opt_mem_feedback: Rewrite feedback path finding logic.

Fixes #2766.
This commit is contained in:
Marcelina Kościelnicka 2021-05-24 21:21:51 +02:00
parent b706adb809
commit 835688bf80
3 changed files with 381 additions and 123 deletions

View File

@ -24,30 +24,52 @@
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
// Describes found feedback path.
struct FeedbackPath {
// Which write port it is.
int wrport_idx;
// Which data bit of that write port it is.
int data_bit_idx;
// Values of all mux select signals that need to be set to select this path.
dict<RTLIL::SigBit, bool> condition;
// The exact feedback bit used (used to match read port).
SigBit feedback_bit;
FeedbackPath(int wrport_idx, int data_bit_idx, dict<RTLIL::SigBit, bool> condition, SigBit feedback_bit) : wrport_idx(wrport_idx), data_bit_idx(data_bit_idx), condition(condition), feedback_bit(feedback_bit) {}
};
struct OptMemFeedbackWorker
{
RTLIL::Design *design;
RTLIL::Module *module;
SigMap sigmap, sigmap_xmux;
std::map<RTLIL::SigBit, std::pair<RTLIL::Cell*, int>> sig_to_mux;
std::map<pair<std::set<std::map<SigBit, bool>>, SigBit>, SigBit> conditions_logic_cache;
dict<RTLIL::SigBit, std::pair<RTLIL::Cell*, int>> sig_to_mux;
dict<RTLIL::SigBit, int> sig_users_count;
dict<pair<pool<dict<SigBit, bool>>, SigBit>, SigBit> conditions_logic_cache;
// -----------------------------------------------------------------
// Converting feedbacks to async read ports to proper enable signals
// -----------------------------------------------------------------
bool find_data_feedback(const std::set<RTLIL::SigBit> &async_rd_bits, RTLIL::SigBit sig,
std::map<RTLIL::SigBit, bool> &state, std::set<std::map<RTLIL::SigBit, bool>> &conditions)
void find_data_feedback(const pool<RTLIL::SigBit> &async_rd_bits, RTLIL::SigBit sig,
const dict<RTLIL::SigBit, bool> &state,
int wrport_idx, int data_bit_idx,
std::vector<FeedbackPath> &paths)
{
if (async_rd_bits.count(sig)) {
conditions.insert(state);
return true;
paths.push_back(FeedbackPath(wrport_idx, data_bit_idx, state, sig));
return;
}
if (sig_users_count[sig] != 1) {
// Only descend into muxes if we're the only user.
return;
}
if (sig_to_mux.count(sig) == 0)
return false;
return;
RTLIL::Cell *cell = sig_to_mux.at(sig).first;
int bit_idx = sig_to_mux.at(sig).second;
@ -58,46 +80,32 @@ struct OptMemFeedbackWorker
std::vector<RTLIL::SigBit> sig_y = sigmap(cell->getPort(ID::Y));
log_assert(sig_y.at(bit_idx) == sig);
for (int i = 0; i < int(sig_s.size()); i++)
for (int i = 0; i < GetSize(sig_s); i++)
if (state.count(sig_s[i]) && state.at(sig_s[i]) == true) {
if (find_data_feedback(async_rd_bits, sig_b.at(bit_idx + i*sig_y.size()), state, conditions)) {
RTLIL::SigSpec new_b = cell->getPort(ID::B);
new_b.replace(bit_idx + i*sig_y.size(), RTLIL::State::Sx);
cell->setPort(ID::B, new_b);
}
return false;
find_data_feedback(async_rd_bits, sig_b.at(bit_idx + i*sig_y.size()), state, wrport_idx, data_bit_idx, paths);
return;
}
for (int i = 0; i < int(sig_s.size()); i++)
for (int i = 0; i < GetSize(sig_s); i++)
{
if (state.count(sig_s[i]) && state.at(sig_s[i]) == false)
continue;
std::map<RTLIL::SigBit, bool> new_state = state;
dict<RTLIL::SigBit, bool> new_state = state;
new_state[sig_s[i]] = true;
if (find_data_feedback(async_rd_bits, sig_b.at(bit_idx + i*sig_y.size()), new_state, conditions)) {
RTLIL::SigSpec new_b = cell->getPort(ID::B);
new_b.replace(bit_idx + i*sig_y.size(), RTLIL::State::Sx);
cell->setPort(ID::B, new_b);
}
find_data_feedback(async_rd_bits, sig_b.at(bit_idx + i*sig_y.size()), new_state, wrport_idx, data_bit_idx, paths);
}
std::map<RTLIL::SigBit, bool> new_state = state;
for (int i = 0; i < int(sig_s.size()); i++)
new_state[sig_s[i]] = false;
dict<RTLIL::SigBit, bool> new_state = state;
for (auto bit : sig_s)
new_state[bit] = false;
if (find_data_feedback(async_rd_bits, sig_a.at(bit_idx), new_state, conditions)) {
RTLIL::SigSpec new_a = cell->getPort(ID::A);
new_a.replace(bit_idx, RTLIL::State::Sx);
cell->setPort(ID::A, new_a);
}
return false;
find_data_feedback(async_rd_bits, sig_a.at(bit_idx), new_state, wrport_idx, data_bit_idx, paths);
}
RTLIL::SigBit conditions_to_logic(std::set<std::map<RTLIL::SigBit, bool>> &conditions, SigBit olden, int &created_conditions)
RTLIL::SigBit conditions_to_logic(pool<dict<RTLIL::SigBit, bool>> &conditions, SigBit olden)
{
auto key = make_pair(conditions, olden);
@ -112,10 +120,9 @@ struct OptMemFeedbackWorker
sig2.append(it.second ? RTLIL::State::S1 : RTLIL::State::S0);
}
terms.append(module->Ne(NEW_ID, sig1, sig2));
created_conditions++;
}
if (olden.wire != nullptr || olden != State::S1)
if (olden != State::S1)
terms.append(olden);
if (GetSize(terms) == 0)
@ -129,117 +136,113 @@ struct OptMemFeedbackWorker
void translate_rd_feedback_to_en(Mem &mem)
{
std::map<RTLIL::SigSpec, std::vector<std::set<RTLIL::SigBit>>> async_rd_bits;
std::map<RTLIL::SigBit, std::set<RTLIL::SigBit>> muxtree_upstream_map;
std::set<RTLIL::SigBit> non_feedback_nets;
for (auto wire : module->wires())
if (wire->port_output) {
std::vector<RTLIL::SigBit> bits = sigmap(wire);
non_feedback_nets.insert(bits.begin(), bits.end());
}
for (auto cell : module->cells())
{
bool ignore_data_port = false;
if (cell->type.in(ID($mux), ID($pmux)))
{
std::vector<RTLIL::SigBit> sig_a = sigmap(cell->getPort(ID::A));
std::vector<RTLIL::SigBit> sig_b = sigmap(cell->getPort(ID::B));
std::vector<RTLIL::SigBit> sig_s = sigmap(cell->getPort(ID::S));
std::vector<RTLIL::SigBit> sig_y = sigmap(cell->getPort(ID::Y));
non_feedback_nets.insert(sig_s.begin(), sig_s.end());
for (int i = 0; i < int(sig_y.size()); i++) {
muxtree_upstream_map[sig_y[i]].insert(sig_a[i]);
for (int j = 0; j < int(sig_s.size()); j++)
muxtree_upstream_map[sig_y[i]].insert(sig_b[i + j*sig_y.size()]);
}
continue;
}
if (cell->type.in(ID($memwr), ID($memrd)) &&
IdString(cell->parameters.at(ID::MEMID).decode_string()) == mem.memid)
ignore_data_port = true;
for (auto conn : cell->connections())
{
if (ignore_data_port && conn.first == ID::DATA)
continue;
std::vector<RTLIL::SigBit> bits = sigmap(conn.second);
non_feedback_nets.insert(bits.begin(), bits.end());
}
}
std::set<RTLIL::SigBit> expand_non_feedback_nets = non_feedback_nets;
while (!expand_non_feedback_nets.empty())
{
std::set<RTLIL::SigBit> new_expand_non_feedback_nets;
for (auto &bit : expand_non_feedback_nets)
if (muxtree_upstream_map.count(bit))
for (auto &new_bit : muxtree_upstream_map.at(bit))
if (!non_feedback_nets.count(new_bit)) {
non_feedback_nets.insert(new_bit);
new_expand_non_feedback_nets.insert(new_bit);
}
expand_non_feedback_nets.swap(new_expand_non_feedback_nets);
}
// Look for async read ports that may be suitable for feedback paths.
dict<RTLIL::SigSpec, std::vector<pool<RTLIL::SigBit>>> async_rd_bits;
for (auto &port : mem.rd_ports)
{
if (port.clk_enable)
continue;
for (auto &bit : port.data)
if (non_feedback_nets.count(bit))
goto not_pure_feedback_port;
SigSpec addr = sigmap_xmux(port.addr);
async_rd_bits[port.addr].resize(max(GetSize(async_rd_bits), GetSize(port.data)));
for (int i = 0; i < GetSize(port.data); i++)
async_rd_bits[port.addr][i].insert(port.data[i]);
not_pure_feedback_port:;
async_rd_bits[addr].resize(mem.width);
for (int i = 0; i < mem.width; i++)
async_rd_bits[addr][i].insert(sigmap(port.data[i]));
}
if (async_rd_bits.empty())
return;
bool changed = false;
log("Populating enable bits on write ports of memory %s.%s with aync read feedback:\n", log_id(module), log_id(mem.memid));
// Look for actual feedback paths.
std::vector<FeedbackPath> paths;
for (int i = 0; i < GetSize(mem.wr_ports); i++)
{
auto &port = mem.wr_ports[i];
if (!async_rd_bits.count(port.addr))
SigSpec addr = sigmap_xmux(port.addr);
if (!async_rd_bits.count(addr))
continue;
log(" Analyzing write port %d.\n", i);
log(" Analyzing %s.%s write port %d.\n", log_id(module), log_id(mem.memid), i);
int created_conditions = 0;
for (int j = 0; j < GetSize(port.data); j++)
if (port.en[j] != RTLIL::SigBit(RTLIL::State::S0))
{
std::map<RTLIL::SigBit, bool> state;
std::set<std::map<RTLIL::SigBit, bool>> conditions;
{
if (port.en[j] == State::S0)
continue;
find_data_feedback(async_rd_bits.at(port.addr).at(j), port.data[j], state, conditions);
port.en[j] = conditions_to_logic(conditions, port.en[j], created_conditions);
}
dict<RTLIL::SigBit, bool> state;
if (created_conditions) {
log(" Added enable logic for %d different cases.\n", created_conditions);
changed = true;
find_data_feedback(async_rd_bits.at(addr).at(j), sigmap(port.data[j]), state, i, j, paths);
}
}
if (changed)
mem.emit();
if (paths.empty())
return;
// Now determine which read ports are actually used only for
// feedback paths, and can be removed.
dict<SigBit, int> feedback_users_count;
for (auto &path : paths)
feedback_users_count[path.feedback_bit]++;
pool<SigBit> feedback_ok;
for (auto &port : mem.rd_ports)
{
if (port.clk_enable)
continue;
bool ok = true;
for (auto bit : sigmap(port.data))
if (sig_users_count[bit] != feedback_users_count[bit])
ok = false;
if (ok)
{
// This port is going bye-bye.
for (auto bit : sigmap(port.data))
feedback_ok.insert(bit);
port.removed = true;
}
}
if (feedback_ok.empty())
return;
// Prepare a feedback condition list grouped by port bits.
dict<std::pair<int, int>, pool<dict<SigBit, bool>>> portbit_conds;
for (auto &path : paths)
if (feedback_ok.count(path.feedback_bit))
portbit_conds[std::make_pair(path.wrport_idx, path.data_bit_idx)].insert(path.condition);
if (portbit_conds.empty())
return;
// Okay, let's do it.
log("Populating enable bits on write ports of memory %s.%s with async read feedback:\n", log_id(module), log_id(mem.memid));
for (auto &it : portbit_conds)
{
int wrport_idx = it.first.first;
int bit = it.first.second;
auto &port = mem.wr_ports[wrport_idx];
port.en[bit] = conditions_to_logic(it.second, port.en[bit]);
log(" Port %d bit %d: added enable logic for %d different cases.\n", wrport_idx, bit, GetSize(it.second));
}
mem.emit();
for (auto bit : feedback_ok)
module->connect(bit, State::Sx);
design->scratchpad_set_bool("opt.did_something", true);
}
// -------------
@ -258,6 +261,13 @@ struct OptMemFeedbackWorker
conditions_logic_cache.clear();
sigmap_xmux = sigmap;
for (auto wire : module->wires()) {
if (wire->port_output)
for (auto bit : sigmap(wire))
sig_users_count[bit]++;
}
for (auto cell : module->cells())
{
if (cell->type == ID($mux))
@ -277,6 +287,11 @@ struct OptMemFeedbackWorker
for (int i = 0; i < int(sig_y.size()); i++)
sig_to_mux[sig_y[i]] = std::pair<RTLIL::Cell*, int>(cell, i);
}
for (auto &conn : cell->connections())
if (!cell->known() || cell->input(conn.first))
for (auto bit : sigmap(conn.second))
sig_users_count[bit]++;
}
for (auto &mem : memories)
@ -292,10 +307,10 @@ struct OptMemFeedbackPass : public Pass {
log("\n");
log(" opt_mem_feedback [selection]\n");
log("\n");
log("This pass detects cases where an asynchronous read port is connected via\n");
log("a mux tree to a write port with the same address. When such a path is\n");
log("found, it is replaced with a new condition on an enable signal, possibly\n");
log("allowing for removal of the read port.\n");
log("This pass detects cases where an asynchronous read port is only connected via\n");
log("a mux tree to a write port with the same address. When such a connection is\n");
log("found, it is replaced with a new condition on an enable signal, allowing\n");
log("for removal of the read port.\n");
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) override {

101
tests/opt/bug2766.ys Normal file
View File

@ -0,0 +1,101 @@
# Case 1.
read_verilog << EOT
module top(...);
input clk;
input sel;
input [3:0] ra;
input [3:0] wa;
input wd;
output [3:0] rd;
reg [3:0] mem[0:15];
integer i;
initial begin
for (i = 0; i < 16; i = i + 1)
mem[i] <= i;
end
assign rd = mem[ra];
always @(posedge clk) begin
mem[wa] <= {4{sel ? wd : mem[wa][0]}};
end
endmodule
EOT
hierarchy -auto-top
proc
opt_clean
design -save start
memory_map
design -save preopt
design -load start
opt_mem_feedback
memory_map
design -save postopt
equiv_opt -assert -run prepare: :
design -reset
# Case 2.
read_verilog << EOT
module top(...);
input clk;
input s1;
input s2;
input s3;
input [3:0] ra;
input [3:0] wa;
input wd;
output rd;
reg mem[0:15];
integer i;
initial begin
for (i = 0; i < 16; i = i + 1)
mem[i] <= ^i;
end
assign rd = mem[ra];
wire ta = s1 ? wd : mem[wa];
wire tb = s2 ? wd : ta;
wire tc = s3 ? tb : ta;
always @(posedge clk) begin
mem[wa] <= tc;
end
endmodule
EOT
hierarchy -auto-top
proc
opt_clean
design -save start
memory_map
design -save preopt
design -load start
opt_mem_feedback
memory_map
design -save postopt
equiv_opt -assert -run prepare: :

View File

@ -0,0 +1,142 @@
# Good case: proper feedback port.
read_verilog << EOT
module top(...);
input clk;
input en;
input s;
input [3:0] ra;
output [15:0] rd;
input [3:0] wa;
input [15:0] wd;
reg [15:0] mem[0:15];
assign rd = mem[ra];
always @(posedge clk) begin
if (en) begin
mem[wa] <= {mem[wa][15:8], s ? wd[7:0] : mem[wa][7:0]};
end
end
endmodule
EOT
hierarchy -auto-top
proc
opt_clean
design -save start
memory_map
design -save preopt
design -load start
opt_mem_feedback
select -assert-count 1 t:$memrd
memory_map
design -save postopt
equiv_opt -assert -run prepare: :
design -reset
# Bad case: read port also used for other things.
read_verilog << EOT
module top(...);
input clk;
input en;
input s;
output [15:0] rd;
input [3:0] wa;
input [15:0] wd;
reg [15:0] mem[0:15];
assign rd = mem[wa];
always @(posedge clk) begin
if (en) begin
mem[wa] <= {s ? rd : wd[15:8], s ? wd[7:0] : rd};
end
end
endmodule
EOT
hierarchy -auto-top
proc
opt_clean
design -save start
memory_map
design -save preopt
design -load start
select -assert-count 1 t:$memrd
opt_mem_feedback
select -assert-count 1 t:$memrd
memory_map
design -save postopt
equiv_opt -assert -run prepare: :
design -reset
# Bad case: another user of the mux out.
read_verilog << EOT
module top(...);
input clk;
input en;
input s;
output [15:0] rd;
input [3:0] wa;
input [15:0] wd;
reg [15:0] mem[0:15];
assign rd = s ? wd : mem[wa];
always @(posedge clk) begin
if (en) begin
mem[wa] <= rd;
end
end
endmodule
EOT
hierarchy -auto-top
proc
opt_clean
design -save start
memory_map
design -save preopt
design -load start
select -assert-count 1 t:$memrd
opt_mem_feedback
select -assert-count 1 t:$memrd
memory_map
design -save postopt
equiv_opt -assert -run prepare: :