D_INVERTED),
.IS_PRE_INVERTED(IS_CLR_INVERTED)
) _TECHMAP_REPLACE_ (
.D(~D), .Q($Q), .C(C), .CE(CE), .PRE(CLR)
// ^^^ Note that async
// control is not directly
// supported by abc9 but its
// behaviour is captured by
// $__ABC9_ASYNC1 below
);
// Since this is an async flop, async behaviour is dealt with here
$__ABC9_ASYNC1 abc_async (.A($QQ), .S(CLR ^ IS_CLR_INVERTED), .Y(QQ));
end
else begin
assign Q = QQ;
FDCE #(
.INIT(1'b0),
.IS_C_INVERTED(IS_C_INVERTED),
.IS_D_INVERTED(IS_D_INVERTED),
.IS_CLR_INVERTED(IS_CLR_INVERTED)
) _TECHMAP_REPLACE_ (
.D(D), .Q($Q), .C(C), .CE(CE), .CLR(CLR)
// ^^^ Note that async
// control is not directly
// supported by abc9 but its
// behaviour is captured by
// $__ABC9_ASYNC0 below
);
// Since this is an async flop, async behaviour is dealt with here
$__ABC9_ASYNC0 abc_async (.A($QQ), .S(CLR ^ IS_CLR_INVERTED), .Y(QQ));
end endgenerate
$__ABC9_FF_ abc9_ff (.D($Q), .Q($QQ));
// Special signals
wire [1:0] abc9_ff.clock = {C, IS_C_INVERTED};
wire [0:0] abc9_ff.init = 1'b0;
wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = $QQ;
endmodule
module FDCE_1 (output Q, (* techmap_autopurge *) input C, CE, D, CLR);
parameter [0:0] INIT = 1'b0;
wire QQ, $Q, $QQ;
generate if (INIT == 1'b1) begin
assign Q = ~QQ;
FDPE_1 #(
.INIT(1'b0)
) _TECHMAP_REPLACE_ (
.D(~D), .Q($Q), .C(C), .CE(CE), .PRE(CLR)
// ^^^ Note that async
// control is not directly
// supported by abc9 but its
// behaviour is captured by
// $__ABC9_ASYNC1 below
);
$__ABC9_ASYNC1 abc_async (.A($QQ), .S(CLR), .Y(QQ));
end
else begin
assign Q = QQ;
FDCE_1 #(
.INIT(1'b0)
) _TECHMAP_REPLACE_ (
.D(D), .Q($Q), .C(C), .CE(CE), .CLR(CLR)
// ^^^ Note that async
// control is not directly
// supported by abc9 but its
// behaviour is captured by
// $__ABC9_ASYNC0 below
);
$__ABC9_ASYNC0 abc_async (.A($QQ), .S(CLR), .Y(QQ));
end endgenerate
$__ABC9_FF_ abc9_ff (.D($Q), .Q($QQ));
// Special signals
wire [1:0] abc9_ff.clock = {C, 1'b1 /* IS_C_INVERTED */};
wire [0:0] abc9_ff.init = 1'b0;
wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = $QQ;
endmodule
module FDPE (output Q, (* techmap_autopurge *) input C, CE, D, PRE);
parameter [0:0] INIT = 1'b1;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_PRE_INVERTED = 1'b0;
wire QQ, $Q, $QQ;
generate if (INIT == 1'b1) begin
assign Q = ~QQ;
FDCE #(
.INIT(1'b0),
.IS_C_INVERTED(IS_C_INVERTED),
.IS_D_INVERTED(IS_D_INVERTED),
.IS_CLR_INVERTED(IS_PRE_INVERTED),
) _TECHMAP_REPLACE_ (
.D(~D), .Q($Q), .C(C), .CE(CE), .CLR(PRE)
// ^^^ Note that async
// control is not directly
// supported by abc9 but its
// behaviour is captured by
// $__ABC9_ASYNC0 below
);
$__ABC9_ASYNC0 abc_async (.A($QQ), .S(PRE ^ IS_PRE_INVERTED), .Y(QQ));
end
else begin
assign Q = QQ;
FDPE #(
.INIT(1'b0),
.IS_C_INVERTED(IS_C_INVERTED),
.IS_D_INVERTED(IS_D_INVERTED),
.IS_PRE_INVERTED(IS_PRE_INVERTED),
) _TECHMAP_REPLACE_ (
.D(D), .Q($Q), .C(C), .CE(CE), .PRE(PRE)
// ^^^ Note that async
// control is not directly
// supported by abc9 but its
// behaviour is captured by
// $__ABC9_ASYNC1 below
);
$__ABC9_ASYNC1 abc_async (.A($QQ), .S(PRE ^ IS_PRE_INVERTED), .Y(QQ));
end endgenerate
$__ABC9_FF_ abc9_ff (.D($Q), .Q($QQ));
// Special signals
wire [1:0] abc9_ff.clock = {C, IS_C_INVERTED};
wire [0:0] abc9_ff.init = 1'b0;
wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = $QQ;
endmodule
module FDPE_1 (output Q, (* techmap_autopurge *) input C, CE, D, PRE);
parameter [0:0] INIT = 1'b1;
wire QQ, $Q, $QQ;
generate if (INIT == 1'b1) begin
assign Q = ~QQ;
FDCE_1 #(
.INIT(1'b0)
) _TECHMAP_REPLACE_ (
.D(~D), .Q($Q), .C(C), .CE(CE), .CLR(PRE)
// ^^^ Note that async
// control is not directly
// supported by abc9 but its
// behaviour is captured by
// $__ABC9_ASYNC0 below
);
$__ABC9_ASYNC0 abc_async (.A($QQ), .S(PRE), .Y(QQ));
end
else begin
assign Q = QQ;
FDPE_1 #(
.INIT(1'b0)
) _TECHMAP_REPLACE_ (
.D(D), .Q($Q), .C(C), .CE(CE), .PRE(PRE)
// ^^^ Note that async
// control is not directly
// supported by abc9 but its
// behaviour is captured by
// $__ABC9_ASYNC1 below
);
$__ABC9_ASYNC1 abc_async (.A($QQ), .S(PRE), .Y(QQ));
end endgenerate
$__ABC9_FF_ abc9_ff (.D($Q), .Q($QQ));
// Special signals
wire [1:0] abc9_ff.clock = {C, 1'b1 /* IS_C_INVERTED */};
wire [0:0] abc9_ff.init = 1'b0;
wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = $QQ;
endmodule
`endif
// Attach a (combinatorial) black-box onto the output
// of thes LUTRAM primitives to capture their
// asynchronous read behaviour
module RAM32X1D (
output DPO, SPO,
(* techmap_autopurge *) input D,
@ -30,17 +388,17 @@ module RAM32X1D (
);
parameter INIT = 32'h0;
parameter IS_WCLK_INVERTED = 1'b0;
wire \$DPO , \$SPO ;
wire $DPO, $SPO;
RAM32X1D #(
.INIT(INIT), .IS_WCLK_INVERTED(IS_WCLK_INVERTED)
) _TECHMAP_REPLACE_ (
.DPO(\$DPO ), .SPO(\$SPO ),
.DPO($DPO), .SPO($SPO),
.D(D), .WCLK(WCLK), .WE(WE),
.A0(A0), .A1(A1), .A2(A2), .A3(A3), .A4(A4),
.DPRA0(DPRA0), .DPRA1(DPRA1), .DPRA2(DPRA2), .DPRA3(DPRA3), .DPRA4(DPRA4)
);
\$__ABC9_LUT6 spo (.A(\$SPO ), .S({1'b1, A4, A3, A2, A1, A0}), .Y(SPO));
\$__ABC9_LUT6 dpo (.A(\$DPO ), .S({1'b1, DPRA4, DPRA3, DPRA2, DPRA1, DPRA0}), .Y(DPO));
$__ABC9_LUT6 spo (.A($SPO), .S({1'b1, A4, A3, A2, A1, A0}), .Y(SPO));
$__ABC9_LUT6 dpo (.A($DPO), .S({1'b1, DPRA4, DPRA3, DPRA2, DPRA1, DPRA0}), .Y(DPO));
endmodule
module RAM64X1D (
@ -53,17 +411,17 @@ module RAM64X1D (
);
parameter INIT = 64'h0;
parameter IS_WCLK_INVERTED = 1'b0;
wire \$DPO , \$SPO ;
wire $DPO, $SPO;
RAM64X1D #(
.INIT(INIT), .IS_WCLK_INVERTED(IS_WCLK_INVERTED)
) _TECHMAP_REPLACE_ (
.DPO(\$DPO ), .SPO(\$SPO ),
.DPO($DPO), .SPO($SPO),
.D(D), .WCLK(WCLK), .WE(WE),
.A0(A0), .A1(A1), .A2(A2), .A3(A3), .A4(A4), .A5(A5),
.DPRA0(DPRA0), .DPRA1(DPRA1), .DPRA2(DPRA2), .DPRA3(DPRA3), .DPRA4(DPRA4), .DPRA5(DPRA5)
);
\$__ABC9_LUT6 spo (.A(\$SPO ), .S({A5, A4, A3, A2, A1, A0}), .Y(SPO));
\$__ABC9_LUT6 dpo (.A(\$DPO ), .S({DPRA5, DPRA4, DPRA3, DPRA2, DPRA1, DPRA0}), .Y(DPO));
$__ABC9_LUT6 spo (.A($SPO), .S({A5, A4, A3, A2, A1, A0}), .Y(SPO));
$__ABC9_LUT6 dpo (.A($DPO), .S({DPRA5, DPRA4, DPRA3, DPRA2, DPRA1, DPRA0}), .Y(DPO));
endmodule
module RAM128X1D (
@ -75,17 +433,95 @@ module RAM128X1D (
);
parameter INIT = 128'h0;
parameter IS_WCLK_INVERTED = 1'b0;
wire \$DPO , \$SPO ;
wire $DPO, $SPO;
RAM128X1D #(
.INIT(INIT), .IS_WCLK_INVERTED(IS_WCLK_INVERTED)
) _TECHMAP_REPLACE_ (
.DPO(\$DPO ), .SPO(\$SPO ),
.DPO($DPO), .SPO($SPO),
.D(D), .WCLK(WCLK), .WE(WE),
.A(A),
.DPRA(DPRA)
);
\$__ABC9_LUT7 spo (.A(\$SPO ), .S(A), .Y(SPO));
\$__ABC9_LUT7 dpo (.A(\$DPO ), .S(DPRA), .Y(DPO));
$__ABC9_LUT7 spo (.A($SPO), .S(A), .Y(SPO));
$__ABC9_LUT7 dpo (.A($DPO), .S(DPRA), .Y(DPO));
endmodule
module RAM32M (
output [1:0] DOA,
output [1:0] DOB,
output [1:0] DOC,
output [1:0] DOD,
(* techmap_autopurge *) input [4:0] ADDRA,
(* techmap_autopurge *) input [4:0] ADDRB,
(* techmap_autopurge *) input [4:0] ADDRC,
(* techmap_autopurge *) input [4:0] ADDRD,
(* techmap_autopurge *) input [1:0] DIA,
(* techmap_autopurge *) input [1:0] DIB,
(* techmap_autopurge *) input [1:0] DIC,
(* techmap_autopurge *) input [1:0] DID,
(* techmap_autopurge *) input WCLK,
(* techmap_autopurge *) input WE
);
parameter [63:0] INIT_A = 64'h0000000000000000;
parameter [63:0] INIT_B = 64'h0000000000000000;
parameter [63:0] INIT_C = 64'h0000000000000000;
parameter [63:0] INIT_D = 64'h0000000000000000;
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
wire [1:0] $DOA, $DOB, $DOC, $DOD;
RAM32M #(
.INIT_A(INIT_A), .INIT_B(INIT_B), .INIT_C(INIT_C), .INIT_D(INIT_D),
.IS_WCLK_INVERTED(IS_WCLK_INVERTED)
) _TECHMAP_REPLACE_ (
.DOA($DOA), .DOB($DOB), .DOC($DOC), .DOD($DOD),
.WCLK(WCLK), .WE(WE),
.ADDRA(ADDRA), .ADDRB(ADDRB), .ADDRC(ADDRC), .ADDRD(ADDRD),
.DIA(DIA), .DIB(DIB), .DIC(DIC), .DID(DID)
);
$__ABC9_LUT6 doa0 (.A($DOA[0]), .S({1'b1, ADDRA}), .Y(DOA[0]));
$__ABC9_LUT6 doa1 (.A($DOA[1]), .S({1'b1, ADDRA}), .Y(DOA[1]));
$__ABC9_LUT6 dob0 (.A($DOB[0]), .S({1'b1, ADDRB}), .Y(DOB[0]));
$__ABC9_LUT6 dob1 (.A($DOB[1]), .S({1'b1, ADDRB}), .Y(DOB[1]));
$__ABC9_LUT6 doc0 (.A($DOC[0]), .S({1'b1, ADDRC}), .Y(DOC[0]));
$__ABC9_LUT6 doc1 (.A($DOC[1]), .S({1'b1, ADDRC}), .Y(DOC[1]));
$__ABC9_LUT6 dod0 (.A($DOD[0]), .S({1'b1, ADDRD}), .Y(DOD[0]));
$__ABC9_LUT6 dod1 (.A($DOD[1]), .S({1'b1, ADDRD}), .Y(DOD[1]));
endmodule
module RAM64M (
output DOA,
output DOB,
output DOC,
output DOD,
(* techmap_autopurge *) input [5:0] ADDRA,
(* techmap_autopurge *) input [5:0] ADDRB,
(* techmap_autopurge *) input [5:0] ADDRC,
(* techmap_autopurge *) input [5:0] ADDRD,
(* techmap_autopurge *) input DIA,
(* techmap_autopurge *) input DIB,
(* techmap_autopurge *) input DIC,
(* techmap_autopurge *) input DID,
(* techmap_autopurge *) input WCLK,
(* techmap_autopurge *) input WE
);
parameter [63:0] INIT_A = 64'h0000000000000000;
parameter [63:0] INIT_B = 64'h0000000000000000;
parameter [63:0] INIT_C = 64'h0000000000000000;
parameter [63:0] INIT_D = 64'h0000000000000000;
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
wire $DOA, $DOB, $DOC, $DOD;
RAM64M #(
.INIT_A(INIT_A), .INIT_B(INIT_B), .INIT_C(INIT_C), .INIT_D(INIT_D),
.IS_WCLK_INVERTED(IS_WCLK_INVERTED)
) _TECHMAP_REPLACE_ (
.DOA($DOA), .DOB($DOB), .DOC($DOC), .DOD($DOD),
.WCLK(WCLK), .WE(WE),
.ADDRA(ADDRA), .ADDRB(ADDRB), .ADDRC(ADDRC), .ADDRD(ADDRD),
.DIA(DIA), .DIB(DIB), .DIC(DIC), .DID(DID)
);
$__ABC9_LUT6 doa (.A($DOA), .S(ADDRA), .Y(DOA));
$__ABC9_LUT6 dob (.A($DOB), .S(ADDRB), .Y(DOB));
$__ABC9_LUT6 doc (.A($DOC), .S(ADDRC), .Y(DOC));
$__ABC9_LUT6 dod (.A($DOD), .S(ADDRD), .Y(DOD));
endmodule
module SRL16E (
@ -94,14 +530,14 @@ module SRL16E (
);
parameter [15:0] INIT = 16'h0000;
parameter [0:0] IS_CLK_INVERTED = 1'b0;
wire \$Q ;
wire $Q;
SRL16E #(
.INIT(INIT), .IS_CLK_INVERTED(IS_CLK_INVERTED)
) _TECHMAP_REPLACE_ (
.Q(\$Q ),
.Q($Q),
.A0(A0), .A1(A1), .A2(A2), .A3(A3), .CE(CE), .CLK(CLK), .D(D)
);
\$__ABC9_LUT6 q (.A(\$Q ), .S({1'b1, A3, A2, A1, A0, 1'b1}), .Y(Q));
$__ABC9_LUT6 q (.A($Q), .S({1'b1, A3, A2, A1, A0, 1'b1}), .Y(Q));
endmodule
module SRLC32E (
@ -112,14 +548,14 @@ module SRLC32E (
);
parameter [31:0] INIT = 32'h00000000;
parameter [0:0] IS_CLK_INVERTED = 1'b0;
wire \$Q ;
wire $Q;
SRLC32E #(
.INIT(INIT), .IS_CLK_INVERTED(IS_CLK_INVERTED)
) _TECHMAP_REPLACE_ (
.Q(\$Q ), .Q31(Q31),
.Q($Q), .Q31(Q31),
.A(A), .CE(CE), .CLK(CLK), .D(D)
);
\$__ABC9_LUT6 q (.A(\$Q ), .S({1'b1, A}), .Y(Q));
$__ABC9_LUT6 q (.A($Q), .S({1'b1, A}), .Y(Q));
endmodule
module DSP48E1 (
@ -204,244 +640,119 @@ module DSP48E1 (
parameter [4:0] IS_INMODE_INVERTED = 5'b0;
parameter [6:0] IS_OPMODE_INVERTED = 7'b0;
parameter _TECHMAP_CELLTYPE_ = "";
localparam techmap_guard = (_TECHMAP_CELLTYPE_ != "");
wire [47:0] $P, $PCOUT;
`define DSP48E1_INST(__CELL__) """
__CELL__ #(
.ACASCREG(ACASCREG),
.ADREG(ADREG),
.ALUMODEREG(ALUMODEREG),
.AREG(AREG),
.AUTORESET_PATDET(AUTORESET_PATDET),
.A_INPUT(A_INPUT),
.BCASCREG(BCASCREG),
.BREG(BREG),
.B_INPUT(B_INPUT),
.CARRYINREG(CARRYINREG),
.CARRYINSELREG(CARRYINSELREG),
.CREG(CREG),
.DREG(DREG),
.INMODEREG(INMODEREG),
.MREG(MREG),
.OPMODEREG(OPMODEREG),
.PREG(PREG),
.SEL_MASK(SEL_MASK),
.SEL_PATTERN(SEL_PATTERN),
.USE_DPORT(USE_DPORT),
.USE_MULT(USE_MULT),
.USE_PATTERN_DETECT(USE_PATTERN_DETECT),
.USE_SIMD(USE_SIMD),
.MASK(MASK),
.PATTERN(PATTERN),
.IS_ALUMODE_INVERTED(IS_ALUMODE_INVERTED),
.IS_CARRYIN_INVERTED(IS_CARRYIN_INVERTED),
.IS_CLK_INVERTED(IS_CLK_INVERTED),
.IS_INMODE_INVERTED(IS_INMODE_INVERTED),
.IS_OPMODE_INVERTED(IS_OPMODE_INVERTED)
) _TECHMAP_REPLACE_ (
.ACOUT(ACOUT),
.BCOUT(BCOUT),
.CARRYCASCOUT(CARRYCASCOUT),
.CARRYOUT(CARRYOUT),
.MULTSIGNOUT(MULTSIGNOUT),
.OVERFLOW(OVERFLOW),
.P(oP),
.PATTERNBDETECT(PATTERNBDETECT),
.PATTERNDETECT(PATTERNDETECT),
.PCOUT(oPCOUT),
.UNDERFLOW(UNDERFLOW),
.A(iA),
.ACIN(ACIN),
.ALUMODE(ALUMODE),
.B(iB),
.BCIN(BCIN),
.C(iC),
.CARRYCASCIN(CARRYCASCIN),
.CARRYIN(CARRYIN),
.CARRYINSEL(CARRYINSEL),
.CEA1(CEA1),
.CEA2(CEA2),
.CEAD(CEAD),
.CEALUMODE(CEALUMODE),
.CEB1(CEB1),
.CEB2(CEB2),
.CEC(CEC),
.CECARRYIN(CECARRYIN),
.CECTRL(CECTRL),
.CED(CED),
.CEINMODE(CEINMODE),
.CEM(CEM),
.CEP(CEP),
.CLK(CLK),
.D(iD),
.INMODE(INMODE),
.MULTSIGNIN(MULTSIGNIN),
.OPMODE(OPMODE),
.PCIN(PCIN),
.RSTA(RSTA),
.RSTALLCARRYIN(RSTALLCARRYIN),
.RSTALUMODE(RSTALUMODE),
.RSTB(RSTB),
.RSTC(RSTC),
.RSTCTRL(RSTCTRL),
.RSTD(RSTD),
.RSTINMODE(RSTINMODE),
.RSTM(RSTM),
.RSTP(RSTP)
);
"""
wire [29:0] iA;
wire [17:0] iB;
wire [47:0] iC;
wire [24:0] iD;
wire pA, pB, pC, pD, pAD, pM, pP;
wire [47:0] oP, mP;
wire [47:0] oPCOUT, mPCOUT;
DSP48E1 #(
.ACASCREG(ACASCREG),
.ADREG(ADREG),
.ALUMODEREG(ALUMODEREG),
.AREG(AREG),
.AUTORESET_PATDET(AUTORESET_PATDET),
.A_INPUT(A_INPUT),
.BCASCREG(BCASCREG),
.BREG(BREG),
.B_INPUT(B_INPUT),
.CARRYINREG(CARRYINREG),
.CARRYINSELREG(CARRYINSELREG),
.CREG(CREG),
.DREG(DREG),
.INMODEREG(INMODEREG),
.MREG(MREG),
.OPMODEREG(OPMODEREG),
.PREG(PREG),
.SEL_MASK(SEL_MASK),
.SEL_PATTERN(SEL_PATTERN),
.USE_DPORT(USE_DPORT),
.USE_MULT(USE_MULT),
.USE_PATTERN_DETECT(USE_PATTERN_DETECT),
.USE_SIMD(USE_SIMD),
.MASK(MASK),
.PATTERN(PATTERN),
.IS_ALUMODE_INVERTED(IS_ALUMODE_INVERTED),
.IS_CARRYIN_INVERTED(IS_CARRYIN_INVERTED),
.IS_CLK_INVERTED(IS_CLK_INVERTED),
.IS_INMODE_INVERTED(IS_INMODE_INVERTED),
.IS_OPMODE_INVERTED(IS_OPMODE_INVERTED)
) _TECHMAP_REPLACE_ (
.ACOUT(ACOUT),
.BCOUT(BCOUT),
.CARRYCASCOUT(CARRYCASCOUT),
.CARRYOUT(CARRYOUT),
.MULTSIGNOUT(MULTSIGNOUT),
.OVERFLOW(OVERFLOW),
.P($P),
.PATTERNBDETECT(PATTERNBDETECT),
.PATTERNDETECT(PATTERNDETECT),
.PCOUT($PCOUT),
.UNDERFLOW(UNDERFLOW),
.A(A),
.ACIN(ACIN),
.ALUMODE(ALUMODE),
.B(B),
.BCIN(BCIN),
.C(C),
.CARRYCASCIN(CARRYCASCIN),
.CARRYIN(CARRYIN),
.CARRYINSEL(CARRYINSEL),
.CEA1(CEA1),
.CEA2(CEA2),
.CEAD(CEAD),
.CEALUMODE(CEALUMODE),
.CEB1(CEB1),
.CEB2(CEB2),
.CEC(CEC),
.CECARRYIN(CECARRYIN),
.CECTRL(CECTRL),
.CED(CED),
.CEINMODE(CEINMODE),
.CEM(CEM),
.CEP(CEP),
.CLK(CLK),
.D(D),
.INMODE(INMODE),
.MULTSIGNIN(MULTSIGNIN),
.OPMODE(OPMODE),
.PCIN(PCIN),
.RSTA(RSTA),
.RSTALLCARRYIN(RSTALLCARRYIN),
.RSTALUMODE(RSTALUMODE),
.RSTB(RSTB),
.RSTC(RSTC),
.RSTCTRL(RSTCTRL),
.RSTD(RSTD),
.RSTINMODE(RSTINMODE),
.RSTM(RSTM),
.RSTP(RSTP)
);
generate
if (USE_MULT == "MULTIPLY" && USE_DPORT == "FALSE") begin
// Disconnect the A-input if MREG is enabled, since
// combinatorial path is broken
if (AREG == 0 && MREG == 0 && PREG == 0)
assign iA = A, pA = 1'bx;
else
\$__ABC9_REG #(.WIDTH(30)) rA (.I(A), .O(iA), .Q(pA));
if (BREG == 0 && MREG == 0 && PREG == 0)
assign iB = B, pB = 1'bx;
else
\$__ABC9_REG #(.WIDTH(18)) rB (.I(B), .O(iB), .Q(pB));
if (CREG == 0 && PREG == 0)
assign iC = C, pC = 1'bx;
else
\$__ABC9_REG #(.WIDTH(48)) rC (.I(C), .O(iC), .Q(pC));
if (DREG == 0)
assign iD = D;
else if (techmap_guard)
$error("Invalid DSP48E1 configuration: DREG enabled but USE_DPORT == \"FALSE\"");
assign pD = 1'bx;
if (ADREG == 1 && techmap_guard)
$error("Invalid DSP48E1 configuration: ADREG enabled but USE_DPORT == \"FALSE\"");
assign pAD = 1'bx;
if (PREG == 0) begin
if (MREG == 1)
\$__ABC9_REG rM (.Q(pM));
else
assign pM = 1'bx;
assign pP = 1'bx;
end else begin
assign pM = 1'bx;
\$__ABC9_REG rP (.Q(pP));
end
wire [29:0] $A;
wire [17:0] $B;
wire [47:0] $C;
wire [24:0] $D;
if (MREG == 0 && PREG == 0)
assign mP = oP, mPCOUT = oPCOUT;
else
assign mP = 1'bx, mPCOUT = 1'bx;
\$__ABC9_DSP48E1_MULT_P_MUX muxP (
.Aq(pA), .Bq(pB), .Cq(pC), .Dq(pD), .ADq(pAD), .I(oP), .Mq(pM), .P(mP), .Pq(pP), .O(P)
);
\$__ABC9_DSP48E1_MULT_PCOUT_MUX muxPCOUT (
.Aq(pA), .Bq(pB), .Cq(pC), .Dq(pD), .ADq(pAD), .I(oPCOUT), .Mq(pM), .P(mPCOUT), .Pq(pP), .O(PCOUT)
);
`DSP48E1_INST(\$__ABC9_DSP48E1_MULT )
end
else if (USE_MULT == "MULTIPLY" && USE_DPORT == "TRUE") begin
// Disconnect the A-input if MREG is enabled, since
// combinatorial path is broken
if (AREG == 0 && ADREG == 0 && MREG == 0 && PREG == 0)
assign iA = A, pA = 1'bx;
else
\$__ABC9_REG #(.WIDTH(30)) rA (.I(A), .O(iA), .Q(pA));
if (BREG == 0 && MREG == 0 && PREG == 0)
assign iB = B, pB = 1'bx;
else
\$__ABC9_REG #(.WIDTH(18)) rB (.I(B), .O(iB), .Q(pB));
if (CREG == 0 && PREG == 0)
assign iC = C, pC = 1'bx;
else
\$__ABC9_REG #(.WIDTH(48)) rC (.I(C), .O(iC), .Q(pC));
if (DREG == 0 && ADREG == 0)
assign iD = D, pD = 1'bx;
else
\$__ABC9_REG #(.WIDTH(25)) rD (.I(D), .O(iD), .Q(pD));
if (PREG == 0) begin
if (MREG == 1) begin
assign pAD = 1'bx;
\$__ABC9_REG rM (.Q(pM));
end else begin
if (ADREG == 1)
\$__ABC9_REG rAD (.Q(pAD));
else
assign pAD = 1'bx;
assign pM = 1'bx;
if (MREG == 0 && AREG == 0) assign $A = A;
else assign $A = 30'bx;
if (MREG == 0 && BREG == 0) assign $B = B;
else assign $B = 18'bx;
if (MREG == 0 && DREG == 0) assign $D = D;
else assign $D = 25'bx;
if (CREG == 0) assign $C = C;
else assign $C = 48'bx;
end
assign pP = 1'bx;
end else begin
assign pAD = 1'bx, pM = 1'bx;
\$__ABC9_REG rP (.Q(pP));
else begin
assign $A = 30'bx, $B = 18'bx, $C = 48'bx, $D = 25'bx;
end
if (MREG == 0 && PREG == 0)
assign mP = oP, mPCOUT = oPCOUT;
if (USE_MULT == "MULTIPLY" && USE_DPORT == "FALSE")
$__ABC9_DSP48E1_MULT dsp_comb(.$A($A), .$B($B), .$C($C), .$D($D), .$P($P), .$PCIN(PCIN), .$PCOUT($PCOUT), .P(P), .PCOUT(PCOUT));
else if (USE_MULT == "MULTIPLY" && USE_DPORT == "TRUE")
$__ABC9_DSP48E1_MULT_DPORT dsp_comb(.$A($A), .$B($B), .$C($C), .$D($D), .$P($P), .$PCIN(PCIN), .$PCOUT($PCOUT), .P(P), .PCOUT(PCOUT));
else if (USE_MULT == "NONE" && USE_DPORT == "FALSE")
$__ABC9_DSP48E1 dsp_comb(.$A($A), .$B($B), .$C($C), .$D($D), .$P($P), .$PCIN(PCIN), .$PCOUT($PCOUT), .P(P), .PCOUT(PCOUT));
else
assign mP = 1'bx, mPCOUT = 1'bx;
\$__ABC9_DSP48E1_MULT_DPORT_P_MUX muxP (
.Aq(pA), .Bq(pB), .Cq(pC), .Dq(pD), .ADq(pAD), .I(oP), .Mq(pM), .P(mP), .Pq(pP), .O(P)
);
\$__ABC9_DSP48E1_MULT_DPORT_PCOUT_MUX muxPCOUT (
.Aq(pA), .Bq(pB), .Cq(pC), .Dq(pD), .ADq(pAD), .I(oPCOUT), .Mq(pM), .P(mPCOUT), .Pq(pP), .O(PCOUT)
);
`DSP48E1_INST(\$__ABC9_DSP48E1_MULT_DPORT )
end
else if (USE_MULT == "NONE" && USE_DPORT == "FALSE") begin
// Disconnect the A-input if MREG is enabled, since
// combinatorial path is broken
if (AREG == 0 && PREG == 0)
assign iA = A, pA = 1'bx;
else
\$__ABC9_REG #(.WIDTH(30)) rA (.I(A), .O(iA), .Q(pA));
if (BREG == 0 && PREG == 0)
assign iB = B, pB = 1'bx;
else
\$__ABC9_REG #(.WIDTH(18)) rB (.I(B), .O(iB), .Q(pB));
if (CREG == 0 && PREG == 0)
assign iC = C, pC = 1'bx;
else
\$__ABC9_REG #(.WIDTH(48)) rC (.I(C), .O(iC), .Q(pC));
if (DREG == 1 && techmap_guard)
$error("Invalid DSP48E1 configuration: DREG enabled but USE_DPORT == \"FALSE\"");
assign pD = 1'bx;
if (ADREG == 1 && techmap_guard)
$error("Invalid DSP48E1 configuration: ADREG enabled but USE_DPORT == \"FALSE\"");
assign pAD = 1'bx;
if (MREG == 1 && techmap_guard)
$error("Invalid DSP48E1 configuration: MREG enabled but USE_MULT == \"NONE\"");
assign pM = 1'bx;
if (PREG == 1)
\$__ABC9_REG rP (.Q(pP));
else
assign pP = 1'bx;
if (MREG == 0 && PREG == 0)
assign mP = oP, mPCOUT = oPCOUT;
else
assign mP = 1'bx, mPCOUT = 1'bx;
\$__ABC9_DSP48E1_P_MUX muxP (
.Aq(pA), .Bq(pB), .Cq(pC), .Dq(pD), .ADq(pAD), .I(oP), .Mq(pM), .P(mP), .Pq(pP), .O(P)
);
\$__ABC9_DSP48E1_PCOUT_MUX muxPCOUT (
.Aq(pA), .Bq(pB), .Cq(pC), .Dq(pD), .ADq(pAD), .I(oPCOUT), .Mq(pM), .P(mPCOUT), .Pq(pP), .O(PCOUT)
);
`DSP48E1_INST(\$__ABC9_DSP48E1 )
end
else
$error("Invalid DSP48E1 configuration");
$error("Invalid DSP48E1 configuration");
endgenerate
`undef DSP48E1_INST
endmodule

View File

@ -30,7 +30,22 @@ module \$__XILINX_MUXF78 (output O, input I0, I1, I2, I3, S0, S1);
: (S0 ? I1 : I0);
endmodule
// Box to emulate comb/seq behaviour of RAMD{32,64} and SRL{16,32}
module \$__ABC9_FF_ (input D, output Q);
endmodule
// Box to emulate async behaviour of FDC*
(* abc9_box_id = 1000, lib_whitebox *)
module \$__ABC9_ASYNC0 (input A, S, output Y);
assign Y = S ? 1'b0 : A;
endmodule
// Box to emulate async behaviour of FDP*
(* abc9_box_id = 1001, lib_whitebox *)
module \$__ABC9_ASYNC1 (input A, S, output Y);
assign Y = S ? 1'b1 : A;
endmodule
// Box to emulate comb/seq behaviour of RAM{32,64} and SRL{16,32}
// Necessary since RAMD* and SRL* have both combinatorial (i.e.
// same-cycle read operation) and sequential (write operation
// is only committed on the next clock edge).
@ -39,152 +54,27 @@ endmodule
(* abc9_box_id=2000 *)
module \$__ABC9_LUT6 (input A, input [5:0] S, output Y);
endmodule
// Box to emulate comb/seq behaviour of RAMD128
// Box to emulate comb/seq behaviour of RAM128
(* abc9_box_id=2001 *)
module \$__ABC9_LUT7 (input A, input [6:0] S, output Y);
endmodule
// Modules used to model the comb/seq behaviour of DSP48E1
// With abc9_map.v responsible for splicing the below modules
// between the combinatorial DSP48E1 box (e.g. disconnecting
// A when AREG, MREG or PREG is enabled and splicing in the
// "$__ABC9_DSP48E1_REG" blackbox as "REG" in the diagram below)
// this acts to first disables the combinatorial path (as there
// is no connectivity through REG), and secondly, since this is
// blackbox a new PI will be introduced with an arrival time of
// zero.
// Note: Since these "$__ABC9_DSP48E1_REG" modules are of a
// sequential nature, they are not passed as a box to ABC and
// (desirably) represented as PO/PIs.
//
// At the DSP output, we place a blackbox mux ("M" in the diagram
// below) to capture the fact that the critical-path could come
// from any one of its inputs.
// In contrast to "REG", the "$__ABC9_DSP48E1_*_MUX" modules are
// combinatorial blackboxes that do get passed to ABC.
// The propagation delay through this box (specified in the box
// file) captures the arrival time of the register (i.e.
// propagation from AREG to P after clock edge), or zero delay
// for the combinatorial path from the DSP.
//
// Doing so should means that ABC is able to analyse the
// worst-case delay through to P, regardless of if it was
// through any combinatorial paths (e.g. B, below) or an
// internal register (A2REG).
// However, the true value of being as complete as this is
// questionable since if AREG=1 and BREG=0 (as below)
// then the worse-case path would very likely be through B
// and very unlikely to be through AREG.Q...?
//
// In graphical form:
//
// +-----+
// +------>> REG >>----+
// | +-----+ |
// | |
// | +---------+ | __
// A >>-+X X-| | +--| \
// | DSP48E1 |P | M |--->> P
// | AREG=1 |-------|__/
// B >>------| |
// +---------+
//
`define ABC9_DSP48E1_MUX(__NAME__) """
module __NAME__ (input Aq, ADq, Bq, Cq, Dq, input [47:0] I, input Mq, input [47:0] P, input Pq, output [47:0] O);
endmodule
"""
(* abc9_box_id=2100 *) `ABC9_DSP48E1_MUX(\$__ABC9_DSP48E1_MULT_P_MUX )
(* abc9_box_id=2101 *) `ABC9_DSP48E1_MUX(\$__ABC9_DSP48E1_MULT_PCOUT_MUX )
(* abc9_box_id=2102 *) `ABC9_DSP48E1_MUX(\$__ABC9_DSP48E1_MULT_DPORT_P_MUX )
(* abc9_box_id=2103 *) `ABC9_DSP48E1_MUX(\$__ABC9_DSP48E1_MULT_DPORT_PCOUT_MUX )
(* abc9_box_id=2104 *) `ABC9_DSP48E1_MUX(\$__ABC9_DSP48E1_P_MUX )
(* abc9_box_id=2105 *) `ABC9_DSP48E1_MUX(\$__ABC9_DSP48E1_PCOUT_MUX )
// Boxes used to represent the comb behaviour of various modes
// of DSP48E1
`define ABC9_DSP48E1(__NAME__) """
module __NAME__ (
output [29:0] ACOUT,
output [17:0] BCOUT,
output reg CARRYCASCOUT,
output reg [3:0] CARRYOUT,
output reg MULTSIGNOUT,
output OVERFLOW,
output reg signed [47:0] P,
output PATTERNBDETECT,
output PATTERNDETECT,
output [47:0] PCOUT,
output UNDERFLOW,
input signed [29:0] A,
input [29:0] ACIN,
input [3:0] ALUMODE,
input signed [17:0] B,
input [17:0] BCIN,
input [47:0] C,
input CARRYCASCIN,
input CARRYIN,
input [2:0] CARRYINSEL,
input CEA1,
input CEA2,
input CEAD,
input CEALUMODE,
input CEB1,
input CEB2,
input CEC,
input CECARRYIN,
input CECTRL,
input CED,
input CEINMODE,
input CEM,
input CEP,
input CLK,
input [24:0] D,
input [4:0] INMODE,
input MULTSIGNIN,
input [6:0] OPMODE,
input [47:0] PCIN,
input RSTA,
input RSTALLCARRYIN,
input RSTALUMODE,
input RSTB,
input RSTC,
input RSTCTRL,
input RSTD,
input RSTINMODE,
input RSTM,
input RSTP
);
parameter integer ACASCREG = 1;
parameter integer ADREG = 1;
parameter integer ALUMODEREG = 1;
parameter integer AREG = 1;
parameter AUTORESET_PATDET = "NO_RESET";
parameter A_INPUT = "DIRECT";
parameter integer BCASCREG = 1;
parameter integer BREG = 1;
parameter B_INPUT = "DIRECT";
parameter integer CARRYINREG = 1;
parameter integer CARRYINSELREG = 1;
parameter integer CREG = 1;
parameter integer DREG = 1;
parameter integer INMODEREG = 1;
parameter integer MREG = 1;
parameter integer OPMODEREG = 1;
parameter integer PREG = 1;
parameter SEL_MASK = "MASK";
parameter SEL_PATTERN = "PATTERN";
parameter USE_DPORT = "FALSE";
parameter USE_MULT = "MULTIPLY";
parameter USE_PATTERN_DETECT = "NO_PATDET";
parameter USE_SIMD = "ONE48";
parameter [47:0] MASK = 48'h3FFFFFFFFFFF;
parameter [47:0] PATTERN = 48'h000000000000;
parameter [3:0] IS_ALUMODE_INVERTED = 4'b0;
parameter [0:0] IS_CARRYIN_INVERTED = 1'b0;
parameter [0:0] IS_CLK_INVERTED = 1'b0;
parameter [4:0] IS_INMODE_INVERTED = 5'b0;
parameter [6:0] IS_OPMODE_INVERTED = 7'b0;
input [29:0] $A,
input [17:0] $B,
input [47:0] $C,
input [24:0] $D,
input [47:0] $P,
input [47:0] $PCIN,
input [47:0] $PCOUT,
output [47:0] P,
output [47:0] PCOUT);
endmodule
"""
(* abc9_box_id=3000 *) `ABC9_DSP48E1(\$__ABC9_DSP48E1_MULT )
(* abc9_box_id=3001 *) `ABC9_DSP48E1(\$__ABC9_DSP48E1_MULT_DPORT )
(* abc9_box_id=3002 *) `ABC9_DSP48E1(\$__ABC9_DSP48E1 )
(* abc9_box_id=3000 *) `ABC9_DSP48E1($__ABC9_DSP48E1_MULT)
(* abc9_box_id=3001 *) `ABC9_DSP48E1($__ABC9_DSP48E1_MULT_DPORT)
(* abc9_box_id=3002 *) `ABC9_DSP48E1($__ABC9_DSP48E1)
`undef ABC9_DSP48E1

View File

@ -20,192 +20,33 @@
// ============================================================================
module \$__ABC9_LUT6 (input A, input [5:0] S, output Y);
assign Y = A;
endmodule
module \$__ABC9_LUT7 (input A, input [6:0] S, output Y);
(* techmap_celltype = "$__ABC9_ASYNC0 $__ABC9_ASYNC1" *)
module $__ABC9_ASYNC01(input A, S, output Y);
assign Y = A;
endmodule
module \$__ABC9_REG (input [WIDTH-1:0] I, output [WIDTH-1:0] O, output Q);
parameter WIDTH = 1;
assign O = I;
module $__ABC9_FF_(input D, output Q);
assign Q = D;
endmodule
(* techmap_celltype = "$__ABC9_DSP48E1_MULT_P_MUX $__ABC9_DSP48E1_MULT_PCOUT_MUX $__ABC9_DSP48E1_MULT_DPORT_P_MUX $__ABC9_DSP48E1_MULT_DPORT_PCOUT_MUX $__ABC9_DSP48E1_P_MUX $__ABC9_DSP48E1_PCOUT_MUX" *)
module \$__ABC9_DSP48E1_MUX (
input Aq, Bq, Cq, Dq, ADq,
input [47:0] I,
input Mq,
input [47:0] P,
input Pq,
output [47:0] O
);
assign O = I;
module $__ABC9_LUT6(input A, input [5:0] S, output Y);
assign Y = A;
endmodule
module $__ABC9_LUT7(input A, input [6:0] S, output Y);
assign Y = A;
endmodule
(* techmap_celltype = "$__ABC9_DSP48E1_MULT $__ABC9_DSP48E1_MULT_DPORT $__ABC9_DSP48E1" *)
module \$__ABC9_DSP48E1 (
(* techmap_autopurge *) output [29:0] ACOUT,
(* techmap_autopurge *) output [17:0] BCOUT,
(* techmap_autopurge *) output reg CARRYCASCOUT,
(* techmap_autopurge *) output reg [3:0] CARRYOUT,
(* techmap_autopurge *) output reg MULTSIGNOUT,
(* techmap_autopurge *) output OVERFLOW,
(* techmap_autopurge *) output reg signed [47:0] P,
(* techmap_autopurge *) output PATTERNBDETECT,
(* techmap_autopurge *) output PATTERNDETECT,
(* techmap_autopurge *) output [47:0] PCOUT,
(* techmap_autopurge *) output UNDERFLOW,
(* techmap_autopurge *) input signed [29:0] A,
(* techmap_autopurge *) input [29:0] ACIN,
(* techmap_autopurge *) input [3:0] ALUMODE,
(* techmap_autopurge *) input signed [17:0] B,
(* techmap_autopurge *) input [17:0] BCIN,
(* techmap_autopurge *) input [47:0] C,
(* techmap_autopurge *) input CARRYCASCIN,
(* techmap_autopurge *) input CARRYIN,
(* techmap_autopurge *) input [2:0] CARRYINSEL,
(* techmap_autopurge *) input CEA1,
(* techmap_autopurge *) input CEA2,
(* techmap_autopurge *) input CEAD,
(* techmap_autopurge *) input CEALUMODE,
(* techmap_autopurge *) input CEB1,
(* techmap_autopurge *) input CEB2,
(* techmap_autopurge *) input CEC,
(* techmap_autopurge *) input CECARRYIN,
(* techmap_autopurge *) input CECTRL,
(* techmap_autopurge *) input CED,
(* techmap_autopurge *) input CEINMODE,
(* techmap_autopurge *) input CEM,
(* techmap_autopurge *) input CEP,
(* techmap_autopurge *) input CLK,
(* techmap_autopurge *) input [24:0] D,
(* techmap_autopurge *) input [4:0] INMODE,
(* techmap_autopurge *) input MULTSIGNIN,
(* techmap_autopurge *) input [6:0] OPMODE,
(* techmap_autopurge *) input [47:0] PCIN,
(* techmap_autopurge *) input RSTA,
(* techmap_autopurge *) input RSTALLCARRYIN,
(* techmap_autopurge *) input RSTALUMODE,
(* techmap_autopurge *) input RSTB,
(* techmap_autopurge *) input RSTC,
(* techmap_autopurge *) input RSTCTRL,
(* techmap_autopurge *) input RSTD,
(* techmap_autopurge *) input RSTINMODE,
(* techmap_autopurge *) input RSTM,
(* techmap_autopurge *) input RSTP
module $ABC9_DSP48E1(
input [29:0] $A,
input [17:0] $B,
input [47:0] $C,
input [24:0] $D,
input [47:0] $P,
input [47:0] $PCIN,
input [47:0] $PCOUT,
output [47:0] P,
output [47:0] PCOUT
);
parameter integer ACASCREG = 1;
parameter integer ADREG = 1;
parameter integer ALUMODEREG = 1;
parameter integer AREG = 1;
parameter AUTORESET_PATDET = "NO_RESET";
parameter A_INPUT = "DIRECT";
parameter integer BCASCREG = 1;
parameter integer BREG = 1;
parameter B_INPUT = "DIRECT";
parameter integer CARRYINREG = 1;
parameter integer CARRYINSELREG = 1;
parameter integer CREG = 1;
parameter integer DREG = 1;
parameter integer INMODEREG = 1;
parameter integer MREG = 1;
parameter integer OPMODEREG = 1;
parameter integer PREG = 1;
parameter SEL_MASK = "MASK";
parameter SEL_PATTERN = "PATTERN";
parameter USE_DPORT = "FALSE";
parameter USE_MULT = "MULTIPLY";
parameter USE_PATTERN_DETECT = "NO_PATDET";
parameter USE_SIMD = "ONE48";
parameter [47:0] MASK = 48'h3FFFFFFFFFFF;
parameter [47:0] PATTERN = 48'h000000000000;
parameter [3:0] IS_ALUMODE_INVERTED = 4'b0;
parameter [0:0] IS_CARRYIN_INVERTED = 1'b0;
parameter [0:0] IS_CLK_INVERTED = 1'b0;
parameter [4:0] IS_INMODE_INVERTED = 5'b0;
parameter [6:0] IS_OPMODE_INVERTED = 7'b0;
DSP48E1 #(
.ACASCREG(ACASCREG),
.ADREG(ADREG),
.ALUMODEREG(ALUMODEREG),
.AREG(AREG),
.AUTORESET_PATDET(AUTORESET_PATDET),
.A_INPUT(A_INPUT),
.BCASCREG(BCASCREG),
.BREG(BREG),
.B_INPUT(B_INPUT),
.CARRYINREG(CARRYINREG),
.CARRYINSELREG(CARRYINSELREG),
.CREG(CREG),
.DREG(DREG),
.INMODEREG(INMODEREG),
.MREG(MREG),
.OPMODEREG(OPMODEREG),
.PREG(PREG),
.SEL_MASK(SEL_MASK),
.SEL_PATTERN(SEL_PATTERN),
.USE_DPORT(USE_DPORT),
.USE_MULT(USE_MULT),
.USE_PATTERN_DETECT(USE_PATTERN_DETECT),
.USE_SIMD(USE_SIMD),
.MASK(MASK),
.PATTERN(PATTERN),
.IS_ALUMODE_INVERTED(IS_ALUMODE_INVERTED),
.IS_CARRYIN_INVERTED(IS_CARRYIN_INVERTED),
.IS_CLK_INVERTED(IS_CLK_INVERTED),
.IS_INMODE_INVERTED(IS_INMODE_INVERTED),
.IS_OPMODE_INVERTED(IS_OPMODE_INVERTED)
) _TECHMAP_REPLACE_ (
.ACOUT(ACOUT),
.BCOUT(BCOUT),
.CARRYCASCOUT(CARRYCASCOUT),
.CARRYOUT(CARRYOUT),
.MULTSIGNOUT(MULTSIGNOUT),
.OVERFLOW(OVERFLOW),
.P(P),
.PATTERNBDETECT(PATTERNBDETECT),
.PATTERNDETECT(PATTERNDETECT),
.PCOUT(PCOUT),
.UNDERFLOW(UNDERFLOW),
.A(A),
.ACIN(ACIN),
.ALUMODE(ALUMODE),
.B(B),
.BCIN(BCIN),
.C(C),
.CARRYCASCIN(CARRYCASCIN),
.CARRYIN(CARRYIN),
.CARRYINSEL(CARRYINSEL),
.CEA1(CEA1),
.CEA2(CEA2),
.CEAD(CEAD),
.CEALUMODE(CEALUMODE),
.CEB1(CEB1),
.CEB2(CEB2),
.CEC(CEC),
.CECARRYIN(CECARRYIN),
.CECTRL(CECTRL),
.CED(CED),
.CEINMODE(CEINMODE),
.CEM(CEM),
.CEP(CEP),
.CLK(CLK),
.D(D),
.INMODE(INMODE),
.MULTSIGNIN(MULTSIGNIN),
.OPMODE(OPMODE),
.PCIN(PCIN),
.RSTA(RSTA),
.RSTALLCARRYIN(RSTALLCARRYIN),
.RSTALUMODE(RSTALUMODE),
.RSTB(RSTB),
.RSTC(RSTC),
.RSTCTRL(RSTCTRL),
.RSTD(RSTD),
.RSTINMODE(RSTINMODE),
.RSTM(RSTM),
.RSTP(RSTP)
);
assign P = $P, PCOUT = $PCOUT;
endmodule

File diff suppressed because it is too large Load Diff

View File

@ -33,7 +33,21 @@ module _80_xilinx_lcu (P, G, CI, CO);
genvar i;
`ifdef _CLB_CARRY
`ifdef _EXPLICIT_CARRY
wire [WIDTH-1:0] C = {CO, CI};
wire [WIDTH-1:0] S = P & ~G;
generate for (i = 0; i < WIDTH; i = i + 1) begin:slice
MUXCY muxcy (
.CI(C[i]),
.DI(G[i]),
.S(S[i]),
.O(CO[i])
);
end endgenerate
`else
localparam CARRY4_COUNT = (WIDTH + 3) / 4;
localparam MAX_WIDTH = CARRY4_COUNT * 4;
@ -53,9 +67,9 @@ module _80_xilinx_lcu (P, G, CI, CO);
(
.CYINIT(CI),
.CI (1'd0),
.DI (G [(Y_WIDTH - 1):i*4]),
.S (S [(Y_WIDTH - 1):i*4]),
.CO (CO[(Y_WIDTH - 1):i*4]),
.DI (G [(WIDTH - 1):i*4]),
.S (S [(WIDTH - 1):i*4]),
.CO (CO[(WIDTH - 1):i*4]),
);
// Another one
end else begin
@ -63,9 +77,9 @@ module _80_xilinx_lcu (P, G, CI, CO);
(
.CYINIT(1'd0),
.CI (C [i*4 - 1]),
.DI (G [(Y_WIDTH - 1):i*4]),
.S (S [(Y_WIDTH - 1):i*4]),
.CO (CO[(Y_WIDTH - 1):i*4]),
.DI (G [(WIDTH - 1):i*4]),
.S (S [(WIDTH - 1):i*4]),
.CO (CO[(WIDTH - 1):i*4]),
);
end
@ -97,34 +111,6 @@ module _80_xilinx_lcu (P, G, CI, CO);
end
end endgenerate
`elsif _EXPLICIT_CARRY
wire [WIDTH-1:0] C = {CO, CI};
wire [WIDTH-1:0] S = P & ~G;
generate for (i = 0; i < WIDTH; i = i + 1) begin:slice
MUXCY muxcy (
.CI(C[i]),
.DI(G[i]),
.S(S[i]),
.O(CO[i])
);
end endgenerate
`else
wire [WIDTH-1:0] C = {CO, CI};
wire [WIDTH-1:0] S = P & ~G;
generate for (i = 0; i < WIDTH; i = i + 1) begin:slice
MUXCY muxcy (
.CI(C[i]),
.DI(G[i]),
.S(S[i]),
.O(CO[i])
);
end endgenerate
`endif
endmodule
@ -161,79 +147,7 @@ module _80_xilinx_alu (A, B, CI, BI, X, Y, CO);
genvar i;
`ifdef _CLB_CARRY
localparam CARRY4_COUNT = (Y_WIDTH + 3) / 4;
localparam MAX_WIDTH = CARRY4_COUNT * 4;
localparam PAD_WIDTH = MAX_WIDTH - Y_WIDTH;
wire [MAX_WIDTH-1:0] S = {{PAD_WIDTH{1'b0}}, AA ^ BB};
wire [MAX_WIDTH-1:0] DI = {{PAD_WIDTH{1'b0}}, AA & BB};
wire [MAX_WIDTH-1:0] C = CO;
genvar i;
generate for (i = 0; i < CARRY4_COUNT; i = i + 1) begin:slice
// Partially occupied CARRY4
if ((i+1)*4 > Y_WIDTH) begin
// First one
if (i == 0) begin
CARRY4 carry4_1st_part
(
.CYINIT(CI),
.CI (1'd0),
.DI (DI[(Y_WIDTH - 1):i*4]),
.S (S [(Y_WIDTH - 1):i*4]),
.O (Y [(Y_WIDTH - 1):i*4]),
.CO (CO[(Y_WIDTH - 1):i*4])
);
// Another one
end else begin
CARRY4 carry4_part
(
.CYINIT(1'd0),
.CI (C [i*4 - 1]),
.DI (DI[(Y_WIDTH - 1):i*4]),
.S (S [(Y_WIDTH - 1):i*4]),
.O (Y [(Y_WIDTH - 1):i*4]),
.CO (CO[(Y_WIDTH - 1):i*4])
);
end
// Fully occupied CARRY4
end else begin
// First one
if (i == 0) begin
CARRY4 carry4_1st_full
(
.CYINIT(CI),
.CI (1'd0),
.DI (DI[((i+1)*4 - 1):i*4]),
.S (S [((i+1)*4 - 1):i*4]),
.O (Y [((i+1)*4 - 1):i*4]),
.CO (CO[((i+1)*4 - 1):i*4])
);
// Another one
end else begin
CARRY4 carry4_full
(
.CYINIT(1'd0),
.CI (C [i*4 - 1]),
.DI (DI[((i+1)*4 - 1):i*4]),
.S (S [((i+1)*4 - 1):i*4]),
.O (Y [((i+1)*4 - 1):i*4]),
.CO (CO[((i+1)*4 - 1):i*4])
);
end
end
end endgenerate
`elsif _EXPLICIT_CARRY
`ifdef _EXPLICIT_CARRY
wire [Y_WIDTH-1:0] S = AA ^ BB;
wire [Y_WIDTH-1:0] DI = AA & BB;
@ -333,23 +247,74 @@ module _80_xilinx_alu (A, B, CI, BI, X, Y, CO);
`else
wire [Y_WIDTH-1:0] S = AA ^ BB;
wire [Y_WIDTH-1:0] DI = AA & BB;
localparam CARRY4_COUNT = (Y_WIDTH + 3) / 4;
localparam MAX_WIDTH = CARRY4_COUNT * 4;
localparam PAD_WIDTH = MAX_WIDTH - Y_WIDTH;
wire [Y_WIDTH-1:0] C = {CO, CI};
wire [MAX_WIDTH-1:0] S = {{PAD_WIDTH{1'b0}}, AA ^ BB};
wire [MAX_WIDTH-1:0] DI = {{PAD_WIDTH{1'b0}}, AA & BB};
wire [MAX_WIDTH-1:0] C = CO;
genvar i;
generate for (i = 0; i < CARRY4_COUNT; i = i + 1) begin:slice
// Partially occupied CARRY4
if ((i+1)*4 > Y_WIDTH) begin
// First one
if (i == 0) begin
CARRY4 carry4_1st_part
(
.CYINIT(CI),
.CI (1'd0),
.DI (DI[(Y_WIDTH - 1):i*4]),
.S (S [(Y_WIDTH - 1):i*4]),
.O (Y [(Y_WIDTH - 1):i*4]),
.CO (CO[(Y_WIDTH - 1):i*4])
);
// Another one
end else begin
CARRY4 carry4_part
(
.CYINIT(1'd0),
.CI (C [i*4 - 1]),
.DI (DI[(Y_WIDTH - 1):i*4]),
.S (S [(Y_WIDTH - 1):i*4]),
.O (Y [(Y_WIDTH - 1):i*4]),
.CO (CO[(Y_WIDTH - 1):i*4])
);
end
// Fully occupied CARRY4
end else begin
// First one
if (i == 0) begin
CARRY4 carry4_1st_full
(
.CYINIT(CI),
.CI (1'd0),
.DI (DI[((i+1)*4 - 1):i*4]),
.S (S [((i+1)*4 - 1):i*4]),
.O (Y [((i+1)*4 - 1):i*4]),
.CO (CO[((i+1)*4 - 1):i*4])
);
// Another one
end else begin
CARRY4 carry4_full
(
.CYINIT(1'd0),
.CI (C [i*4 - 1]),
.DI (DI[((i+1)*4 - 1):i*4]),
.S (S [((i+1)*4 - 1):i*4]),
.O (Y [((i+1)*4 - 1):i*4]),
.CO (CO[((i+1)*4 - 1):i*4])
);
end
end
generate for (i = 0; i < Y_WIDTH; i = i + 1) begin:slice
MUXCY muxcy (
.CI(C[i]),
.DI(DI[i]),
.S(S[i]),
.O(CO[i])
);
XORCY xorcy (
.CI(C[i]),
.LI(S[i]),
.O(Y[i])
);
end endgenerate
`endif

View File

@ -28,6 +28,33 @@ module _90_dff_nn1_to_np1 (input D, C, R, output Q); \$_DFF_NP1_ _TECHMAP_REPL
(* techmap_celltype = "$_DFF_PN1_" *)
module _90_dff_pn1_to_pp1 (input D, C, R, output Q); \$_DFF_PP1_ _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R)); endmodule
(* techmap_celltype = "$__DFFE_NN0" *)
module _90_dffe_nn0_to_np0 (input D, C, R, E, output Q); \$__DFFE_NP0 _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R), .E(E)); endmodule
(* techmap_celltype = "$__DFFE_PN0" *)
module _90_dffe_pn0_to_pp0 (input D, C, R, E, output Q); \$__DFFE_PP0 _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R), .E(E)); endmodule
(* techmap_celltype = "$__DFFE_NN1" *)
module _90_dffe_nn1_to_np1 (input D, C, R, E, output Q); \$__DFFE_NP1 _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R), .E(E)); endmodule
(* techmap_celltype = "$__DFFE_PN1" *)
module _90_dffe_pn1_to_pp1 (input D, C, R, E, output Q); \$__DFFE_PP1 _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R), .E(E)); endmodule
(* techmap_celltype = "$__DFFS_NN0_" *)
module _90_dffs_nn0_to_np0 (input D, C, R, output Q); \$__DFFS_NP0_ _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R)); endmodule
(* techmap_celltype = "$__DFFS_PN0_" *)
module _90_dffs_pn0_to_pp0 (input D, C, R, output Q); \$__DFFS_PP0_ _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R)); endmodule
(* techmap_celltype = "$__DFFS_NN1_" *)
module _90_dffs_nn1_to_np1 (input D, C, R, output Q); \$__DFFS_NP1_ _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R)); endmodule
(* techmap_celltype = "$__DFFS_PN1_" *)
module _90_dffs_pn1_to_pp1 (input D, C, R, output Q); \$__DFFS_PP1_ _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R)); endmodule
(* techmap_celltype = "$__DFFSE_NN0" *)
module _90_dffse_nn0_to_np0 (input D, C, R, E, output Q); \$__DFFSE_NP0 _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R), .E(E)); endmodule
(* techmap_celltype = "$__DFFSE_PN0" *)
module _90_dffse_pn0_to_pp0 (input D, C, R, E, output Q); \$__DFFSE_PP0 _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R), .E(E)); endmodule
(* techmap_celltype = "$__DFFSE_NN1" *)
module _90_dffse_nn1_to_np1 (input D, C, R, E, output Q); \$__DFFSE_NP1 _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R), .E(E)); endmodule
(* techmap_celltype = "$__DFFSE_PN1" *)
module _90_dffse_pn1_to_pp1 (input D, C, R, E, output Q); \$__DFFSE_PP1 _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R), .E(E)); endmodule
module \$__SHREG_ (input C, input D, input E, output Q);
parameter DEPTH = 0;
parameter [DEPTH-1:0] INIT = 0;

View File

@ -227,6 +227,14 @@ module MUXCY(output O, input CI, DI, S);
assign O = S ? CI : DI;
endmodule
module MUXF5(output O, input I0, I1, S);
assign O = S ? I1 : I0;
endmodule
module MUXF6(output O, input I0, I1, S);
assign O = S ? I1 : I0;
endmodule
(* abc9_box_id = 1, lib_whitebox *)
module MUXF7(output O, input I0, I1, S);
assign O = S ? I1 : I0;
@ -237,6 +245,10 @@ module MUXF8(output O, input I0, I1, S);
assign O = S ? I1 : I0;
endmodule
module MUXF9(output O, input I0, I1, S);
assign O = S ? I1 : I0;
endmodule
module XORCY(output O, input CI, LI);
assign O = CI ^ LI;
endmodule
@ -258,6 +270,26 @@ module CARRY4(
assign CO[3] = S[3] ? CO[2] : DI[3];
endmodule
module CARRY8(
output [7:0] CO,
output [7:0] O,
input CI,
input CI_TOP,
input [7:0] DI, S
);
parameter CARRY_TYPE = "SINGLE_CY8";
wire CI4 = (CARRY_TYPE == "DUAL_CY4" ? CI_TOP : CO[3]);
assign O = S ^ {CO[6:4], CI4, CO[2:0], CI};
assign CO[0] = S[0] ? CI : DI[0];
assign CO[1] = S[1] ? CO[0] : DI[1];
assign CO[2] = S[2] ? CO[1] : DI[2];
assign CO[3] = S[3] ? CO[2] : DI[3];
assign CO[4] = S[4] ? CI4 : DI[4];
assign CO[5] = S[5] ? CO[4] : DI[5];
assign CO[6] = S[6] ? CO[5] : DI[6];
assign CO[7] = S[7] ? CO[6] : DI[7];
endmodule
`ifdef _EXPLICIT_CARRY
module CARRY0(output CO_CHAIN, CO_FABRIC, O, input CI, CI_INIT, DI, S);
@ -281,8 +313,19 @@ endmodule
`endif
module ORCY (output O, input CI, I);
assign O = CI | I;
endmodule
module MULT_AND (output LO, input I0, I1);
assign LO = I0 & I1;
endmodule
// Flip-flops and latches.
// Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLL_L.sdf#L238-L250
(* abc9_box_id=1100, lib_whitebox, abc9_flop *)
module FDRE (
(* abc9_arrival=303 *)
output reg Q,
@ -306,6 +349,20 @@ module FDRE (
endcase endgenerate
endmodule
(* abc9_box_id=1101, lib_whitebox, abc9_flop *)
module FDRE_1 (
(* abc9_arrival=303 *)
output reg Q,
(* clkbuf_sink *)
input C,
input CE, D, R
);
parameter [0:0] INIT = 1'b0;
initial Q <= INIT;
always @(negedge C) if (R) Q <= 1'b0; else if (CE) Q <= D;
endmodule
(* abc9_box_id=1102, lib_whitebox, abc9_flop *)
module FDSE (
(* abc9_arrival=303 *)
output reg Q,
@ -329,6 +386,55 @@ module FDSE (
endcase endgenerate
endmodule
(* abc9_box_id=1103, lib_whitebox, abc9_flop *)
module FDSE_1 (
(* abc9_arrival=303 *)
output reg Q,
(* clkbuf_sink *)
input C,
input CE, D, S
);
parameter [0:0] INIT = 1'b1;
initial Q <= INIT;
always @(negedge C) if (S) Q <= 1'b1; else if (CE) Q <= D;
endmodule
module FDRSE (
output reg Q,
(* clkbuf_sink *)
(* invertible_pin = "IS_C_INVERTED" *)
input C,
(* invertible_pin = "IS_CE_INVERTED" *)
input CE,
(* invertible_pin = "IS_D_INVERTED" *)
input D,
(* invertible_pin = "IS_R_INVERTED" *)
input R,
(* invertible_pin = "IS_S_INVERTED" *)
input S
);
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_CE_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_R_INVERTED = 1'b0;
parameter [0:0] IS_S_INVERTED = 1'b0;
initial Q <= INIT;
wire c = C ^ IS_C_INVERTED;
wire ce = CE ^ IS_CE_INVERTED;
wire d = D ^ IS_D_INVERTED;
wire r = R ^ IS_R_INVERTED;
wire s = S ^ IS_S_INVERTED;
always @(posedge c)
if (r)
Q <= 0;
else if (s)
Q <= 1;
else if (ce)
Q <= d;
endmodule
(* abc9_box_id=1104, lib_whitebox, abc9_flop *)
module FDCE (
(* abc9_arrival=303 *)
output reg Q,
@ -336,10 +442,10 @@ module FDCE (
(* invertible_pin = "IS_C_INVERTED" *)
input C,
input CE,
(* invertible_pin = "IS_D_INVERTED" *)
input D,
(* invertible_pin = "IS_CLR_INVERTED" *)
input CLR
input CLR,
(* invertible_pin = "IS_D_INVERTED" *)
input D
);
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
@ -354,6 +460,20 @@ module FDCE (
endcase endgenerate
endmodule
(* abc9_box_id=1105, lib_whitebox, abc9_flop *)
module FDCE_1 (
(* abc9_arrival=303 *)
output reg Q,
(* clkbuf_sink *)
input C,
input CE, D, CLR
);
parameter [0:0] INIT = 1'b0;
initial Q <= INIT;
always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else if (CE) Q <= D;
endmodule
(* abc9_box_id=1106, lib_whitebox, abc9_flop *)
module FDPE (
(* abc9_arrival=303 *)
output reg Q,
@ -379,42 +499,7 @@ module FDPE (
endcase endgenerate
endmodule
module FDRE_1 (
(* abc9_arrival=303 *)
output reg Q,
(* clkbuf_sink *)
input C,
input CE, D, R
);
parameter [0:0] INIT = 1'b0;
initial Q <= INIT;
always @(negedge C) if (R) Q <= 1'b0; else if(CE) Q <= D;
endmodule
module FDSE_1 (
(* abc9_arrival=303 *)
output reg Q,
(* clkbuf_sink *)
input C,
input CE, D, S
);
parameter [0:0] INIT = 1'b1;
initial Q <= INIT;
always @(negedge C) if (S) Q <= 1'b1; else if(CE) Q <= D;
endmodule
module FDCE_1 (
(* abc9_arrival=303 *)
output reg Q,
(* clkbuf_sink *)
input C,
input CE, D, CLR
);
parameter [0:0] INIT = 1'b0;
initial Q <= INIT;
always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else if (CE) Q <= D;
endmodule
(* abc9_box_id=1107, lib_whitebox, abc9_flop *)
module FDPE_1 (
(* abc9_arrival=303 *)
output reg Q,
@ -427,6 +512,51 @@ module FDPE_1 (
always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else if (CE) Q <= D;
endmodule
module FDCPE (
output wire Q,
(* clkbuf_sink *)
(* invertible_pin = "IS_C_INVERTED" *)
input C,
input CE,
(* invertible_pin = "IS_CLR_INVERTED" *)
input CLR,
input D,
(* invertible_pin = "IS_PRE_INVERTED" *)
input PRE
);
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_CLR_INVERTED = 1'b0;
parameter [0:0] IS_PRE_INVERTED = 1'b0;
wire c = C ^ IS_C_INVERTED;
wire clr = CLR ^ IS_CLR_INVERTED;
wire pre = PRE ^ IS_PRE_INVERTED;
// Hacky model to avoid simulation-synthesis mismatches.
reg qc, qp, qs;
initial qc = INIT;
initial qp = INIT;
initial qs = 0;
always @(posedge c, posedge clr) begin
if (clr)
qc <= 0;
else if (CE)
qc <= D;
end
always @(posedge c, posedge pre) begin
if (pre)
qp <= 1;
else if (CE)
qp <= D;
end
always @* begin
if (clr)
qs <= 0;
else if (pre)
qs <= 1;
end
assign Q = qs ? qp : qc;
endmodule
module LDCE (
output reg Q,
(* invertible_pin = "IS_CLR_INVERTED" *)
@ -445,8 +575,8 @@ module LDCE (
wire clr = CLR ^ IS_CLR_INVERTED;
wire g = G ^ IS_G_INVERTED;
always @*
if (clr) Q = 1'b0;
else if (GE && g) Q = D;
if (clr) Q <= 1'b0;
else if (GE && g) Q <= D;
endmodule
module LDPE (
@ -467,8 +597,59 @@ module LDPE (
wire g = G ^ IS_G_INVERTED;
wire pre = PRE ^ IS_PRE_INVERTED;
always @*
if (pre) Q = 1'b1;
else if (GE && g) Q = D;
if (pre) Q <= 1'b1;
else if (GE && g) Q <= D;
endmodule
module LDCPE (
output reg Q,
(* invertible_pin = "IS_CLR_INVERTED" *)
input CLR,
(* invertible_pin = "IS_D_INVERTED" *)
input D,
(* invertible_pin = "IS_G_INVERTED" *)
input G,
(* invertible_pin = "IS_GE_INVERTED" *)
input GE,
(* invertible_pin = "IS_PRE_INVERTED" *)
input PRE
);
parameter [0:0] INIT = 1'b1;
parameter [0:0] IS_CLR_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_G_INVERTED = 1'b0;
parameter [0:0] IS_GE_INVERTED = 1'b0;
parameter [0:0] IS_PRE_INVERTED = 1'b0;
initial Q = INIT;
wire d = D ^ IS_D_INVERTED;
wire g = G ^ IS_G_INVERTED;
wire ge = GE ^ IS_GE_INVERTED;
wire clr = CLR ^ IS_CLR_INVERTED;
wire pre = PRE ^ IS_PRE_INVERTED;
always @*
if (clr) Q <= 1'b0;
else if (pre) Q <= 1'b1;
else if (ge && g) Q <= d;
endmodule
module AND2B1L (
output O,
input DI,
(* invertible_pin = "IS_SRI_INVERTED" *)
input SRI
);
parameter [0:0] IS_SRI_INVERTED = 1'b0;
assign O = DI & ~(SRI ^ IS_SRI_INVERTED);
endmodule
module OR2L (
output O,
input DI,
(* invertible_pin = "IS_SRI_INVERTED" *)
input SRI
);
parameter [0:0] IS_SRI_INVERTED = 1'b0;
assign O = DI | (SRI ^ IS_SRI_INVERTED);
endmodule
// LUTRAM.
@ -939,8 +1120,8 @@ module RAM16X1D_1 (
endmodule
module RAM32X1D (
// Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L957
(* abc9_arrival=1153 *)
// Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L857
(* abc9_arrival=1188 *)
output DPO, SPO,
input D,
(* clkbuf_sink *)
@ -962,8 +1143,8 @@ module RAM32X1D (
endmodule
module RAM32X1D_1 (
// Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L957
(* abc9_arrival=1153 *)
// Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L857
(* abc9_arrival=1188 *)
output DPO, SPO,
input D,
(* clkbuf_sink *)
@ -985,7 +1166,7 @@ module RAM32X1D_1 (
endmodule
module RAM64X1D (
// Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L957
// Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L889
(* abc9_arrival=1153 *)
output DPO, SPO,
input D,
@ -1008,7 +1189,7 @@ module RAM64X1D (
endmodule
module RAM64X1D_1 (
// Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L957
// Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L889
(* abc9_arrival=1153 *)
output DPO, SPO,
input D,
@ -1031,8 +1212,9 @@ module RAM64X1D_1 (
endmodule
module RAM128X1D (
// Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L957
(* abc9_arrival=1153 *)
// Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L889
// plus 204ps to cross MUXF7
(* abc9_arrival=1357 *)
output DPO, SPO,
input D,
(* clkbuf_sink *)
@ -1071,18 +1253,20 @@ endmodule
// Multi port.
module RAM32M (
// Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L857
(* abc9_arrival=1188 *)
output [1:0] DOA,
// Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L925
(* abc9_arrival=1187 *)
output [1:0] DOB,
// Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L993
(* abc9_arrival=1180 *)
output [1:0] DOC,
// Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L1061
(* abc9_arrival=1190 *)
output [1:0] DOD,
input [4:0] ADDRA,
input [4:0] ADDRB,
input [4:0] ADDRC,
input [4:0] ADDRD,
input [1:0] DIA,
input [1:0] DIB,
input [1:0] DIC,
input [1:0] DID,
input [4:0] ADDRA, ADDRB, ADDRC, ADDRD,
input [1:0] DIA, DIB, DIC, DID,
(* clkbuf_sink *)
(* invertible_pin = "IS_WCLK_INVERTED" *)
input WCLK,
@ -1181,18 +1365,20 @@ module RAM32M16 (
endmodule
module RAM64M (
// Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L889
(* abc9_arrival=1153 *)
output DOA,
// Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L957
(* abc9_arrival=1161 *)
output DOB,
// Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L1025
(* abc9_arrival=1158 *)
output DOC,
// Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L1093
(* abc9_arrival=1163 *)
output DOD,
input [4:0] ADDRA,
input [4:0] ADDRB,
input [4:0] ADDRC,
input [4:0] ADDRD,
input DIA,
input DIB,
input DIC,
input DID,
input [5:0] ADDRA, ADDRB, ADDRC, ADDRD,
input DIA, DIB, DIC, DID,
(* clkbuf_sink *)
(* invertible_pin = "IS_WCLK_INVERTED" *)
input WCLK,
@ -1230,14 +1416,14 @@ module RAM64M8 (
output DOF,
output DOG,
output DOH,
input [4:0] ADDRA,
input [4:0] ADDRB,
input [4:0] ADDRC,
input [4:0] ADDRD,
input [4:0] ADDRE,
input [4:0] ADDRF,
input [4:0] ADDRG,
input [4:0] ADDRH,
input [5:0] ADDRA,
input [5:0] ADDRB,
input [5:0] ADDRC,
input [5:0] ADDRD,
input [5:0] ADDRE,
input [5:0] ADDRF,
input [5:0] ADDRG,
input [5:0] ADDRH,
input DIA,
input DIB,
input DIC,
@ -1334,8 +1520,22 @@ endmodule
// Shift registers.
module SRL16 (
output Q,
input A0, A1, A2, A3,
(* clkbuf_sink *)
input CLK,
input D
);
parameter [15:0] INIT = 16'h0000;
reg [15:0] r = INIT;
assign Q = r[{A3,A2,A1,A0}];
always @(posedge CLK) r <= { r[14:0], D };
endmodule
module SRL16E (
// Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L904-L905
// Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L905
(* abc9_arrival=1472 *)
output Q,
input A0, A1, A2, A3, CE,
@ -1358,6 +1558,22 @@ module SRL16E (
endgenerate
endmodule
module SRLC16 (
output Q,
output Q15,
input A0, A1, A2, A3,
(* clkbuf_sink *)
input CLK,
input D
);
parameter [15:0] INIT = 16'h0000;
reg [15:0] r = INIT;
assign Q15 = r[15];
assign Q = r[{A3,A2,A1,A0}];
always @(posedge CLK) r <= { r[14:0], D };
endmodule
module SRLC16E (
output Q,
output Q15,
@ -1383,9 +1599,10 @@ module SRLC16E (
endmodule
module SRLC32E (
// Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L904-L905
// Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L905
(* abc9_arrival=1472 *)
output Q,
// Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L904
(* abc9_arrival=1114 *)
output Q31,
input [4:0] A,
@ -1410,6 +1627,31 @@ module SRLC32E (
endgenerate
endmodule
module CFGLUT5 (
output CDO,
output O5,
output O6,
input I4,
input I3,
input I2,
input I1,
input I0,
input CDI,
input CE,
(* clkbuf_sink *)
(* invertible_pin = "IS_CLK_INVERTED" *)
input CLK
);
parameter [31:0] INIT = 32'h00000000;
parameter [0:0] IS_CLK_INVERTED = 1'b0;
wire clk = CLK ^ IS_CLK_INVERTED;
reg [31:0] r = INIT;
assign CDO = r[31];
assign O5 = r[{1'b0, I3, I2, I1, I0}];
assign O6 = r[{I4, I3, I2, I1, I0}];
always @(posedge clk) if (CE) r <= {r[30:0], CDI};
endmodule
// DSP
// Virtex 2, Virtex 2 Pro, Spartan 3.
@ -1885,7 +2127,7 @@ always @* begin
2'b00: XMUX <= 0;
2'b01: XMUX <= M;
2'b10: XMUX <= P;
2'b11: XMUX <= {D_OUT[11:0], B1_OUT, A1_OUT};
2'b11: XMUX <= {D_OUT[11:0], A1_OUT, B1_OUT};
default: XMUX <= 48'hxxxxxxxxxxxx;
endcase
end
@ -1903,8 +2145,8 @@ end
// The post-adder.
wire signed [48:0] X_EXT;
wire signed [48:0] Z_EXT;
assign X_EXT = XMUX;
assign Z_EXT = ZMUX;
assign X_EXT = {1'b0, XMUX};
assign Z_EXT = {1'b0, ZMUX};
assign {CARRYOUT_IN, P_IN} = OPMODE_OUT[7] ? (Z_EXT - (X_EXT + CARRYIN_OUT)) : (Z_EXT + X_EXT + CARRYIN_OUT);
// Cascade outputs.
@ -1926,9 +2168,15 @@ module DSP48E1 (
output reg [3:0] CARRYOUT,
output reg MULTSIGNOUT,
output OVERFLOW,
`ifdef YOSYS
(* abc9_arrival = \DSP48E1.P_arrival () *)
`endif
output reg signed [47:0] P,
output reg PATTERNBDETECT,
output reg PATTERNDETECT,
`ifdef YOSYS
(* abc9_arrival = \DSP48E1.PCOUT_arrival () *)
`endif
output [47:0] PCOUT,
output UNDERFLOW,
input signed [29:0] A,
@ -2001,8 +2249,79 @@ module DSP48E1 (
parameter [4:0] IS_INMODE_INVERTED = 5'b0;
parameter [6:0] IS_OPMODE_INVERTED = 7'b0;
`ifdef YOSYS
function integer \DSP48E1.P_arrival ;
begin
\DSP48E1.P_arrival = 0;
if (USE_MULT == "MULTIPLY" && USE_DPORT == "FALSE") begin
if (PREG != 0) \DSP48E1.P_arrival = 329;
// Worst-case from CREG and MREG
else if (CREG != 0) \DSP48E1.P_arrival = 1687;
else if (MREG != 0) \DSP48E1.P_arrival = 1671;
// Worst-case from AREG and BREG
else if (AREG != 0) \DSP48E1.P_arrival = 2952;
else if (BREG != 0) \DSP48E1.P_arrival = 2813;
end
else if (USE_MULT == "MULTIPLY" && USE_DPORT == "TRUE") begin
if (PREG != 0) \DSP48E1.P_arrival = 329;
// Worst-case from CREG and MREG
else if (CREG != 0) \DSP48E1.P_arrival = 1687;
else if (MREG != 0) \DSP48E1.P_arrival = 1671;
// Worst-case from AREG, ADREG, BREG, DREG
else if (AREG != 0) \DSP48E1.P_arrival = 3935;
else if (DREG != 0) \DSP48E1.P_arrival = 3908;
else if (ADREG != 0) \DSP48E1.P_arrival = 2958;
else if (BREG != 0) \DSP48E1.P_arrival = 2813;
end
else if (USE_MULT == "NONE" && USE_DPORT == "FALSE") begin
if (PREG != 0) \DSP48E1.P_arrival = 329;
// Worst-case from AREG, BREG, CREG
else if (CREG != 0) \DSP48E1.P_arrival = 1687;
else if (AREG != 0) \DSP48E1.P_arrival = 1632;
else if (BREG != 0) \DSP48E1.P_arrival = 1616;
end
//else
// $error("Invalid DSP48E1 configuration");
end
endfunction
function integer \DSP48E1.PCOUT_arrival ;
begin
\DSP48E1.PCOUT_arrival = 0;
if (USE_MULT == "MULTIPLY" && USE_DPORT == "FALSE") begin
if (PREG != 0) \DSP48E1.PCOUT_arrival = 435;
// Worst-case from CREG and MREG
else if (CREG != 0) \DSP48E1.PCOUT_arrival = 1835;
else if (MREG != 0) \DSP48E1.PCOUT_arrival = 1819;
// Worst-case from AREG and BREG
else if (AREG != 0) \DSP48E1.PCOUT_arrival = 3098;
else if (BREG != 0) \DSP48E1.PCOUT_arrival = 2960;
end
else if (USE_MULT == "MULTIPLY" && USE_DPORT == "TRUE") begin
if (PREG != 0) \DSP48E1.PCOUT_arrival = 435;
// Worst-case from CREG and MREG
else if (CREG != 0) \DSP48E1.PCOUT_arrival = 1835;
else if (MREG != 0) \DSP48E1.PCOUT_arrival = 1819;
// Worst-case from AREG, ADREG, BREG, DREG
else if (AREG != 0) \DSP48E1.PCOUT_arrival = 4083;
else if (DREG != 0) \DSP48E1.PCOUT_arrival = 4056;
else if (BREG != 0) \DSP48E1.PCOUT_arrival = 2960;
else if (ADREG != 0) \DSP48E1.PCOUT_arrival = 2859;
end
else if (USE_MULT == "NONE" && USE_DPORT == "FALSE") begin
if (PREG != 0) \DSP48E1.PCOUT_arrival = 435;
// Worst-case from AREG, BREG, CREG
else if (CREG != 0) \DSP48E1.PCOUT_arrival = 1835;
else if (AREG != 0) \DSP48E1.PCOUT_arrival = 1780;
else if (BREG != 0) \DSP48E1.PCOUT_arrival = 1765;
end
//else
// $error("Invalid DSP48E1 configuration");
end
endfunction
`endif
initial begin
`ifdef __ICARUS__
`ifndef YOSYS
if (AUTORESET_PATDET != "NO_RESET") $fatal(1, "Unsupported AUTORESET_PATDET value");
if (SEL_MASK != "MASK") $fatal(1, "Unsupported SEL_MASK value");
if (SEL_PATTERN != "PATTERN") $fatal(1, "Unsupported SEL_PATTERN value");
@ -2077,8 +2396,8 @@ module DSP48E1 (
if (CEB2) Br2 <= Br1;
end
end else if (BREG == 1) begin
//initial Br1 = 25'b0;
initial Br2 = 25'b0;
//initial Br1 = 18'b0;
initial Br2 = 18'b0;
always @(posedge CLK)
if (RSTB) begin
Br1 <= 18'b0;
@ -2125,7 +2444,7 @@ module DSP48E1 (
endgenerate
// A/D input selection and pre-adder
wire signed [29:0] Ar12_muxed = INMODEr[0] ? Ar1 : Ar2;
wire signed [24:0] Ar12_muxed = INMODEr[0] ? Ar1 : Ar2;
wire signed [24:0] Ar12_gated = INMODEr[1] ? 25'b0 : Ar12_muxed;
wire signed [24:0] Dr_gated = INMODEr[2] ? Dr : 25'b0;
wire signed [24:0] AD_result = INMODEr[3] ? (Dr_gated - Ar12_gated) : (Dr_gated + Ar12_gated);
@ -2165,12 +2484,12 @@ module DSP48E1 (
case (OPMODEr[1:0])
2'b00: X = 48'b0;
2'b01: begin X = $signed(Mrx);
`ifdef __ICARUS__
`ifndef YOSYS
if (OPMODEr[3:2] != 2'b01) $fatal(1, "OPMODEr[3:2] must be 2'b01 when OPMODEr[1:0] is 2'b01");
`endif
end
2'b10: begin X = P;
`ifdef __ICARUS__
`ifndef YOSYS
if (PREG != 1) $fatal(1, "PREG must be 1 when OPMODEr[1:0] is 2'b10");
`endif
end
@ -2182,7 +2501,7 @@ module DSP48E1 (
case (OPMODEr[3:2])
2'b00: Y = 48'b0;
2'b01: begin Y = 48'b0; // FIXME: more accurate partial product modelling?
`ifdef __ICARUS__
`ifndef YOSYS
if (OPMODEr[1:0] != 2'b01) $fatal(1, "OPMODEr[1:0] must be 2'b01 when OPMODEr[3:2] is 2'b01");
`endif
end
@ -2196,13 +2515,13 @@ module DSP48E1 (
3'b000: Z = 48'b0;
3'b001: Z = PCIN;
3'b010: begin Z = P;
`ifdef __ICARUS__
`ifndef YOSYS
if (PREG != 1) $fatal(1, "PREG must be 1 when OPMODEr[6:4] i0s 3'b010");
`endif
end
3'b011: Z = Cr;
3'b100: begin Z = P;
`ifdef __ICARUS__
`ifndef YOSYS
if (PREG != 1) $fatal(1, "PREG must be 1 when OPMODEr[6:4] is 3'b100");
if (OPMODEr[3:0] != 4'b1000) $fatal(1, "OPMODEr[3:0] must be 4'b1000 when OPMODEr[6:4] i0s 3'b100");
`endif

Some files were not shown because too many files have changed in this diff Show More