Merge pull request #1574 from YosysHQ/eddie/xilinx_lutram

xilinx: add LUTRAM rules for RAM32M, RAM64M
This commit is contained in:
Eddie Hung 2019-12-16 21:48:21 -08:00 committed by GitHub
commit a73f96594f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
13 changed files with 529 additions and 65 deletions

View File

@ -1185,10 +1185,10 @@ module RAM64M (
output DOB,
output DOC,
output DOD,
input [4:0] ADDRA,
input [4:0] ADDRB,
input [4:0] ADDRC,
input [4:0] ADDRD,
input [5:0] ADDRA,
input [5:0] ADDRB,
input [5:0] ADDRC,
input [5:0] ADDRD,
input DIA,
input DIB,
input DIC,
@ -1230,14 +1230,14 @@ module RAM64M8 (
output DOF,
output DOG,
output DOH,
input [4:0] ADDRA,
input [4:0] ADDRB,
input [4:0] ADDRC,
input [4:0] ADDRD,
input [4:0] ADDRE,
input [4:0] ADDRF,
input [4:0] ADDRG,
input [4:0] ADDRH,
input [5:0] ADDRA,
input [5:0] ADDRB,
input [5:0] ADDRC,
input [5:0] ADDRD,
input [5:0] ADDRE,
input [5:0] ADDRF,
input [5:0] ADDRG,
input [5:0] ADDRH,
input DIA,
input DIB,
input DIC,

View File

@ -1,4 +1,17 @@
bram $__XILINX_RAM16X1D
init 1
abits 4
dbits 1
groups 2
ports 1 1
wrmode 0 1
enable 0 1
transp 0 0
clocks 0 1
clkpol 0 2
endbram
bram $__XILINX_RAM32X1D
init 1
abits 5
@ -38,6 +51,70 @@ bram $__XILINX_RAM128X1D
clkpol 0 2
endbram
bram $__XILINX_RAM32X6SDP
init 1
abits 5
dbits 6
groups 2
ports 1 1
wrmode 0 1
enable 0 1
transp 0 0
clocks 0 1
clkpol 0 2
endbram
bram $__XILINX_RAM64X3SDP
init 1
abits 6
dbits 3
groups 2
ports 1 1
wrmode 0 1
enable 0 1
transp 0 0
clocks 0 1
clkpol 0 2
endbram
bram $__XILINX_RAM32X2Q
init 1
abits 5
dbits 2
groups 2
ports 3 1
wrmode 0 1
enable 0 1
transp 0 0
clocks 0 1
clkpol 0 2
endbram
bram $__XILINX_RAM64X1Q
init 1
abits 6
dbits 1
groups 2
ports 3 1
wrmode 0 1
enable 0 1
transp 0 0
clocks 0 1
clkpol 0 2
endbram
# Disabled for now, pending support for LUT4 arches
# since on LUT6 arches this occupies same area as
# a RAM32X1D
#match $__XILINX_RAM16X1D
# min bits 2
# min wports 1
# make_outreg
# or_next_if_better
#endmatch
match $__XILINX_RAM32X1D
min bits 3
min wports 1
@ -56,5 +133,35 @@ match $__XILINX_RAM128X1D
min bits 9
min wports 1
make_outreg
or_next_if_better
endmatch
match $__XILINX_RAM32X6SDP
min bits 5
min wports 1
make_outreg
or_next_if_better
endmatch
match $__XILINX_RAM64X3SDP
min bits 6
min wports 1
make_outreg
or_next_if_better
endmatch
match $__XILINX_RAM32X2Q
min bits 5
min rports 3
min wports 1
make_outreg
or_next_if_better
endmatch
match $__XILINX_RAM64X1Q
min bits 5
min rports 3
min wports 1
make_outreg
endmatch

View File

@ -1,4 +1,36 @@
module \$__XILINX_RAM16X1D (CLK1, A1ADDR, A1DATA, B1ADDR, B1DATA, B1EN);
parameter [15:0] INIT = 16'bx;
parameter CLKPOL2 = 1;
input CLK1;
input [3:0] A1ADDR;
output A1DATA;
input [3:0] B1ADDR;
input B1DATA;
input B1EN;
RAM16X1D #(
.INIT(INIT),
.IS_WCLK_INVERTED(!CLKPOL2)
) _TECHMAP_REPLACE_ (
.DPRA0(A1ADDR[0]),
.DPRA1(A1ADDR[1]),
.DPRA2(A1ADDR[2]),
.DPRA3(A1ADDR[3]),
.DPO(A1DATA),
.A0(B1ADDR[0]),
.A1(B1ADDR[1]),
.A2(B1ADDR[2]),
.A3(B1ADDR[3]),
.D(B1DATA),
.WCLK(CLK1),
.WE(B1EN)
);
endmodule
module \$__XILINX_RAM32X1D (CLK1, A1ADDR, A1DATA, B1ADDR, B1DATA, B1EN);
parameter [31:0] INIT = 32'bx;
parameter CLKPOL2 = 1;
@ -95,3 +127,153 @@ module \$__XILINX_RAM128X1D (CLK1, A1ADDR, A1DATA, B1ADDR, B1DATA, B1EN);
);
endmodule
module \$__XILINX_RAM32X6SDP (CLK1, A1ADDR, A1DATA, B1ADDR, B1DATA, B1EN);
parameter [32*6-1:0] INIT = {32*6{1'bx}};
parameter CLKPOL2 = 1;
input CLK1;
input [4:0] A1ADDR;
output [5:0] A1DATA;
input [4:0] B1ADDR;
input [5:0] B1DATA;
input B1EN;
wire [1:0] DOD_unused;
RAM32M #(
.INIT_A({INIT[187:186], INIT[181:180], INIT[175:174], INIT[169:168], INIT[163:162], INIT[157:156], INIT[151:150], INIT[145:144], INIT[139:138], INIT[133:132], INIT[127:126], INIT[121:120], INIT[115:114], INIT[109:108], INIT[103:102], INIT[ 97: 96], INIT[ 91: 90], INIT[ 85: 84], INIT[ 79: 78], INIT[ 73: 72], INIT[ 67: 66], INIT[ 61: 60], INIT[ 55: 54], INIT[ 49: 48], INIT[ 43: 42], INIT[ 37: 36], INIT[ 31: 30], INIT[ 25: 24], INIT[ 19: 18], INIT[ 13: 12], INIT[ 7: 6], INIT[ 1: 0]}),
.INIT_B({INIT[189:188], INIT[183:182], INIT[177:176], INIT[171:170], INIT[165:164], INIT[159:158], INIT[153:152], INIT[147:146], INIT[141:140], INIT[135:134], INIT[129:128], INIT[123:122], INIT[117:116], INIT[111:110], INIT[105:104], INIT[ 99: 98], INIT[ 93: 92], INIT[ 87: 86], INIT[ 81: 80], INIT[ 75: 74], INIT[ 69: 68], INIT[ 63: 62], INIT[ 57: 56], INIT[ 51: 50], INIT[ 45: 44], INIT[ 39: 38], INIT[ 33: 32], INIT[ 27: 26], INIT[ 21: 20], INIT[ 15: 14], INIT[ 9: 8], INIT[ 3: 2]}),
.INIT_C({INIT[191:190], INIT[185:184], INIT[179:178], INIT[173:172], INIT[167:166], INIT[161:160], INIT[155:154], INIT[149:148], INIT[143:142], INIT[137:136], INIT[131:130], INIT[125:124], INIT[119:118], INIT[113:112], INIT[107:106], INIT[101:100], INIT[ 95: 94], INIT[ 89: 88], INIT[ 83: 82], INIT[ 77: 76], INIT[ 71: 70], INIT[ 65: 64], INIT[ 59: 58], INIT[ 53: 52], INIT[ 47: 46], INIT[ 41: 40], INIT[ 35: 34], INIT[ 29: 28], INIT[ 23: 22], INIT[ 17: 16], INIT[ 11: 10], INIT[ 5: 4]}),
.INIT_D(64'bx),
.IS_WCLK_INVERTED(!CLKPOL2)
) _TECHMAP_REPLACE_ (
.ADDRA(A1ADDR),
.ADDRB(A1ADDR),
.ADDRC(A1ADDR),
.DOA(A1DATA[1:0]),
.DOB(A1DATA[3:2]),
.DOC(A1DATA[5:4]),
.DOD(DOD_unused),
.ADDRD(B1ADDR),
.DIA(B1DATA[1:0]),
.DIB(B1DATA[3:2]),
.DIC(B1DATA[5:4]),
.DID(2'b00),
.WCLK(CLK1),
.WE(B1EN)
);
endmodule
module \$__XILINX_RAM64X3SDP (CLK1, A1ADDR, A1DATA, B1ADDR, B1DATA, B1EN);
parameter [64*3-1:0] INIT = {64*3{1'bx}};
parameter CLKPOL2 = 1;
input CLK1;
input [5:0] A1ADDR;
output [2:0] A1DATA;
input [5:0] B1ADDR;
input [2:0] B1DATA;
input B1EN;
wire DOD_unused;
RAM64M #(
.INIT_A({INIT[189], INIT[186], INIT[183], INIT[180], INIT[177], INIT[174], INIT[171], INIT[168], INIT[165], INIT[162], INIT[159], INIT[156], INIT[153], INIT[150], INIT[147], INIT[144], INIT[141], INIT[138], INIT[135], INIT[132], INIT[129], INIT[126], INIT[123], INIT[120], INIT[117], INIT[114], INIT[111], INIT[108], INIT[105], INIT[102], INIT[ 99], INIT[ 96], INIT[ 93], INIT[ 90], INIT[ 87], INIT[ 84], INIT[ 81], INIT[ 78], INIT[ 75], INIT[ 72], INIT[ 69], INIT[ 66], INIT[ 63], INIT[ 60], INIT[ 57], INIT[ 54], INIT[ 51], INIT[ 48], INIT[ 45], INIT[ 42], INIT[ 39], INIT[ 36], INIT[ 33], INIT[ 30], INIT[ 27], INIT[ 24], INIT[ 21], INIT[ 18], INIT[ 15], INIT[ 12], INIT[ 9], INIT[ 6], INIT[ 3], INIT[ 0]}),
.INIT_B({INIT[190], INIT[187], INIT[184], INIT[181], INIT[178], INIT[175], INIT[172], INIT[169], INIT[166], INIT[163], INIT[160], INIT[157], INIT[154], INIT[151], INIT[148], INIT[145], INIT[142], INIT[139], INIT[136], INIT[133], INIT[130], INIT[127], INIT[124], INIT[121], INIT[118], INIT[115], INIT[112], INIT[109], INIT[106], INIT[103], INIT[100], INIT[ 97], INIT[ 94], INIT[ 91], INIT[ 88], INIT[ 85], INIT[ 82], INIT[ 79], INIT[ 76], INIT[ 73], INIT[ 70], INIT[ 67], INIT[ 64], INIT[ 61], INIT[ 58], INIT[ 55], INIT[ 52], INIT[ 49], INIT[ 46], INIT[ 43], INIT[ 40], INIT[ 37], INIT[ 34], INIT[ 31], INIT[ 28], INIT[ 25], INIT[ 22], INIT[ 19], INIT[ 16], INIT[ 13], INIT[ 10], INIT[ 7], INIT[ 4], INIT[ 1]}),
.INIT_C({INIT[191], INIT[188], INIT[185], INIT[182], INIT[179], INIT[176], INIT[173], INIT[170], INIT[167], INIT[164], INIT[161], INIT[158], INIT[155], INIT[152], INIT[149], INIT[146], INIT[143], INIT[140], INIT[137], INIT[134], INIT[131], INIT[128], INIT[125], INIT[122], INIT[119], INIT[116], INIT[113], INIT[110], INIT[107], INIT[104], INIT[101], INIT[ 98], INIT[ 95], INIT[ 92], INIT[ 89], INIT[ 86], INIT[ 83], INIT[ 80], INIT[ 77], INIT[ 74], INIT[ 71], INIT[ 68], INIT[ 65], INIT[ 62], INIT[ 59], INIT[ 56], INIT[ 53], INIT[ 50], INIT[ 47], INIT[ 44], INIT[ 41], INIT[ 38], INIT[ 35], INIT[ 32], INIT[ 29], INIT[ 26], INIT[ 23], INIT[ 20], INIT[ 17], INIT[ 14], INIT[ 11], INIT[ 8], INIT[ 5], INIT[ 2]}),
.INIT_D(64'bx),
.IS_WCLK_INVERTED(!CLKPOL2)
) _TECHMAP_REPLACE_ (
.ADDRA(A1ADDR),
.ADDRB(A1ADDR),
.ADDRC(A1ADDR),
.DOA(A1DATA[0]),
.DOB(A1DATA[1]),
.DOC(A1DATA[2]),
.DOD(DOD_unused),
.ADDRD(B1ADDR),
.DIA(B1DATA[0]),
.DIB(B1DATA[1]),
.DIC(B1DATA[2]),
.DID(1'b0),
.WCLK(CLK1),
.WE(B1EN)
);
endmodule
module \$__XILINX_RAM32X2Q (CLK1, A1ADDR, A1DATA, A2ADDR, A2DATA, A3ADDR, A3DATA, B1ADDR, B1DATA, B1EN);
parameter [63:0] INIT = 64'bx;
parameter CLKPOL2 = 1;
input CLK1;
input [4:0] A1ADDR, A2ADDR, A3ADDR;
output [1:0] A1DATA, A2DATA, A3DATA;
input [4:0] B1ADDR;
input [1:0] B1DATA;
input B1EN;
RAM32M #(
.INIT_A(INIT),
.INIT_B(INIT),
.INIT_C(INIT),
.INIT_D(INIT),
.IS_WCLK_INVERTED(!CLKPOL2)
) _TECHMAP_REPLACE_ (
.ADDRA(A1ADDR),
.ADDRB(A2ADDR),
.ADDRC(A3ADDR),
.DOA(A1DATA),
.DOB(A2DATA),
.DOC(A3DATA),
.ADDRD(B1ADDR),
.DIA(B1DATA),
.DIB(B1DATA),
.DIC(B1DATA),
.DID(B1DATA),
.WCLK(CLK1),
.WE(B1EN)
);
endmodule
module \$__XILINX_RAM64X1Q (CLK1, A1ADDR, A1DATA, A2ADDR, A2DATA, A3ADDR, A3DATA, B1ADDR, B1DATA, B1EN);
parameter [63:0] INIT = 64'bx;
parameter CLKPOL2 = 1;
input CLK1;
input [5:0] A1ADDR, A2ADDR, A3ADDR;
output A1DATA, A2DATA, A3DATA;
input [5:0] B1ADDR;
input B1DATA;
input B1EN;
RAM64M #(
.INIT_A(INIT),
.INIT_B(INIT),
.INIT_C(INIT),
.INIT_D(INIT),
.IS_WCLK_INVERTED(!CLKPOL2)
) _TECHMAP_REPLACE_ (
.ADDRA(A1ADDR),
.ADDRB(A2ADDR),
.ADDRC(A3ADDR),
.DOA(A1DATA),
.DOB(A2DATA),
.DOC(A3DATA),
.ADDRD(B1ADDR),
.DIA(B1DATA),
.DIB(B1DATA),
.DIC(B1DATA),
.DID(B1DATA),
.WCLK(CLK1),
.WE(B1EN)
);
endmodule

View File

@ -1,5 +1,5 @@
read_verilog ../common/memory.v
hierarchy -top top
read_verilog ../common/lutram.v
hierarchy -top lutram_1w1r
proc
memory -nomap
equiv_opt -run :prove -map +/anlogic/cells_sim.v synth_anlogic
@ -11,7 +11,7 @@ miter -equiv -flatten -make_assert -make_outputs gold gate miter
#sat -verify -prove-asserts -seq 3 -set-init-zero -show-inputs -show-outputs miter
design -load postopt
cd top
cd lutram_1w1r
select -assert-count 8 t:AL_MAP_LUT2
select -assert-count 8 t:AL_MAP_LUT4

View File

@ -0,0 +1,42 @@
module lutram_1w1r
#(parameter D_WIDTH=8, A_WIDTH=6)
(
input [D_WIDTH-1:0] data_a,
input [A_WIDTH:1] addr_a,
input we_a, clk,
output reg [D_WIDTH-1:0] q_a
);
// Declare the RAM variable
reg [D_WIDTH-1:0] ram[(2**A_WIDTH)-1:0];
// Port A
always @ (posedge clk)
begin
if (we_a)
ram[addr_a] <= data_a;
q_a <= ram[addr_a];
end
endmodule
module lutram_1w3r
#(parameter D_WIDTH=8, A_WIDTH=5)
(
input [D_WIDTH-1:0] data_a, data_b, data_c,
input [A_WIDTH:1] addr_a, addr_b, addr_c,
input we_a, clk,
output reg [D_WIDTH-1:0] q_a, q_b, q_c
);
// Declare the RAM variable
reg [D_WIDTH-1:0] ram[(2**A_WIDTH)-1:0];
// Port A
always @ (posedge clk)
begin
if (we_a)
ram[addr_a] <= data_a;
q_a <= ram[addr_a];
q_b <= ram[addr_b];
q_c <= ram[addr_c];
end
endmodule

View File

@ -1,21 +0,0 @@
module top
(
input [7:0] data_a,
input [6:1] addr_a,
input we_a, clk,
output reg [7:0] q_a
);
// Declare the RAM variable
reg [7:0] ram[63:0];
// Port A
always @ (posedge clk)
begin
if (we_a)
begin
ram[addr_a] <= data_a;
q_a <= data_a;
end
q_a <= ram[addr_a];
end
endmodule

View File

@ -1,5 +1,5 @@
read_verilog ../common/memory.v
hierarchy -top top
read_verilog ../common/lutram.v
hierarchy -top lutram_1w1r
proc
memory -nomap
equiv_opt -run :prove -map +/ecp5/cells_sim.v synth_ecp5
@ -10,7 +10,7 @@ miter -equiv -flatten -make_assert -make_outputs gold gate miter
sat -verify -prove-asserts -seq 5 -set-init-zero -show-inputs -show-outputs miter
design -load postopt
cd top
cd lutram_1w1r
select -assert-count 24 t:L6MUX21
select -assert-count 71 t:LUT4
select -assert-count 32 t:PFUMX

View File

@ -1,5 +1,5 @@
read_verilog ../common/memory.v
hierarchy -top top
read_verilog ../common/lutram.v
hierarchy -top lutram_1w1r
proc
memory -nomap
equiv_opt -run :prove -map +/efinix/cells_sim.v synth_efinix
@ -12,7 +12,7 @@ miter -equiv -flatten -make_assert -make_outputs gold gate miter
sat -prove-asserts -seq 5 -set-init-zero -show-inputs -show-outputs miter
design -load postopt
cd top
cd lutram_1w1r
select -assert-count 1 t:EFX_GBUFCE
select -assert-count 1 t:EFX_RAM_5K
select -assert-none t:EFX_GBUFCE t:EFX_RAM_5K %% t:* %D

View File

@ -1,5 +1,5 @@
read_verilog ../common/memory.v
hierarchy -top top
read_verilog ../common/lutram.v
hierarchy -top lutram_1w1r
proc
memory -nomap
equiv_opt -run :prove -map +/gowin/cells_sim.v synth_gowin
@ -12,7 +12,7 @@ miter -equiv -flatten -make_assert -make_outputs gold gate miter
sat -prove-asserts -seq 5 -set-init-zero -show-inputs -show-outputs miter
design -load postopt
cd top
cd lutram_1w1r
select -assert-count 8 t:RAM16S4
# other logic present that is not simple
#select -assert-none t:RAM16S4 %% t:* %D

View File

@ -1,5 +1,5 @@
read_verilog ../common/memory.v
hierarchy -top top
read_verilog ../common/lutram.v
hierarchy -top lutram_1w1r
proc
memory -nomap
equiv_opt -run :prove -map +/ice40/cells_sim.v synth_ice40
@ -10,6 +10,6 @@ miter -equiv -flatten -make_assert -make_outputs gold gate miter
sat -verify -prove-asserts -seq 5 -set-init-zero -show-inputs -show-outputs miter
design -load postopt
cd top
cd lutram_1w1r
select -assert-count 1 t:SB_RAM40_4K
select -assert-none t:SB_RAM40_4K %% t:* %D

View File

@ -0,0 +1,34 @@
read_verilog <<EOT
module register_file(
input wire clk,
input wire write_enable,
input wire [63:0] write_data,
input wire [4:0] write_reg,
input wire [4:0] read1_reg,
input wire [4:0] read2_reg,
input wire [4:0] read3_reg,
output reg [63:0] read1_data,
output reg [63:0] read2_data,
output reg [63:0] read3_data
);
reg [63:0] registers[0:31];
always @(posedge clk) begin
if (write_enable == 1'b1) begin
registers[write_reg] <= write_data;
end
end
always @(all) begin
read1_data <= registers[read1_reg];
read2_data <= registers[read2_reg];
read3_data <= registers[read3_reg];
end
endmodule
EOT
synth_xilinx
cd register_file
select -assert-count 32 t:RAM32M
select -assert-none t:* t:BUFG %d t:RAM32M %d

137
tests/arch/xilinx/lutram.ys Normal file
View File

@ -0,0 +1,137 @@
#read_verilog ../common/lutram.v
#hierarchy -top lutram_1w1r -chparam A_WIDTH 4
#proc
#memory -nomap
#equiv_opt -run :prove -map +/xilinx/cells_sim.v synth_xilinx
#memory
#opt -full
#
#miter -equiv -flatten -make_assert -make_outputs gold gate miter
#sat -verify -prove-asserts -seq 3 -set-init-zero -show-inputs -show-outputs miter
#
#design -load postopt
#cd lutram_1w1r
#select -assert-count 1 t:BUFG
#select -assert-count 8 t:FDRE
#select -assert-count 8 t:RAM16X1D
#select -assert-none t:BUFG t:FDRE t:RAM16X1D %% t:* %D
design -reset
read_verilog ../common/lutram.v
hierarchy -top lutram_1w1r -chparam A_WIDTH 5
proc
memory -nomap
equiv_opt -run :prove -map +/xilinx/cells_sim.v synth_xilinx
memory
opt -full
miter -equiv -flatten -make_assert -make_outputs gold gate miter
sat -verify -prove-asserts -seq 3 -set-init-zero -show-inputs -show-outputs miter
design -load postopt
cd lutram_1w1r
select -assert-count 1 t:BUFG
select -assert-count 8 t:FDRE
select -assert-count 8 t:RAM32X1D
select -assert-none t:BUFG t:FDRE t:RAM32X1D %% t:* %D
design -reset
read_verilog ../common/lutram.v
hierarchy -top lutram_1w1r
proc
memory -nomap
equiv_opt -run :prove -map +/xilinx/cells_sim.v synth_xilinx
memory
opt -full
miter -equiv -flatten -make_assert -make_outputs gold gate miter
sat -verify -prove-asserts -seq 3 -set-init-zero -show-inputs -show-outputs miter
design -load postopt
cd lutram_1w1r
select -assert-count 1 t:BUFG
select -assert-count 8 t:FDRE
select -assert-count 8 t:RAM64X1D
select -assert-none t:BUFG t:FDRE t:RAM64X1D %% t:* %D
design -reset
read_verilog ../common/lutram.v
hierarchy -top lutram_1w3r
proc
memory -nomap
equiv_opt -run :prove -map +/xilinx/cells_sim.v synth_xilinx
memory
opt -full
miter -equiv -flatten -make_assert -make_outputs gold gate miter
sat -verify -prove-asserts -seq 3 -set-init-zero -show-inputs -show-outputs miter
design -load postopt
cd lutram_1w3r
select -assert-count 1 t:BUFG
select -assert-count 24 t:FDRE
select -assert-count 4 t:RAM32M
select -assert-none t:BUFG t:FDRE t:RAM32M %% t:* %D
design -reset
read_verilog ../common/lutram.v
hierarchy -top lutram_1w3r -chparam A_WIDTH 6
proc
memory -nomap
equiv_opt -run :prove -map +/xilinx/cells_sim.v synth_xilinx
memory
opt -full
miter -equiv -flatten -make_assert -make_outputs gold gate miter
sat -verify -prove-asserts -seq 3 -set-init-zero -show-inputs -show-outputs miter
design -load postopt
cd lutram_1w3r
select -assert-count 1 t:BUFG
select -assert-count 24 t:FDRE
select -assert-count 8 t:RAM64M
select -assert-none t:BUFG t:FDRE t:RAM64M %% t:* %D
design -reset
read_verilog ../common/lutram.v
hierarchy -top lutram_1w1r -chparam A_WIDTH 5 -chparam D_WIDTH 6
proc
memory -nomap
equiv_opt -run :prove -map +/xilinx/cells_sim.v synth_xilinx
memory
opt -full
miter -equiv -flatten -make_assert -make_outputs gold gate miter
sat -verify -prove-asserts -seq 3 -set-init-zero -show-inputs -show-outputs miter
design -load postopt
cd lutram_1w1r
select -assert-count 1 t:BUFG
select -assert-count 6 t:FDRE
select -assert-count 1 t:RAM32M
select -assert-none t:BUFG t:FDRE t:RAM32M %% t:* %D
design -reset
read_verilog ../common/lutram.v
hierarchy -top lutram_1w1r -chparam A_WIDTH 6 -chparam D_WIDTH 6
proc
memory -nomap
equiv_opt -run :prove -map +/xilinx/cells_sim.v synth_xilinx
memory
opt -full
miter -equiv -flatten -make_assert -make_outputs gold gate miter
sat -verify -prove-asserts -seq 3 -set-init-zero -show-inputs -show-outputs miter
design -load postopt
cd lutram_1w1r
select -assert-count 1 t:BUFG
select -assert-count 6 t:FDRE
select -assert-count 2 t:RAM64M
select -assert-none t:BUFG t:FDRE t:RAM64M %% t:* %D

View File

@ -1,17 +0,0 @@
read_verilog ../common/memory.v
hierarchy -top top
proc
memory -nomap
equiv_opt -run :prove -map +/xilinx/cells_sim.v synth_xilinx
memory
opt -full
miter -equiv -flatten -make_assert -make_outputs gold gate miter
sat -verify -prove-asserts -seq 5 -set-init-zero -show-inputs -show-outputs miter
design -load postopt
cd top
select -assert-count 1 t:BUFG
select -assert-count 8 t:FDRE
select -assert-count 8 t:RAM64X1D
select -assert-none t:BUFG t:FDRE t:RAM64X1D %% t:* %D