mirror of https://github.com/YosysHQ/yosys.git
parent
b706adb809
commit
835688bf80
|
@ -24,30 +24,52 @@
|
|||
USING_YOSYS_NAMESPACE
|
||||
PRIVATE_NAMESPACE_BEGIN
|
||||
|
||||
// Describes found feedback path.
|
||||
struct FeedbackPath {
|
||||
// Which write port it is.
|
||||
int wrport_idx;
|
||||
// Which data bit of that write port it is.
|
||||
int data_bit_idx;
|
||||
// Values of all mux select signals that need to be set to select this path.
|
||||
dict<RTLIL::SigBit, bool> condition;
|
||||
// The exact feedback bit used (used to match read port).
|
||||
SigBit feedback_bit;
|
||||
|
||||
FeedbackPath(int wrport_idx, int data_bit_idx, dict<RTLIL::SigBit, bool> condition, SigBit feedback_bit) : wrport_idx(wrport_idx), data_bit_idx(data_bit_idx), condition(condition), feedback_bit(feedback_bit) {}
|
||||
};
|
||||
|
||||
struct OptMemFeedbackWorker
|
||||
{
|
||||
RTLIL::Design *design;
|
||||
RTLIL::Module *module;
|
||||
SigMap sigmap, sigmap_xmux;
|
||||
|
||||
std::map<RTLIL::SigBit, std::pair<RTLIL::Cell*, int>> sig_to_mux;
|
||||
std::map<pair<std::set<std::map<SigBit, bool>>, SigBit>, SigBit> conditions_logic_cache;
|
||||
dict<RTLIL::SigBit, std::pair<RTLIL::Cell*, int>> sig_to_mux;
|
||||
dict<RTLIL::SigBit, int> sig_users_count;
|
||||
dict<pair<pool<dict<SigBit, bool>>, SigBit>, SigBit> conditions_logic_cache;
|
||||
|
||||
|
||||
// -----------------------------------------------------------------
|
||||
// Converting feedbacks to async read ports to proper enable signals
|
||||
// -----------------------------------------------------------------
|
||||
|
||||
bool find_data_feedback(const std::set<RTLIL::SigBit> &async_rd_bits, RTLIL::SigBit sig,
|
||||
std::map<RTLIL::SigBit, bool> &state, std::set<std::map<RTLIL::SigBit, bool>> &conditions)
|
||||
void find_data_feedback(const pool<RTLIL::SigBit> &async_rd_bits, RTLIL::SigBit sig,
|
||||
const dict<RTLIL::SigBit, bool> &state,
|
||||
int wrport_idx, int data_bit_idx,
|
||||
std::vector<FeedbackPath> &paths)
|
||||
{
|
||||
if (async_rd_bits.count(sig)) {
|
||||
conditions.insert(state);
|
||||
return true;
|
||||
paths.push_back(FeedbackPath(wrport_idx, data_bit_idx, state, sig));
|
||||
return;
|
||||
}
|
||||
|
||||
if (sig_users_count[sig] != 1) {
|
||||
// Only descend into muxes if we're the only user.
|
||||
return;
|
||||
}
|
||||
|
||||
if (sig_to_mux.count(sig) == 0)
|
||||
return false;
|
||||
return;
|
||||
|
||||
RTLIL::Cell *cell = sig_to_mux.at(sig).first;
|
||||
int bit_idx = sig_to_mux.at(sig).second;
|
||||
|
@ -58,46 +80,32 @@ struct OptMemFeedbackWorker
|
|||
std::vector<RTLIL::SigBit> sig_y = sigmap(cell->getPort(ID::Y));
|
||||
log_assert(sig_y.at(bit_idx) == sig);
|
||||
|
||||
for (int i = 0; i < int(sig_s.size()); i++)
|
||||
for (int i = 0; i < GetSize(sig_s); i++)
|
||||
if (state.count(sig_s[i]) && state.at(sig_s[i]) == true) {
|
||||
if (find_data_feedback(async_rd_bits, sig_b.at(bit_idx + i*sig_y.size()), state, conditions)) {
|
||||
RTLIL::SigSpec new_b = cell->getPort(ID::B);
|
||||
new_b.replace(bit_idx + i*sig_y.size(), RTLIL::State::Sx);
|
||||
cell->setPort(ID::B, new_b);
|
||||
}
|
||||
return false;
|
||||
find_data_feedback(async_rd_bits, sig_b.at(bit_idx + i*sig_y.size()), state, wrport_idx, data_bit_idx, paths);
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
for (int i = 0; i < int(sig_s.size()); i++)
|
||||
for (int i = 0; i < GetSize(sig_s); i++)
|
||||
{
|
||||
if (state.count(sig_s[i]) && state.at(sig_s[i]) == false)
|
||||
continue;
|
||||
|
||||
std::map<RTLIL::SigBit, bool> new_state = state;
|
||||
dict<RTLIL::SigBit, bool> new_state = state;
|
||||
new_state[sig_s[i]] = true;
|
||||
|
||||
if (find_data_feedback(async_rd_bits, sig_b.at(bit_idx + i*sig_y.size()), new_state, conditions)) {
|
||||
RTLIL::SigSpec new_b = cell->getPort(ID::B);
|
||||
new_b.replace(bit_idx + i*sig_y.size(), RTLIL::State::Sx);
|
||||
cell->setPort(ID::B, new_b);
|
||||
}
|
||||
find_data_feedback(async_rd_bits, sig_b.at(bit_idx + i*sig_y.size()), new_state, wrport_idx, data_bit_idx, paths);
|
||||
}
|
||||
|
||||
std::map<RTLIL::SigBit, bool> new_state = state;
|
||||
for (int i = 0; i < int(sig_s.size()); i++)
|
||||
new_state[sig_s[i]] = false;
|
||||
dict<RTLIL::SigBit, bool> new_state = state;
|
||||
for (auto bit : sig_s)
|
||||
new_state[bit] = false;
|
||||
|
||||
if (find_data_feedback(async_rd_bits, sig_a.at(bit_idx), new_state, conditions)) {
|
||||
RTLIL::SigSpec new_a = cell->getPort(ID::A);
|
||||
new_a.replace(bit_idx, RTLIL::State::Sx);
|
||||
cell->setPort(ID::A, new_a);
|
||||
}
|
||||
|
||||
return false;
|
||||
find_data_feedback(async_rd_bits, sig_a.at(bit_idx), new_state, wrport_idx, data_bit_idx, paths);
|
||||
}
|
||||
|
||||
RTLIL::SigBit conditions_to_logic(std::set<std::map<RTLIL::SigBit, bool>> &conditions, SigBit olden, int &created_conditions)
|
||||
RTLIL::SigBit conditions_to_logic(pool<dict<RTLIL::SigBit, bool>> &conditions, SigBit olden)
|
||||
{
|
||||
auto key = make_pair(conditions, olden);
|
||||
|
||||
|
@ -112,10 +120,9 @@ struct OptMemFeedbackWorker
|
|||
sig2.append(it.second ? RTLIL::State::S1 : RTLIL::State::S0);
|
||||
}
|
||||
terms.append(module->Ne(NEW_ID, sig1, sig2));
|
||||
created_conditions++;
|
||||
}
|
||||
|
||||
if (olden.wire != nullptr || olden != State::S1)
|
||||
if (olden != State::S1)
|
||||
terms.append(olden);
|
||||
|
||||
if (GetSize(terms) == 0)
|
||||
|
@ -129,117 +136,113 @@ struct OptMemFeedbackWorker
|
|||
|
||||
void translate_rd_feedback_to_en(Mem &mem)
|
||||
{
|
||||
std::map<RTLIL::SigSpec, std::vector<std::set<RTLIL::SigBit>>> async_rd_bits;
|
||||
std::map<RTLIL::SigBit, std::set<RTLIL::SigBit>> muxtree_upstream_map;
|
||||
std::set<RTLIL::SigBit> non_feedback_nets;
|
||||
|
||||
for (auto wire : module->wires())
|
||||
if (wire->port_output) {
|
||||
std::vector<RTLIL::SigBit> bits = sigmap(wire);
|
||||
non_feedback_nets.insert(bits.begin(), bits.end());
|
||||
}
|
||||
|
||||
for (auto cell : module->cells())
|
||||
{
|
||||
bool ignore_data_port = false;
|
||||
|
||||
if (cell->type.in(ID($mux), ID($pmux)))
|
||||
{
|
||||
std::vector<RTLIL::SigBit> sig_a = sigmap(cell->getPort(ID::A));
|
||||
std::vector<RTLIL::SigBit> sig_b = sigmap(cell->getPort(ID::B));
|
||||
std::vector<RTLIL::SigBit> sig_s = sigmap(cell->getPort(ID::S));
|
||||
std::vector<RTLIL::SigBit> sig_y = sigmap(cell->getPort(ID::Y));
|
||||
|
||||
non_feedback_nets.insert(sig_s.begin(), sig_s.end());
|
||||
|
||||
for (int i = 0; i < int(sig_y.size()); i++) {
|
||||
muxtree_upstream_map[sig_y[i]].insert(sig_a[i]);
|
||||
for (int j = 0; j < int(sig_s.size()); j++)
|
||||
muxtree_upstream_map[sig_y[i]].insert(sig_b[i + j*sig_y.size()]);
|
||||
}
|
||||
|
||||
continue;
|
||||
}
|
||||
|
||||
if (cell->type.in(ID($memwr), ID($memrd)) &&
|
||||
IdString(cell->parameters.at(ID::MEMID).decode_string()) == mem.memid)
|
||||
ignore_data_port = true;
|
||||
|
||||
for (auto conn : cell->connections())
|
||||
{
|
||||
if (ignore_data_port && conn.first == ID::DATA)
|
||||
continue;
|
||||
std::vector<RTLIL::SigBit> bits = sigmap(conn.second);
|
||||
non_feedback_nets.insert(bits.begin(), bits.end());
|
||||
}
|
||||
}
|
||||
|
||||
std::set<RTLIL::SigBit> expand_non_feedback_nets = non_feedback_nets;
|
||||
while (!expand_non_feedback_nets.empty())
|
||||
{
|
||||
std::set<RTLIL::SigBit> new_expand_non_feedback_nets;
|
||||
|
||||
for (auto &bit : expand_non_feedback_nets)
|
||||
if (muxtree_upstream_map.count(bit))
|
||||
for (auto &new_bit : muxtree_upstream_map.at(bit))
|
||||
if (!non_feedback_nets.count(new_bit)) {
|
||||
non_feedback_nets.insert(new_bit);
|
||||
new_expand_non_feedback_nets.insert(new_bit);
|
||||
}
|
||||
|
||||
expand_non_feedback_nets.swap(new_expand_non_feedback_nets);
|
||||
}
|
||||
// Look for async read ports that may be suitable for feedback paths.
|
||||
dict<RTLIL::SigSpec, std::vector<pool<RTLIL::SigBit>>> async_rd_bits;
|
||||
|
||||
for (auto &port : mem.rd_ports)
|
||||
{
|
||||
if (port.clk_enable)
|
||||
continue;
|
||||
|
||||
for (auto &bit : port.data)
|
||||
if (non_feedback_nets.count(bit))
|
||||
goto not_pure_feedback_port;
|
||||
SigSpec addr = sigmap_xmux(port.addr);
|
||||
|
||||
async_rd_bits[port.addr].resize(max(GetSize(async_rd_bits), GetSize(port.data)));
|
||||
for (int i = 0; i < GetSize(port.data); i++)
|
||||
async_rd_bits[port.addr][i].insert(port.data[i]);
|
||||
|
||||
not_pure_feedback_port:;
|
||||
async_rd_bits[addr].resize(mem.width);
|
||||
for (int i = 0; i < mem.width; i++)
|
||||
async_rd_bits[addr][i].insert(sigmap(port.data[i]));
|
||||
}
|
||||
|
||||
if (async_rd_bits.empty())
|
||||
return;
|
||||
|
||||
bool changed = false;
|
||||
log("Populating enable bits on write ports of memory %s.%s with aync read feedback:\n", log_id(module), log_id(mem.memid));
|
||||
// Look for actual feedback paths.
|
||||
std::vector<FeedbackPath> paths;
|
||||
|
||||
for (int i = 0; i < GetSize(mem.wr_ports); i++)
|
||||
{
|
||||
auto &port = mem.wr_ports[i];
|
||||
|
||||
if (!async_rd_bits.count(port.addr))
|
||||
SigSpec addr = sigmap_xmux(port.addr);
|
||||
|
||||
if (!async_rd_bits.count(addr))
|
||||
continue;
|
||||
|
||||
log(" Analyzing write port %d.\n", i);
|
||||
log(" Analyzing %s.%s write port %d.\n", log_id(module), log_id(mem.memid), i);
|
||||
|
||||
int created_conditions = 0;
|
||||
for (int j = 0; j < GetSize(port.data); j++)
|
||||
if (port.en[j] != RTLIL::SigBit(RTLIL::State::S0))
|
||||
{
|
||||
std::map<RTLIL::SigBit, bool> state;
|
||||
std::set<std::map<RTLIL::SigBit, bool>> conditions;
|
||||
{
|
||||
if (port.en[j] == State::S0)
|
||||
continue;
|
||||
|
||||
find_data_feedback(async_rd_bits.at(port.addr).at(j), port.data[j], state, conditions);
|
||||
port.en[j] = conditions_to_logic(conditions, port.en[j], created_conditions);
|
||||
}
|
||||
dict<RTLIL::SigBit, bool> state;
|
||||
|
||||
if (created_conditions) {
|
||||
log(" Added enable logic for %d different cases.\n", created_conditions);
|
||||
changed = true;
|
||||
find_data_feedback(async_rd_bits.at(addr).at(j), sigmap(port.data[j]), state, i, j, paths);
|
||||
}
|
||||
}
|
||||
|
||||
if (changed)
|
||||
mem.emit();
|
||||
if (paths.empty())
|
||||
return;
|
||||
|
||||
// Now determine which read ports are actually used only for
|
||||
// feedback paths, and can be removed.
|
||||
|
||||
dict<SigBit, int> feedback_users_count;
|
||||
for (auto &path : paths)
|
||||
feedback_users_count[path.feedback_bit]++;
|
||||
|
||||
pool<SigBit> feedback_ok;
|
||||
for (auto &port : mem.rd_ports)
|
||||
{
|
||||
if (port.clk_enable)
|
||||
continue;
|
||||
|
||||
bool ok = true;
|
||||
for (auto bit : sigmap(port.data))
|
||||
if (sig_users_count[bit] != feedback_users_count[bit])
|
||||
ok = false;
|
||||
|
||||
if (ok)
|
||||
{
|
||||
// This port is going bye-bye.
|
||||
for (auto bit : sigmap(port.data))
|
||||
feedback_ok.insert(bit);
|
||||
|
||||
port.removed = true;
|
||||
}
|
||||
}
|
||||
|
||||
if (feedback_ok.empty())
|
||||
return;
|
||||
|
||||
// Prepare a feedback condition list grouped by port bits.
|
||||
|
||||
dict<std::pair<int, int>, pool<dict<SigBit, bool>>> portbit_conds;
|
||||
for (auto &path : paths)
|
||||
if (feedback_ok.count(path.feedback_bit))
|
||||
portbit_conds[std::make_pair(path.wrport_idx, path.data_bit_idx)].insert(path.condition);
|
||||
|
||||
if (portbit_conds.empty())
|
||||
return;
|
||||
|
||||
// Okay, let's do it.
|
||||
|
||||
log("Populating enable bits on write ports of memory %s.%s with async read feedback:\n", log_id(module), log_id(mem.memid));
|
||||
|
||||
for (auto &it : portbit_conds)
|
||||
{
|
||||
int wrport_idx = it.first.first;
|
||||
int bit = it.first.second;
|
||||
auto &port = mem.wr_ports[wrport_idx];
|
||||
|
||||
port.en[bit] = conditions_to_logic(it.second, port.en[bit]);
|
||||
log(" Port %d bit %d: added enable logic for %d different cases.\n", wrport_idx, bit, GetSize(it.second));
|
||||
}
|
||||
|
||||
mem.emit();
|
||||
|
||||
for (auto bit : feedback_ok)
|
||||
module->connect(bit, State::Sx);
|
||||
|
||||
design->scratchpad_set_bool("opt.did_something", true);
|
||||
}
|
||||
|
||||
// -------------
|
||||
|
@ -258,6 +261,13 @@ struct OptMemFeedbackWorker
|
|||
conditions_logic_cache.clear();
|
||||
|
||||
sigmap_xmux = sigmap;
|
||||
|
||||
for (auto wire : module->wires()) {
|
||||
if (wire->port_output)
|
||||
for (auto bit : sigmap(wire))
|
||||
sig_users_count[bit]++;
|
||||
}
|
||||
|
||||
for (auto cell : module->cells())
|
||||
{
|
||||
if (cell->type == ID($mux))
|
||||
|
@ -277,6 +287,11 @@ struct OptMemFeedbackWorker
|
|||
for (int i = 0; i < int(sig_y.size()); i++)
|
||||
sig_to_mux[sig_y[i]] = std::pair<RTLIL::Cell*, int>(cell, i);
|
||||
}
|
||||
|
||||
for (auto &conn : cell->connections())
|
||||
if (!cell->known() || cell->input(conn.first))
|
||||
for (auto bit : sigmap(conn.second))
|
||||
sig_users_count[bit]++;
|
||||
}
|
||||
|
||||
for (auto &mem : memories)
|
||||
|
@ -292,10 +307,10 @@ struct OptMemFeedbackPass : public Pass {
|
|||
log("\n");
|
||||
log(" opt_mem_feedback [selection]\n");
|
||||
log("\n");
|
||||
log("This pass detects cases where an asynchronous read port is connected via\n");
|
||||
log("a mux tree to a write port with the same address. When such a path is\n");
|
||||
log("found, it is replaced with a new condition on an enable signal, possibly\n");
|
||||
log("allowing for removal of the read port.\n");
|
||||
log("This pass detects cases where an asynchronous read port is only connected via\n");
|
||||
log("a mux tree to a write port with the same address. When such a connection is\n");
|
||||
log("found, it is replaced with a new condition on an enable signal, allowing\n");
|
||||
log("for removal of the read port.\n");
|
||||
log("\n");
|
||||
}
|
||||
void execute(std::vector<std::string> args, RTLIL::Design *design) override {
|
||||
|
|
|
@ -0,0 +1,101 @@
|
|||
# Case 1.
|
||||
|
||||
read_verilog << EOT
|
||||
|
||||
module top(...);
|
||||
|
||||
input clk;
|
||||
input sel;
|
||||
input [3:0] ra;
|
||||
input [3:0] wa;
|
||||
input wd;
|
||||
output [3:0] rd;
|
||||
|
||||
reg [3:0] mem[0:15];
|
||||
|
||||
integer i;
|
||||
initial begin
|
||||
for (i = 0; i < 16; i = i + 1)
|
||||
mem[i] <= i;
|
||||
end
|
||||
|
||||
assign rd = mem[ra];
|
||||
|
||||
always @(posedge clk) begin
|
||||
mem[wa] <= {4{sel ? wd : mem[wa][0]}};
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
EOT
|
||||
|
||||
hierarchy -auto-top
|
||||
proc
|
||||
opt_clean
|
||||
|
||||
design -save start
|
||||
memory_map
|
||||
design -save preopt
|
||||
|
||||
design -load start
|
||||
opt_mem_feedback
|
||||
memory_map
|
||||
design -save postopt
|
||||
|
||||
equiv_opt -assert -run prepare: :
|
||||
|
||||
|
||||
|
||||
design -reset
|
||||
|
||||
# Case 2.
|
||||
|
||||
read_verilog << EOT
|
||||
|
||||
module top(...);
|
||||
|
||||
input clk;
|
||||
input s1;
|
||||
input s2;
|
||||
input s3;
|
||||
input [3:0] ra;
|
||||
input [3:0] wa;
|
||||
input wd;
|
||||
output rd;
|
||||
|
||||
reg mem[0:15];
|
||||
|
||||
integer i;
|
||||
initial begin
|
||||
for (i = 0; i < 16; i = i + 1)
|
||||
mem[i] <= ^i;
|
||||
end
|
||||
|
||||
assign rd = mem[ra];
|
||||
|
||||
wire ta = s1 ? wd : mem[wa];
|
||||
wire tb = s2 ? wd : ta;
|
||||
wire tc = s3 ? tb : ta;
|
||||
|
||||
always @(posedge clk) begin
|
||||
mem[wa] <= tc;
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
EOT
|
||||
|
||||
hierarchy -auto-top
|
||||
proc
|
||||
opt_clean
|
||||
|
||||
design -save start
|
||||
memory_map
|
||||
design -save preopt
|
||||
|
||||
design -load start
|
||||
opt_mem_feedback
|
||||
memory_map
|
||||
design -save postopt
|
||||
|
||||
equiv_opt -assert -run prepare: :
|
|
@ -0,0 +1,142 @@
|
|||
# Good case: proper feedback port.
|
||||
|
||||
read_verilog << EOT
|
||||
|
||||
module top(...);
|
||||
|
||||
input clk;
|
||||
input en;
|
||||
input s;
|
||||
|
||||
input [3:0] ra;
|
||||
output [15:0] rd;
|
||||
input [3:0] wa;
|
||||
input [15:0] wd;
|
||||
|
||||
reg [15:0] mem[0:15];
|
||||
|
||||
assign rd = mem[ra];
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (en) begin
|
||||
mem[wa] <= {mem[wa][15:8], s ? wd[7:0] : mem[wa][7:0]};
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
EOT
|
||||
|
||||
hierarchy -auto-top
|
||||
proc
|
||||
opt_clean
|
||||
|
||||
design -save start
|
||||
memory_map
|
||||
design -save preopt
|
||||
|
||||
design -load start
|
||||
opt_mem_feedback
|
||||
select -assert-count 1 t:$memrd
|
||||
memory_map
|
||||
design -save postopt
|
||||
|
||||
equiv_opt -assert -run prepare: :
|
||||
|
||||
|
||||
|
||||
design -reset
|
||||
|
||||
# Bad case: read port also used for other things.
|
||||
|
||||
read_verilog << EOT
|
||||
|
||||
module top(...);
|
||||
|
||||
input clk;
|
||||
input en;
|
||||
input s;
|
||||
|
||||
output [15:0] rd;
|
||||
input [3:0] wa;
|
||||
input [15:0] wd;
|
||||
|
||||
reg [15:0] mem[0:15];
|
||||
|
||||
assign rd = mem[wa];
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (en) begin
|
||||
mem[wa] <= {s ? rd : wd[15:8], s ? wd[7:0] : rd};
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
EOT
|
||||
|
||||
hierarchy -auto-top
|
||||
proc
|
||||
opt_clean
|
||||
|
||||
design -save start
|
||||
memory_map
|
||||
design -save preopt
|
||||
|
||||
design -load start
|
||||
select -assert-count 1 t:$memrd
|
||||
opt_mem_feedback
|
||||
select -assert-count 1 t:$memrd
|
||||
memory_map
|
||||
design -save postopt
|
||||
|
||||
equiv_opt -assert -run prepare: :
|
||||
|
||||
|
||||
|
||||
design -reset
|
||||
|
||||
# Bad case: another user of the mux out.
|
||||
|
||||
read_verilog << EOT
|
||||
|
||||
module top(...);
|
||||
|
||||
input clk;
|
||||
input en;
|
||||
input s;
|
||||
|
||||
output [15:0] rd;
|
||||
input [3:0] wa;
|
||||
input [15:0] wd;
|
||||
|
||||
reg [15:0] mem[0:15];
|
||||
|
||||
assign rd = s ? wd : mem[wa];
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (en) begin
|
||||
mem[wa] <= rd;
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
EOT
|
||||
|
||||
hierarchy -auto-top
|
||||
proc
|
||||
opt_clean
|
||||
|
||||
design -save start
|
||||
memory_map
|
||||
design -save preopt
|
||||
|
||||
design -load start
|
||||
select -assert-count 1 t:$memrd
|
||||
opt_mem_feedback
|
||||
select -assert-count 1 t:$memrd
|
||||
memory_map
|
||||
design -save postopt
|
||||
|
||||
equiv_opt -assert -run prepare: :
|
Loading…
Reference in New Issue