mirror of https://github.com/YosysHQ/yosys.git
Added multiplier test case from eda playground
This commit is contained in:
parent
fbd06a1afc
commit
994c83db01
|
@ -0,0 +1,132 @@
|
|||
|
||||
// Via http://www.edaplayground.com/s/6/591
|
||||
// stackoverflow 20556634
|
||||
// http://stackoverflow.com/questions/20556634/how-can-i-iteratively-create-buses-of-parameterized-size-to-connect-modules-also
|
||||
|
||||
// Code your design here
|
||||
`define macro_args
|
||||
`define indexed_part_select
|
||||
|
||||
module Multiplier_flat #(parameter M = 4, parameter N = 4)(
|
||||
input [M-1:0] A, //Input A, size M
|
||||
input [N-1:0] B, //Input B, size N
|
||||
output [M+N-1:0] P ); //Output P (product), size M+N
|
||||
|
||||
/* Calculate LSB using Wolfram Alpha
|
||||
N==3 : http://www.wolframalpha.com/input/?i=0%2C+4%2C+9%2C+15%2C+...
|
||||
N==4 : http://www.wolframalpha.com/input/?i=0%2C+5%2C+11%2C+18%2C+26%2C+35%2C+...
|
||||
N==5 : http://www.wolframalpha.com/input/?i=0%2C+6%2C+13%2C+21%2C+30%2C+...
|
||||
*/
|
||||
`ifdef macro_args
|
||||
// initial $display("Use Macro Args");
|
||||
`define calc_pp_lsb(n) (((n)-1)*((n)+2*M)/2)
|
||||
//`define calc_pp_msb(n) (`calc_pp_lsb(n+1)-1)
|
||||
`define calc_pp_msb(n) ((n**2+(2*M+1)*n-2)/2)
|
||||
//`define calc_range(n) `calc_pp_msb(n):`calc_pp_lsb(n)
|
||||
`define calc_pp_range(n) `calc_pp_lsb(n) +: (M+n)
|
||||
|
||||
wire [`calc_pp_msb(N):0] PP;
|
||||
assign PP[`calc_pp_range(1)] = { 1'b0 , { A & {M{B[0]}} } };
|
||||
assign P = PP[`calc_pp_range(N)];
|
||||
`elsif indexed_part_select
|
||||
// initial $display("Use Indexed Part Select");
|
||||
localparam MSB = (N**2+(2*M+1)*N-2)/2;
|
||||
wire [MSB:0] PP;
|
||||
assign PP[M:0] = { 1'b0 , { A & {M{B[0]}} } };
|
||||
assign P = PP[MSB -: M+N];
|
||||
`else
|
||||
// initial $display("Use Worst Case");
|
||||
localparam MSB = (N**2+(2*M+1)*N-2)/2;
|
||||
wire [MSB:0] PP;
|
||||
assign PP[M:0] = { 1'b0 , { A & {M{B[0]}} } };
|
||||
assign P = PP[MSB : MSB+1-M-N];
|
||||
`endif
|
||||
|
||||
genvar i;
|
||||
generate
|
||||
for (i=1; i < N; i=i+1)
|
||||
begin: addPartialProduct
|
||||
wire [M+i-1:0] gA,gB,gS;
|
||||
wire Cout;
|
||||
assign gA = { A & {M{B[i]}} , {i{1'b0}} };
|
||||
`ifdef macro_args
|
||||
assign gB = PP[`calc_pp_range(i)];
|
||||
assign PP[`calc_pp_range(i+1)] = {Cout,gS};
|
||||
`elsif indexed_part_select
|
||||
assign gB = PP[(i-1)*(i+2*M)/2 +: M+i];
|
||||
assign PP[i*((i+1)+2*M)/2 +: M+i+1] = {Cout,gS};
|
||||
`else
|
||||
localparam LSB = (i-1)*(i+2*M)/2;
|
||||
localparam MSB = (i**2+(2*M+1)*i-2)/2;
|
||||
localparam MSB2 = ((i+1)**2+(2*M+1)*(i+1)-2)/2;
|
||||
assign gB = PP[MSB : LSB];
|
||||
assign PP[ MSB2 : MSB+1] = {Cout,gS};
|
||||
`endif
|
||||
RippleCarryAdder#(M+i) adder( .A(gA), .B(gB), .S(gS), .Cin (1'b0), .Cout(Cout) );
|
||||
end
|
||||
endgenerate
|
||||
|
||||
`ifdef macro_args
|
||||
// Cleanup global space
|
||||
`undef calc_pp_range
|
||||
`undef calc_pp_msb
|
||||
`undef calc_pp_lsb
|
||||
`endif
|
||||
endmodule
|
||||
|
||||
module Multiplier_2D #(parameter M = 4, parameter N = 4)(
|
||||
input [M-1:0] A, //Input A, size M
|
||||
input [N-1:0] B, //Input B, size N
|
||||
output [M+N-1:0] P ); //Output P (product), size M+N
|
||||
|
||||
wire [M+N-1:0] PP [N-1:0];
|
||||
|
||||
// Note: bits PP[0][M+N-1:M+1] are never used. Unused bits are optimized out during synthesis
|
||||
//assign PP[0][M:0] = { {1'b0} , { A & {M{B[0]}} } };
|
||||
//assign PP[0][M+N-1:M+1] = {(N-1){1'b0}}; // uncomment to make probing readable
|
||||
assign PP[0] = { {N{1'b0}} , { A & {M{B[0]}} } };
|
||||
assign P = PP[N-1];
|
||||
|
||||
genvar i;
|
||||
generate
|
||||
for (i=1; i < N; i=i+1)
|
||||
begin: addPartialProduct
|
||||
wire [M+i-1:0] gA,gB,gS; wire Cout;
|
||||
assign gA = { A & {M{B[i]}} , {i{1'b0}} };
|
||||
assign gB = PP[i-1][M+i-1:0];
|
||||
//assign PP[i][M+i:0] = {Cout,gS};
|
||||
//if (i+1<N) assign PP[i][M+N-1:M+i+1] = {(N-i){1'b0}}; // uncomment to make probing readable
|
||||
assign PP[i] = { {(N-i){1'b0}}, Cout, gS};
|
||||
RippleCarryAdder#(M+i) adder(
|
||||
.A(gA), .B(gB), .S(gS), .Cin(1'b0), .Cout(Cout) );
|
||||
end
|
||||
endgenerate
|
||||
|
||||
//always@* foreach(S[i]) $display("S[%0d]:%b",i,S[i]);
|
||||
|
||||
endmodule
|
||||
|
||||
module RippleCarryAdder#(parameter N = 4)(A,B,Cin,S,Cout);
|
||||
|
||||
input [N-1:0] A;
|
||||
input [N-1:0] B;
|
||||
input Cin;
|
||||
output [N-1:0] S;
|
||||
output Cout;
|
||||
wire [N:0] CC;
|
||||
|
||||
assign CC[0] = Cin;
|
||||
assign Cout = CC[N];
|
||||
genvar i;
|
||||
generate
|
||||
for (i=0; i < N; i=i+1)
|
||||
begin: addbit
|
||||
FullAdder unit(A[i],B[i],CC[i],S[i],CC[i+1]);
|
||||
end
|
||||
endgenerate
|
||||
|
||||
endmodule
|
||||
|
||||
module FullAdder(input A,B,Cin, output wire S,Cout);
|
||||
assign {Cout,S} = A+B+Cin;
|
||||
endmodule
|
Loading…
Reference in New Issue