Merge remote-tracking branch 'origin/xaig_dff' into eddie/abc9_refactor

This commit is contained in:
Eddie Hung 2019-12-30 16:20:58 -08:00
commit 7649ec72c9
18 changed files with 1429 additions and 769 deletions

View File

@ -57,6 +57,7 @@ Yosys 0.9 .. Yosys 0.9-dev
always_latch and always_ff)
- Added "xilinx_dffopt" pass
- Added "scratchpad" pass
- Added "synth_xilinx -dff"
Yosys 0.8 .. Yosys 0.9
----------------------

View File

@ -128,7 +128,7 @@ bumpversion:
# is just a symlink to your actual ABC working directory, as 'make mrproper'
# will remove the 'abc' directory and you do not want to accidentally
# delete your work on ABC..
ABCREV = 623b5e8
ABCREV = c4b12fa
ABCPULL = 1
ABCURL ?= https://github.com/berkeley-abc/abc
ABCMKARGS = CC="$(CXX)" CXX="$(CXX)" ABC_USE_LIBSTDCXX=1

View File

@ -378,6 +378,12 @@ Verilog Attributes and non-standard features
for example, to specify the clk-to-Q delay of a flip-flop for consideration
during techmapping.
- The module attribute ``abc9_flop`` is a boolean marking the module as a
whitebox that describes the synchronous behaviour of a flip-flop.
- The cell attribute ``abc9_keep`` is a boolean indicating that this black/
white box should be preserved through `abc9` mapping.
- The frontend sets attributes ``always_comb``, ``always_latch`` and
``always_ff`` on processes derived from SystemVerilog style always blocks
according to the type of the always. These are checked for correctness in

View File

@ -78,10 +78,11 @@ struct XAigerWriter
Module *module;
SigMap sigmap;
pool<SigBit> input_bits, output_bits;
pool<SigBit> input_bits, output_bits, external_bits;
dict<SigBit, SigBit> not_map, alias_map;
dict<SigBit, pair<SigBit, SigBit>> and_map;
vector<SigBit> ci_bits, co_bits;
dict<SigBit, std::pair<int,int>> ff_bits;
dict<SigBit, float> arrival_times;
vector<pair<int, int>> aig_gates;
@ -92,7 +93,6 @@ struct XAigerWriter
dict<SigBit, int> ordered_outputs;
vector<Cell*> box_list;
bool omode = false;
int mkgate(int a0, int a1)
{
@ -140,7 +140,7 @@ struct XAigerWriter
{
pool<SigBit> undriven_bits;
pool<SigBit> unused_bits;
pool<SigBit> keep_bits;
pool<SigBit> inout_bits;
// promote public wires
for (auto wire : module->wires())
@ -152,52 +152,52 @@ struct XAigerWriter
if (wire->port_input)
sigmap.add(wire);
// promote keep wires
for (auto wire : module->wires())
{
bool keep = wire->attributes.count("\\keep");
if (wire->get_bool_attribute(ID::keep))
sigmap.add(wire);
for (auto wire : module->wires())
for (int i = 0; i < GetSize(wire); i++)
{
SigBit wirebit(wire, i);
SigBit bit = sigmap(wirebit);
if (bit.wire) {
undriven_bits.insert(bit);
unused_bits.insert(bit);
}
if (keep)
keep_bits.insert(wirebit);
if (wire->port_input || keep) {
if (bit != wirebit)
alias_map[bit] = wirebit;
input_bits.insert(wirebit);
}
if (wire->port_output || keep) {
if (bit != RTLIL::Sx) {
if (bit != wirebit)
alias_map[wirebit] = bit;
output_bits.insert(wirebit);
if (bit.wire == nullptr) {
if (wire->port_output) {
aig_map[wirebit] = (bit == State::S1) ? 1 : 0;
if (holes_mode)
output_bits.insert(wirebit);
//external_bits.insert(wirebit);
}
else
log_debug("Skipping PO '%s' driven by 1'bx\n", log_signal(wirebit));
continue;
}
}
}
for (auto bit : input_bits)
undriven_bits.erase(sigmap(bit));
for (auto bit : output_bits)
if (!bit.wire->port_input)
unused_bits.erase(bit);
undriven_bits.insert(bit);
unused_bits.insert(bit);
if (wire->port_input)
input_bits.insert(bit);
if (wire->port_output) {
if (bit != wirebit)
alias_map[wirebit] = bit;
if (holes_mode)
output_bits.insert(wirebit);
else
external_bits.insert(wirebit);
}
if (wire->port_input && wire->port_output)
inout_bits.insert(wirebit);
}
// TODO: Speed up toposort -- ultimately we care about
// box ordering, but not individual AIG cells
dict<SigBit, pool<IdString>> bit_drivers, bit_users;
TopoSort<IdString, RTLIL::sort_by_id_str> toposort;
bool abc9_box_seen = false;
std::vector<Cell*> flop_boxes;
for (auto cell : module->selected_cells()) {
if (cell->type == "$_NOT_")
@ -235,75 +235,81 @@ struct XAigerWriter
log_assert(!holes_mode);
RTLIL::Module* inst_module = module->design->module(cell->type);
if (inst_module && inst_module->attributes.count("\\abc9_box_id")) {
abc9_box_seen = true;
if (cell->type == "$__ABC9_FF_")
{
SigBit D = sigmap(cell->getPort("\\D").as_bit());
SigBit Q = sigmap(cell->getPort("\\Q").as_bit());
unused_bits.erase(D);
undriven_bits.erase(Q);
alias_map[Q] = D;
auto r = ff_bits.insert(std::make_pair(D, std::make_pair(0, 2)));
log_assert(r.second);
continue;
}
if (!holes_mode) {
toposort.node(cell->name);
for (const auto &conn : cell->connections()) {
auto port_wire = inst_module->wire(conn.first);
if (port_wire->port_input) {
// Ignore inout for the sake of topographical ordering
if (port_wire->port_output) continue;
RTLIL::Module* inst_module = module->design->module(cell->type);
if (inst_module) {
bool abc9_box = inst_module->attributes.count("\\abc9_box_id") && !cell->get_bool_attribute("\\abc9_keep");
for (const auto &conn : cell->connections()) {
auto port_wire = inst_module->wire(conn.first);
if (port_wire->port_output) {
int arrival = 0;
auto it = port_wire->attributes.find("\\abc9_arrival");
if (it != port_wire->attributes.end()) {
if (it->second.flags != 0)
log_error("Attribute 'abc9_arrival' on port '%s' of module '%s' is not an integer.\n", log_id(port_wire), log_id(cell->type));
arrival = it->second.as_int();
}
if (arrival)
for (auto bit : sigmap(conn.second))
arrival_times[bit] = arrival;
}
if (abc9_box) {
// Ignore inout for the sake of topographical ordering
if (port_wire->port_input && !port_wire->port_output)
for (auto bit : sigmap(conn.second))
bit_users[bit].insert(cell->name);
}
if (port_wire->port_output)
for (auto bit : sigmap(conn.second))
bit_drivers[bit].insert(cell->name);
}
}
if (abc9_box) {
abc9_box_seen = true;
toposort.node(cell->name);
if (inst_module->attributes.count("\\abc9_flop"))
flop_boxes.push_back(cell);
continue;
}
}
else {
bool cell_known = inst_module || cell->known();
for (const auto &c : cell->connections()) {
if (c.second.is_fully_const()) continue;
auto port_wire = inst_module ? inst_module->wire(c.first) : nullptr;
auto is_input = (port_wire && port_wire->port_input) || !cell_known || cell->input(c.first);
auto is_output = (port_wire && port_wire->port_output) || !cell_known || cell->output(c.first);
if (!is_input && !is_output)
log_error("Connection '%s' on cell '%s' (type '%s') not recognised!\n", log_id(c.first), log_id(cell), log_id(cell->type));
if (is_input) {
for (auto b : c.second) {
Wire *w = b.wire;
if (!w) continue;
if (!w->port_output || !cell_known) {
SigBit I = sigmap(b);
if (I != b)
alias_map[b] = I;
bool cell_known = inst_module || cell->known();
for (const auto &c : cell->connections()) {
if (c.second.is_fully_const()) continue;
auto port_wire = inst_module ? inst_module->wire(c.first) : nullptr;
auto is_input = (port_wire && port_wire->port_input) || !cell_known || cell->input(c.first);
auto is_output = (port_wire && port_wire->port_output) || !cell_known || cell->output(c.first);
if (!is_input && !is_output)
log_error("Connection '%s' on cell '%s' (type '%s') not recognised!\n", log_id(c.first), log_id(cell), log_id(cell->type));
if (is_input) {
for (auto b : c.second) {
Wire *w = b.wire;
if (!w) continue;
if (!w->port_output || !cell_known) {
SigBit I = sigmap(b);
if (I != b)
alias_map[b] = I;
if (holes_mode)
output_bits.insert(b);
unused_bits.erase(b);
if (!cell_known)
keep_bits.insert(b);
}
}
}
if (is_output) {
int arrival = 0;
if (port_wire) {
auto it = port_wire->attributes.find("\\abc9_arrival");
if (it != port_wire->attributes.end()) {
if (it->second.flags != 0)
log_error("Attribute 'abc9_arrival' on port '%s' of module '%s' is not an integer.\n", log_id(port_wire), log_id(cell->type));
arrival = it->second.as_int();
}
}
for (auto b : c.second) {
Wire *w = b.wire;
if (!w) continue;
input_bits.insert(b);
SigBit O = sigmap(b);
if (O != b)
alias_map[O] = b;
undriven_bits.erase(O);
if (arrival)
arrival_times[b] = arrival;
else
external_bits.insert(b);
}
}
}
@ -313,6 +319,60 @@ struct XAigerWriter
}
if (abc9_box_seen) {
dict<IdString, std::pair<IdString,int>> flop_q;
for (auto cell : flop_boxes) {
auto r = flop_q.insert(std::make_pair(cell->type, std::make_pair(IdString(), 0)));
SigBit d;
if (r.second) {
for (const auto &conn : cell->connections()) {
const SigSpec &rhs = conn.second;
if (!rhs.is_bit())
continue;
if (!ff_bits.count(rhs))
continue;
r.first->second.first = conn.first;
Module *inst_module = module->design->module(cell->type);
Wire *wire = inst_module->wire(conn.first);
log_assert(wire);
auto jt = wire->attributes.find("\\abc9_arrival");
if (jt != wire->attributes.end()) {
if (jt->second.flags != 0)
log_error("Attribute 'abc9_arrival' on port '%s' of module '%s' is not an integer.\n", log_id(wire), log_id(cell->type));
r.first->second.second = jt->second.as_int();
}
d = rhs;
log_assert(d == sigmap(d));
break;
}
}
else
d = cell->getPort(r.first->second.first);
auto &rhs = ff_bits.at(d);
auto it = cell->attributes.find(ID(abc9_mergeability));
log_assert(it != cell->attributes.end());
rhs.first = it->second.as_int();
cell->attributes.erase(it);
it = cell->attributes.find(ID(abc9_init));
log_assert(it != cell->attributes.end());
log_assert(GetSize(it->second) == 1);
if (it->second[0] == State::S1)
rhs.second = 1;
else if (it->second[0] == State::S0)
rhs.second = 0;
else {
log_assert(it->second[0] == State::Sx);
rhs.second = 0;
}
cell->attributes.erase(it);
auto arrival = r.first->second.second;
if (arrival)
arrival_times[d] = arrival;
}
for (auto &it : bit_users)
if (bit_drivers.count(it.first))
for (auto driver_cell : bit_drivers.at(it.first))
@ -341,7 +401,8 @@ struct XAigerWriter
log_assert(cell);
RTLIL::Module* box_module = module->design->module(cell->type);
if (!box_module || !box_module->attributes.count("\\abc9_box_id"))
if (!box_module || !box_module->attributes.count("\\abc9_box_id")
|| cell->get_bool_attribute("\\abc9_keep"))
continue;
bool blackbox = box_module->get_blackbox_attribute(true /* ignore_wb */);
@ -377,7 +438,7 @@ struct XAigerWriter
alias_map[b] = I;
}
co_bits.emplace_back(b);
unused_bits.erase(b);
unused_bits.erase(I);
}
}
if (w->port_output) {
@ -401,62 +462,75 @@ struct XAigerWriter
SigBit O = sigmap(b);
if (O != b)
alias_map[O] = b;
input_bits.erase(O);
undriven_bits.erase(O);
input_bits.erase(b);
}
}
}
// Connect <cell>.$abc9_currQ (inserted by abc9_map.v) as an input to the flop box
if (box_module->get_bool_attribute("\\abc9_flop")) {
SigSpec rhs = module->wire(stringf("%s.$abc9_currQ", cell->name.c_str()));
if (rhs.empty())
log_error("'%s.$abc9_currQ' is not a wire present in module '%s'.\n", log_id(cell), log_id(module));
for (auto b : rhs) {
SigBit I = sigmap(b);
if (b == RTLIL::Sx)
b = State::S0;
else if (I != b) {
if (I == RTLIL::Sx)
alias_map[b] = State::S0;
else
alias_map[b] = I;
}
co_bits.emplace_back(b);
unused_bits.erase(I);
}
}
box_list.emplace_back(cell);
}
// TODO: Free memory from toposort, bit_drivers, bit_users
}
for (auto bit : input_bits) {
if (!output_bits.count(bit))
if (!holes_mode)
for (auto cell : module->cells())
if (!module->selected(cell))
for (auto &conn : cell->connections())
if (cell->input(conn.first))
for (auto wirebit : conn.second)
if (sigmap(wirebit).wire)
external_bits.insert(wirebit);
// For all bits consumed outside of the selected cells,
// but driven from a selected cell, then add it as
// a primary output
for (auto wirebit : external_bits) {
SigBit bit = sigmap(wirebit);
if (!bit.wire)
continue;
RTLIL::Wire *wire = bit.wire;
// If encountering an inout port, or a keep-ed wire, then create a new wire
// with $inout.out suffix, make it a PO driven by the existing inout, and
// inherit existing inout's drivers
if ((wire->port_input && wire->port_output && !undriven_bits.count(bit))
|| keep_bits.count(bit)) {
RTLIL::IdString wire_name = stringf("$%s$inout.out", wire->name.c_str());
RTLIL::Wire *new_wire = module->wire(wire_name);
if (!new_wire)
new_wire = module->addWire(wire_name, GetSize(wire));
SigBit new_bit(new_wire, bit.offset);
module->connect(new_bit, bit);
if (not_map.count(bit)) {
auto a = not_map.at(bit);
not_map[new_bit] = a;
}
else if (and_map.count(bit)) {
auto a = and_map.at(bit);
and_map[new_bit] = a;
}
else if (alias_map.count(bit)) {
auto a = alias_map.at(bit);
alias_map[new_bit] = a;
}
else
alias_map[new_bit] = bit;
output_bits.erase(bit);
output_bits.insert(new_bit);
if (!undriven_bits.count(bit)) {
if (bit != wirebit)
alias_map[wirebit] = bit;
output_bits.insert(wirebit);
}
}
for (auto bit : input_bits)
undriven_bits.erase(sigmap(bit));
for (auto bit : output_bits)
unused_bits.erase(sigmap(bit));
for (auto bit : unused_bits)
undriven_bits.erase(bit);
if (!undriven_bits.empty() && !holes_mode) {
undriven_bits.sort();
// Make all undriven bits a primary input
if (!holes_mode)
for (auto bit : undriven_bits) {
log_warning("Treating undriven bit %s.%s like $anyseq.\n", log_id(module), log_signal(bit));
input_bits.insert(bit);
undriven_bits.erase(bit);
}
log_warning("Treating a total of %d undriven bits in %s like $anyseq.\n", GetSize(undriven_bits), log_id(module));
}
if (holes_mode) {
struct sort_by_port_id {
@ -484,25 +558,36 @@ struct XAigerWriter
aig_map[bit] = 2*aig_m;
}
for (auto bit : ci_bits) {
for (const auto &i : ff_bits) {
const SigBit &bit = i.first;
aig_m++, aig_i++;
log_assert(!aig_map.count(bit));
aig_map[bit] = 2*aig_m;
}
dict<SigBit, int> ff_aig_map;
for (auto &bit : ci_bits) {
aig_m++, aig_i++;
auto r = aig_map.insert(std::make_pair(bit, 2*aig_m));
if (!r.second)
ff_aig_map[bit] = 2*aig_m;
}
for (auto bit : co_bits) {
ordered_outputs[bit] = aig_o++;
aig_outputs.push_back(bit2aig(bit));
}
if (output_bits.empty()) {
output_bits.insert(State::S0);
omode = true;
}
for (auto bit : output_bits) {
ordered_outputs[bit] = aig_o++;
aig_outputs.push_back(bit2aig(bit));
}
for (auto &i : ff_bits) {
const SigBit &bit = i.first;
aig_o++;
aig_outputs.push_back(ff_aig_map.at(bit));
}
}
void write_aiger(std::ostream &f, bool ascii_mode)
@ -564,7 +649,6 @@ struct XAigerWriter
f << "c";
log_assert(!output_bits.empty());
auto write_buffer = [](std::stringstream &buffer, int i32) {
int32_t i32_be = to_big_endian(i32);
buffer.write(reinterpret_cast<const char*>(&i32_be), sizeof(i32_be));
@ -572,14 +656,14 @@ struct XAigerWriter
std::stringstream h_buffer;
auto write_h_buffer = std::bind(write_buffer, std::ref(h_buffer), std::placeholders::_1);
write_h_buffer(1);
log_debug("ciNum = %d\n", GetSize(input_bits) + GetSize(ci_bits));
write_h_buffer(input_bits.size() + ci_bits.size());
log_debug("coNum = %d\n", GetSize(output_bits) + GetSize(co_bits));
write_h_buffer(output_bits.size() + GetSize(co_bits));
log_debug("piNum = %d\n", GetSize(input_bits));
write_h_buffer(input_bits.size());
log_debug("poNum = %d\n", GetSize(output_bits));
write_h_buffer(output_bits.size());
log_debug("ciNum = %d\n", GetSize(input_bits) + GetSize(ff_bits) + GetSize(ci_bits));
write_h_buffer(input_bits.size() + ff_bits.size() + ci_bits.size());
log_debug("coNum = %d\n", GetSize(output_bits) + GetSize(ff_bits) + GetSize(co_bits));
write_h_buffer(output_bits.size() + GetSize(ff_bits) + GetSize(co_bits));
log_debug("piNum = %d\n", GetSize(input_bits) + GetSize(ff_bits));
write_h_buffer(input_bits.size() + ff_bits.size());
log_debug("poNum = %d\n", GetSize(output_bits) + GetSize(ff_bits));
write_h_buffer(output_bits.size() + ff_bits.size());
log_debug("boxNum = %d\n", GetSize(box_list));
write_h_buffer(box_list.size());
@ -595,7 +679,7 @@ struct XAigerWriter
//for (auto bit : output_bits)
// write_o_buffer(0);
if (!box_list.empty()) {
if (!box_list.empty() || !ff_bits.empty()) {
RTLIL::Module *holes_module = module->design->addModule("$__holes__");
log_assert(holes_module);
@ -609,7 +693,7 @@ struct XAigerWriter
IdString derived_name = orig_box_module->derive(module->design, cell->parameters);
RTLIL::Module* box_module = module->design->module(derived_name);
if (box_module->has_processes())
log_error("ABC9 box '%s' contains processes!\n", box_module->name.c_str());
Pass::call_on_module(module->design, box_module, "proc");
int box_inputs = 0, box_outputs = 0;
auto r = cell_cache.insert(std::make_pair(derived_name, nullptr));
@ -655,9 +739,9 @@ struct XAigerWriter
box_outputs += GetSize(w);
for (int i = 0; i < GetSize(w); i++) {
if (GetSize(w) == 1)
holes_wire = holes_module->addWire(stringf("%s.%s", cell->name.c_str(), log_id(w->name)));
holes_wire = holes_module->addWire(stringf("$abc%s.%s", cell->name.c_str(), log_id(w->name)));
else
holes_wire = holes_module->addWire(stringf("%s.%s[%d]", cell->name.c_str(), log_id(w->name), i));
holes_wire = holes_module->addWire(stringf("$abc%s.%s[%d]", cell->name.c_str(), log_id(w->name), i));
holes_wire->port_output = true;
holes_wire->port_id = port_id++;
holes_module->ports.push_back(holes_wire->name);
@ -675,6 +759,23 @@ struct XAigerWriter
}
}
// For flops only, create an extra 1-bit input that drives a new wire
// called "<cell>.$abc9_currQ" that is used below
if (box_module->get_bool_attribute("\\abc9_flop")) {
log_assert(holes_cell);
box_inputs++;
Wire *holes_wire = holes_module->wire(stringf("\\i%d", box_inputs));
if (!holes_wire) {
holes_wire = holes_module->addWire(stringf("\\i%d", box_inputs));
holes_wire->port_input = true;
holes_wire->port_id = port_id++;
holes_module->ports.push_back(holes_wire->name);
}
Wire *w = holes_module->addWire(stringf("%s.$abc9_currQ", cell->name.c_str()));
holes_module->connect(w, holes_wire);
}
write_h_buffer(box_inputs);
write_h_buffer(box_outputs);
write_h_buffer(box_module->attributes.at("\\abc9_box_id").as_int());
@ -683,13 +784,36 @@ struct XAigerWriter
std::stringstream r_buffer;
auto write_r_buffer = std::bind(write_buffer, std::ref(r_buffer), std::placeholders::_1);
write_r_buffer(0);
log_debug("flopNum = %d\n", GetSize(ff_bits));
write_r_buffer(ff_bits.size());
std::stringstream s_buffer;
auto write_s_buffer = std::bind(write_buffer, std::ref(s_buffer), std::placeholders::_1);
write_s_buffer(ff_bits.size());
for (const auto &i : ff_bits) {
const SigBit &bit = i.first;
int mergeability = i.second.first;
log_assert(mergeability > 0);
write_r_buffer(mergeability);
int init = i.second.second;
write_s_buffer(init);
write_i_buffer(arrival_times.at(bit, 0));
//write_o_buffer(0);
}
f << "r";
std::string buffer_str = r_buffer.str();
int32_t buffer_size_be = to_big_endian(buffer_str.size());
f.write(reinterpret_cast<const char*>(&buffer_size_be), sizeof(buffer_size_be));
f.write(buffer_str.data(), buffer_str.size());
f << "s";
buffer_str = s_buffer.str();
buffer_size_be = to_big_endian(buffer_str.size());
f.write(reinterpret_cast<const char*>(&buffer_size_be), sizeof(buffer_size_be));
f.write(buffer_str.data(), buffer_str.size());
if (holes_module) {
log_push();
@ -697,34 +821,64 @@ struct XAigerWriter
//holes_module->fixup_ports();
holes_module->check();
holes_module->design->selection_stack.emplace_back(false);
RTLIL::Selection& sel = holes_module->design->selection_stack.back();
sel.select(holes_module);
Pass::call(holes_module->design, "flatten -wb");
// Cannot techmap/aigmap/check all lib_whitebox-es outside of write_xaiger
// since boxes may contain parameters in which case `flatten` would have
// created a new $paramod ...
Pass::call(holes_module->design, "techmap");
Pass::call(holes_module->design, "aigmap");
for (auto cell : holes_module->cells())
if (!cell->type.in("$_NOT_", "$_AND_"))
log_error("Whitebox contents cannot be represented as AIG. Please verify whiteboxes are synthesisable.\n");
Pass::call_on_module(holes_module->design, holes_module, "flatten -wb; techmap; aigmap");
holes_module->design->selection_stack.pop_back();
dict<SigSig, SigSig> replace;
for (auto it = holes_module->cells_.begin(); it != holes_module->cells_.end(); ) {
auto cell = it->second;
if (cell->type.in("$_DFF_N_", "$_DFF_NN0_", "$_DFF_NN1_", "$_DFF_NP0_", "$_DFF_NP1_",
"$_DFF_P_", "$_DFF_PN0_", "$_DFF_PN1", "$_DFF_PP0_", "$_DFF_PP1_")) {
SigBit D = cell->getPort("\\D");
SigBit Q = cell->getPort("\\Q");
// Remove the DFF cell from what needs to be a combinatorial box
it = holes_module->cells_.erase(it);
Wire *port;
if (GetSize(Q.wire) == 1)
port = holes_module->wire(stringf("$abc%s", Q.wire->name.c_str()));
else
port = holes_module->wire(stringf("$abc%s[%d]", Q.wire->name.c_str(), Q.offset));
log_assert(port);
// Prepare to replace "assign <port> = DFF.Q;" with "assign <port> = DFF.D;"
// in order to extract the combinatorial control logic that feeds the box
// (i.e. clock enable, synchronous reset, etc.)
replace.insert(std::make_pair(SigSig(port,Q), SigSig(port,D)));
// Since `flatten` above would have created wires named "<cell>.Q",
// extract the pre-techmap cell name
auto pos = Q.wire->name.str().rfind(".");
log_assert(pos != std::string::npos);
IdString driver = Q.wire->name.substr(0, pos);
// And drive the signal that was previously driven by "DFF.Q" (typically
// used to implement clock-enable functionality) with the "<cell>.$abc9_currQ"
// wire (which itself is driven an input port) we inserted above
Wire *currQ = holes_module->wire(stringf("%s.$abc9_currQ", driver.c_str()));
log_assert(currQ);
holes_module->connect(Q, currQ);
continue;
}
else if (!cell->type.in("$_NOT_", "$_AND_"))
log_error("Whitebox contents cannot be represented as AIG. Please verify whiteboxes are synthesisable.\n");
++it;
}
for (auto &conn : holes_module->connections_) {
auto it = replace.find(conn);
if (it != replace.end())
conn = it->second;
}
// Move into a new (temporary) design so that "clean" will only
// operate (and run checks on) this one module
RTLIL::Design *holes_design = new RTLIL::Design;
holes_module->design->modules_.erase(holes_module->name);
module->design->modules_.erase(holes_module->name);
holes_design->add(holes_module);
Pass::call(holes_design, "clean -purge");
Pass::call(holes_design, "opt -purge");
std::stringstream a_buffer;
XAigerWriter writer(holes_module, true /* holes_mode */);
writer.write_aiger(a_buffer, false /*ascii_mode*/);
delete holes_design;
f << "a";
@ -755,6 +909,11 @@ struct XAigerWriter
//f.write(buffer_str.data(), buffer_str.size());
f << stringf("Generated by %s\n", yosys_version_str);
module->design->scratchpad_set_int("write_xaiger.num_ands", and_map.size());
module->design->scratchpad_set_int("write_xaiger.num_wires", aig_map.size());
module->design->scratchpad_set_int("write_xaiger.num_inputs", input_bits.size());
module->design->scratchpad_set_int("write_xaiger.num_outputs", output_bits.size());
}
void write_map(std::ostream &f, bool verbose_map)
@ -781,7 +940,8 @@ struct XAigerWriter
if (output_bits.count(b)) {
int o = ordered_outputs.at(b);
output_lines[o] += stringf("output %d %d %s\n", o - GetSize(co_bits), i, log_id(wire));
int init = 2;
output_lines[o] += stringf("output %d %d %s %d\n", o - GetSize(co_bits), i, log_id(wire), init);
continue;
}
@ -805,8 +965,6 @@ struct XAigerWriter
f << stringf("box %d %d %s\n", box_count++, 0, log_id(cell->name));
output_lines.sort();
if (omode)
output_lines[State::S0] = "output 0 0 $__dummy__\n";
for (auto &it : output_lines)
f << it.second;
log_assert(output_lines.size() == output_bits.size());

View File

@ -255,7 +255,7 @@ end_of_header:
else
log_abort();
RTLIL::Wire* n0 = module->wire("\\__0__");
RTLIL::Wire* n0 = module->wire("$0");
if (n0)
module->connect(n0, State::S0);
@ -316,14 +316,14 @@ static RTLIL::Wire* createWireIfNotExists(RTLIL::Module *module, unsigned litera
{
const unsigned variable = literal >> 1;
const bool invert = literal & 1;
RTLIL::IdString wire_name(stringf("\\__%d%s__", variable, invert ? "b" : ""));
RTLIL::IdString wire_name(stringf("$%d%s", variable, invert ? "b" : ""));
RTLIL::Wire *wire = module->wire(wire_name);
if (wire) return wire;
log_debug2("Creating %s\n", wire_name.c_str());
wire = module->addWire(wire_name);
wire->port_input = wire->port_output = false;
if (!invert) return wire;
RTLIL::IdString wire_inv_name(stringf("\\__%d__", variable));
RTLIL::IdString wire_inv_name(stringf("$%d", variable));
RTLIL::Wire *wire_inv = module->wire(wire_inv_name);
if (wire_inv) {
if (module->cell(wire_inv_name)) return wire;
@ -335,7 +335,7 @@ static RTLIL::Wire* createWireIfNotExists(RTLIL::Module *module, unsigned litera
}
log_debug2("Creating %s = ~%s\n", wire_name.c_str(), wire_inv_name.c_str());
module->addNotGate(stringf("\\__%d__$not", variable), wire_inv, wire);
module->addNotGate(stringf("$%d$not", variable), wire_inv, wire);
return wire;
}
@ -372,108 +372,102 @@ void AigerReader::parse_xaiger(const dict<int,IdString> &box_lookup)
else
log_abort();
RTLIL::Wire* n0 = module->wire("\\__0__");
RTLIL::Wire* n0 = module->wire("$0");
if (n0)
module->connect(n0, State::S0);
int c = f.get();
if (c != 'c')
log_error("Line %u: cannot interpret first character '%c'!\n", line_count, c);
if (f.peek() == '\n')
f.get();
// Parse footer (symbol table, comments, etc.)
std::string s;
bool comment_seen = false;
for (int c = f.peek(); c != EOF; c = f.peek()) {
if (comment_seen || c == 'c') {
if (!comment_seen) {
f.ignore(1);
c = f.peek();
comment_seen = true;
}
if (c == '\n')
break;
f.ignore(1);
// XAIGER extensions
if (c == 'm') {
uint32_t dataSize YS_ATTRIBUTE(unused) = parse_xaiger_literal(f);
uint32_t lutNum = parse_xaiger_literal(f);
uint32_t lutSize YS_ATTRIBUTE(unused) = parse_xaiger_literal(f);
log_debug("m: dataSize=%u lutNum=%u lutSize=%u\n", dataSize, lutNum, lutSize);
ConstEvalAig ce(module);
for (unsigned i = 0; i < lutNum; ++i) {
uint32_t rootNodeID = parse_xaiger_literal(f);
uint32_t cutLeavesM = parse_xaiger_literal(f);
log_debug2("rootNodeID=%d cutLeavesM=%d\n", rootNodeID, cutLeavesM);
RTLIL::Wire *output_sig = module->wire(stringf("\\__%d__", rootNodeID));
uint32_t nodeID;
RTLIL::SigSpec input_sig;
for (unsigned j = 0; j < cutLeavesM; ++j) {
nodeID = parse_xaiger_literal(f);
log_debug2("\t%u\n", nodeID);
RTLIL::Wire *wire = module->wire(stringf("\\__%d__", nodeID));
log_assert(wire);
input_sig.append(wire);
}
// TODO: Compute LUT mask from AIG in less than O(2 ** input_sig.size())
ce.clear();
ce.compute_deps(output_sig, input_sig.to_sigbit_pool());
RTLIL::Const lut_mask(RTLIL::State::Sx, 1 << input_sig.size());
for (int j = 0; j < (1 << cutLeavesM); ++j) {
int gray = j ^ (j >> 1);
ce.set_incremental(input_sig, RTLIL::Const{gray, static_cast<int>(cutLeavesM)});
RTLIL::SigBit o(output_sig);
bool success YS_ATTRIBUTE(unused) = ce.eval(o);
log_assert(success);
log_assert(o.wire == nullptr);
lut_mask[gray] = o.data;
}
RTLIL::Cell *output_cell = module->cell(stringf("\\__%d__$and", rootNodeID));
log_assert(output_cell);
module->remove(output_cell);
module->addLut(stringf("\\__%d__$lut", rootNodeID), input_sig, output_sig, std::move(lut_mask));
for (int c = f.get(); c != EOF; c = f.get()) {
// XAIGER extensions
if (c == 'm') {
uint32_t dataSize YS_ATTRIBUTE(unused) = parse_xaiger_literal(f);
uint32_t lutNum = parse_xaiger_literal(f);
uint32_t lutSize YS_ATTRIBUTE(unused) = parse_xaiger_literal(f);
log_debug("m: dataSize=%u lutNum=%u lutSize=%u\n", dataSize, lutNum, lutSize);
ConstEvalAig ce(module);
for (unsigned i = 0; i < lutNum; ++i) {
uint32_t rootNodeID = parse_xaiger_literal(f);
uint32_t cutLeavesM = parse_xaiger_literal(f);
log_debug2("rootNodeID=%d cutLeavesM=%d\n", rootNodeID, cutLeavesM);
RTLIL::Wire *output_sig = module->wire(stringf("$%d", rootNodeID));
uint32_t nodeID;
RTLIL::SigSpec input_sig;
for (unsigned j = 0; j < cutLeavesM; ++j) {
nodeID = parse_xaiger_literal(f);
log_debug2("\t%u\n", nodeID);
RTLIL::Wire *wire = module->wire(stringf("$%d", nodeID));
log_assert(wire);
input_sig.append(wire);
}
}
else if (c == 'r') {
uint32_t dataSize YS_ATTRIBUTE(unused) = parse_xaiger_literal(f);
flopNum = parse_xaiger_literal(f);
log_debug("flopNum: %u\n", flopNum);
log_assert(dataSize == (flopNum+1) * sizeof(uint32_t));
f.ignore(flopNum * sizeof(uint32_t));
}
else if (c == 'n') {
parse_xaiger_literal(f);
f >> s;
log_debug("n: '%s'\n", s.c_str());
}
else if (c == 'h') {
f.ignore(sizeof(uint32_t));
uint32_t version YS_ATTRIBUTE(unused) = parse_xaiger_literal(f);
log_assert(version == 1);
uint32_t ciNum YS_ATTRIBUTE(unused) = parse_xaiger_literal(f);
log_debug("ciNum = %u\n", ciNum);
uint32_t coNum YS_ATTRIBUTE(unused) = parse_xaiger_literal(f);
log_debug("coNum = %u\n", coNum);
piNum = parse_xaiger_literal(f);
log_debug("piNum = %u\n", piNum);
uint32_t poNum YS_ATTRIBUTE(unused) = parse_xaiger_literal(f);
log_debug("poNum = %u\n", poNum);
uint32_t boxNum = parse_xaiger_literal(f);
log_debug("boxNum = %u\n", boxNum);
for (unsigned i = 0; i < boxNum; i++) {
f.ignore(2*sizeof(uint32_t));
uint32_t boxUniqueId = parse_xaiger_literal(f);
log_assert(boxUniqueId > 0);
uint32_t oldBoxNum = parse_xaiger_literal(f);
RTLIL::Cell* cell = module->addCell(stringf("$__box%u__", oldBoxNum), box_lookup.at(boxUniqueId));
boxes.emplace_back(cell);
// TODO: Compute LUT mask from AIG in less than O(2 ** input_sig.size())
ce.clear();
ce.compute_deps(output_sig, input_sig.to_sigbit_pool());
RTLIL::Const lut_mask(RTLIL::State::Sx, 1 << input_sig.size());
for (int j = 0; j < (1 << cutLeavesM); ++j) {
int gray = j ^ (j >> 1);
ce.set_incremental(input_sig, RTLIL::Const{gray, static_cast<int>(cutLeavesM)});
RTLIL::SigBit o(output_sig);
bool success YS_ATTRIBUTE(unused) = ce.eval(o);
log_assert(success);
log_assert(o.wire == nullptr);
lut_mask[gray] = o.data;
}
}
else if (c == 'a' || c == 'i' || c == 'o') {
uint32_t dataSize = parse_xaiger_literal(f);
f.ignore(dataSize);
}
else {
break;
RTLIL::Cell *output_cell = module->cell(stringf("$%d$and", rootNodeID));
log_assert(output_cell);
module->remove(output_cell);
module->addLut(stringf("$%d$lut", rootNodeID), input_sig, output_sig, std::move(lut_mask));
}
}
else
log_error("Line %u: cannot interpret first character '%c'!\n", line_count, c);
else if (c == 'r') {
uint32_t dataSize YS_ATTRIBUTE(unused) = parse_xaiger_literal(f);
flopNum = parse_xaiger_literal(f);
log_debug("flopNum = %u\n", flopNum);
log_assert(dataSize == (flopNum+1) * sizeof(uint32_t));
f.ignore(flopNum * sizeof(uint32_t));
}
else if (c == 'n') {
parse_xaiger_literal(f);
f >> s;
log_debug("n: '%s'\n", s.c_str());
}
else if (c == 'h') {
f.ignore(sizeof(uint32_t));
uint32_t version YS_ATTRIBUTE(unused) = parse_xaiger_literal(f);
log_assert(version == 1);
uint32_t ciNum YS_ATTRIBUTE(unused) = parse_xaiger_literal(f);
log_debug("ciNum = %u\n", ciNum);
uint32_t coNum YS_ATTRIBUTE(unused) = parse_xaiger_literal(f);
log_debug("coNum = %u\n", coNum);
piNum = parse_xaiger_literal(f);
log_debug("piNum = %u\n", piNum);
uint32_t poNum YS_ATTRIBUTE(unused) = parse_xaiger_literal(f);
log_debug("poNum = %u\n", poNum);
uint32_t boxNum = parse_xaiger_literal(f);
log_debug("boxNum = %u\n", boxNum);
for (unsigned i = 0; i < boxNum; i++) {
f.ignore(2*sizeof(uint32_t));
uint32_t boxUniqueId = parse_xaiger_literal(f);
log_assert(boxUniqueId > 0);
uint32_t oldBoxNum = parse_xaiger_literal(f);
RTLIL::Cell* cell = module->addCell(stringf("$__box%u", oldBoxNum), box_lookup.at(boxUniqueId));
boxes.emplace_back(cell);
}
}
else if (c == 'a' || c == 'i' || c == 'o' || c == 's') {
uint32_t dataSize = parse_xaiger_literal(f);
f.ignore(dataSize);
log_debug("ignoring '%c'\n", c);
}
else {
break;
}
}
post_process();
@ -550,7 +544,7 @@ void AigerReader::parse_aiger_ascii()
log_debug2("%d is an output\n", l1);
const unsigned variable = l1 >> 1;
const bool invert = l1 & 1;
RTLIL::IdString wire_name(stringf("\\__%d%s__", variable, invert ? "b" : "")); // FIXME: is "b" the right suffix?
RTLIL::IdString wire_name(stringf("$%d%s", variable, invert ? "b" : "")); // FIXME: is "b" the right suffix?
RTLIL::Wire *wire = module->wire(wire_name);
if (!wire)
wire = createWireIfNotExists(module, l1);
@ -616,11 +610,12 @@ void AigerReader::parse_aiger_binary()
std::string line;
// Parse inputs
int digits = ceil(log10(I));
for (unsigned i = 1; i <= I; ++i) {
log_debug2("%d is an input\n", i);
RTLIL::Wire *wire = createWireIfNotExists(module, i << 1);
RTLIL::Wire *wire = module->addWire(stringf("$i%0*d", digits, i));
wire->port_input = true;
log_assert(!wire->port_output);
module->connect(createWireIfNotExists(module, i << 1), wire);
inputs.push_back(wire);
}
@ -670,23 +665,15 @@ void AigerReader::parse_aiger_binary()
}
// Parse outputs
digits = ceil(log10(O));
for (unsigned i = 0; i < O; ++i, ++line_count) {
if (!(f >> l1))
log_error("Line %u cannot be interpreted as an output!\n", line_count);
log_debug2("%d is an output\n", l1);
const unsigned variable = l1 >> 1;
const bool invert = l1 & 1;
RTLIL::IdString wire_name(stringf("\\__%d%s__", variable, invert ? "b" : "")); // FIXME: is "_b" the right suffix?
RTLIL::Wire *wire = module->wire(wire_name);
if (!wire)
wire = createWireIfNotExists(module, l1);
else if (wire->port_input || wire->port_output) {
RTLIL::Wire *new_wire = module->addWire(NEW_ID);
module->connect(new_wire, wire);
wire = new_wire;
}
RTLIL::Wire *wire = module->addWire(stringf("$o%0*d", digits, i));
wire->port_output = true;
module->connect(wire, createWireIfNotExists(module, l1));
outputs.push_back(wire);
}
std::getline(f, line); // Ignore up to start of next line
@ -734,12 +721,19 @@ void AigerReader::parse_aiger_binary()
void AigerReader::post_process()
{
pool<IdString> seen_boxes;
unsigned ci_count = 0, co_count = 0;
pool<IdString> flops;
unsigned ci_count = 0, co_count = 0, flop_count = 0;
for (auto cell : boxes) {
RTLIL::Module* box_module = design->module(cell->type);
log_assert(box_module);
bool is_flop = false;
if (seen_boxes.insert(cell->type).second) {
if (box_module->attributes.count("\\abc9_flop")) {
log_assert(flop_count < flopNum);
flops.insert(cell->type);
is_flop = true;
}
auto it = box_module->attributes.find("\\abc9_carry");
if (it != box_module->attributes.end()) {
RTLIL::Wire *carry_in = nullptr, *carry_out = nullptr;
@ -779,6 +773,8 @@ void AigerReader::post_process()
carry_out->port_id = ports.size();
}
}
else
is_flop = flops.count(cell->type);
// NB: Assume box_module->ports are sorted alphabetically
// (as RTLIL::Module::fixup_ports() would do)
@ -804,9 +800,32 @@ void AigerReader::post_process()
}
rhs.append(wire);
}
cell->setPort(port_name, rhs);
}
if (is_flop) {
log_assert(co_count < outputs.size());
Wire *wire = outputs[co_count++];
log_assert(wire);
log_assert(wire->port_output);
wire->port_output = false;
RTLIL::Wire *d = outputs[outputs.size() - flopNum + flop_count];
log_assert(d);
log_assert(d->port_output);
d->port_output = false;
RTLIL::Wire *q = inputs[piNum - flopNum + flop_count];
log_assert(q);
log_assert(q->port_input);
q->port_input = false;
auto ff = module->addCell(NEW_ID, "$__ABC9_FF_");
ff->setPort("\\D", d);
ff->setPort("\\Q", q);
flop_count++;
continue;
}
}
dict<RTLIL::IdString, int> wideports_cache;
@ -868,16 +887,7 @@ void AigerReader::post_process()
// simply connect the latter to the former
RTLIL::Wire* existing = module->wire(escaped_s);
if (!existing) {
if (escaped_s.ends_with("$inout.out")) {
wire->port_output = false;
RTLIL::Wire *in_wire = module->wire(escaped_s.substr(1, escaped_s.size()-11));
log_assert(in_wire);
log_assert(in_wire->port_input && !in_wire->port_output);
in_wire->port_output = true;
module->connect(in_wire, wire);
}
else
module->rename(wire, escaped_s);
module->rename(wire, escaped_s);
}
else {
wire->port_output = false;
@ -889,19 +899,9 @@ void AigerReader::post_process()
std::string indexed_name = stringf("%s[%d]", escaped_s.c_str(), index);
RTLIL::Wire* existing = module->wire(indexed_name);
if (!existing) {
if (escaped_s.ends_with("$inout.out")) {
wire->port_output = false;
RTLIL::Wire *in_wire = module->wire(stringf("%s[%d]", escaped_s.substr(1, escaped_s.size()-11).c_str(), index));
log_assert(in_wire);
log_assert(in_wire->port_input && !in_wire->port_output);
in_wire->port_output = true;
module->connect(in_wire, wire);
}
else {
module->rename(wire, indexed_name);
if (wideports)
wideports_cache[escaped_s] = std::max(wideports_cache[escaped_s], index);
}
module->rename(wire, indexed_name);
if (wideports)
wideports_cache[escaped_s] = std::max(wideports_cache[escaped_s], index);
}
else {
module->connect(wire, existing);
@ -909,9 +909,13 @@ void AigerReader::post_process()
}
}
log_debug(" -> %s\n", log_id(wire));
int init;
mf >> init;
if (init < 2)
wire->attributes["\\init"] = init;
}
else if (type == "box") {
RTLIL::Cell* cell = module->cell(stringf("$__box%d__", variable));
RTLIL::Cell* cell = module->cell(stringf("$__box%d", variable));
if (cell) { // ABC could have optimised this box away
module->rename(cell, escaped_s);
for (const auto &i : cell->connections()) {
@ -968,15 +972,10 @@ void AigerReader::post_process()
if (other_wire) {
other_wire->port_input = false;
other_wire->port_output = false;
}
if (wire->port_input) {
if (other_wire)
if (wire->port_input)
module->connect(other_wire, SigSpec(wire, i));
}
else {
// Since we skip POs that are connected to Sx,
// re-connect them here
module->connect(SigSpec(wire, i), other_wire ? other_wire : SigSpec(RTLIL::Sx));
else
module->connect(SigSpec(wire, i), other_wire);
}
}
}

View File

@ -80,8 +80,6 @@ struct Abc9Pass : public ScriptPass
log(" set delay target. the string {D} in the default scripts above is\n");
log(" replaced by this option when used, and an empty string otherwise\n");
log(" (indicating best possible delay).\n");
// log(" This also replaces 'dretime' with 'dretime; retime -o {D}' in the\n");
// log(" default scripts above.\n");
log("\n");
// log(" -S <num>\n");
// log(" maximum number of LUT inputs shared.\n");
@ -103,19 +101,6 @@ struct Abc9Pass : public ScriptPass
log(" generate netlist using luts. Use the specified costs for luts with 1,\n");
log(" 2, 3, .. inputs.\n");
log("\n");
// log(" -dff\n");
// log(" also pass $_DFF_?_ and $_DFFE_??_ cells through ABC. modules with many\n");
// log(" clock domains are automatically partitioned in clock domains and each\n");
// log(" domain is passed through ABC independently.\n");
// log("\n");
// log(" -clk [!]<clock-signal-name>[,[!]<enable-signal-name>]\n");
// log(" use only the specified clock domain. this is like -dff, but only FF\n");
// log(" cells that belong to the specified clock domain are used.\n");
// log("\n");
// log(" -keepff\n");
// log(" set the \"keep\" attribute on flip-flop output wires. (and thus preserve\n");
// log(" them, for example for equivalence checking.)\n");
// log("\n");
log(" -nocleanup\n");
log(" when this option is used, the temporary files created by this pass\n");
log(" are not removed. this is useful for debugging.\n");
@ -136,8 +121,17 @@ struct Abc9Pass : public ScriptPass
log("internally. This is not going to \"run ABC on your design\". It will instead run\n");
log("ABC on logic snippets extracted from your design. You will not get any useful\n");
log("output when passing an ABC script that writes a file. Instead write your full\n");
log("design as BLIF file with write_blif and then load that into ABC externally if\n");
log("you want to use ABC to convert your design into another format.\n");
log("design as an XAIGER file with write_xaiger and then load that into ABC externally\n");
log("if you want to use ABC to convert your design into another format.\n");
log("\n");
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("Delay targets can also be specified on a per clock basis by attaching a\n");
log("'(* abc9_period = <int> *)' attribute onto clock wires (specifically, onto wires\n");
log("that appear inside any special '$abc9_clock' wires inserted by abc9_map.v). This\n");
log("can be achieved by modifying the source directly, or through a `setattr`\n");
log("invocation. Since such attributes cannot yet be propagated through a\n");
log("hierarchical design (whether or not it has been uniquified) it is recommended\n");
log("that the design be flattened when using this feature.\n");
log("\n");
log("[1] http://www.eecs.berkeley.edu/~alanmi/abc/\n");
log("\n");

View File

@ -65,11 +65,6 @@ PRIVATE_NAMESPACE_BEGIN
bool markgroups;
int map_autoidx;
SigMap assign_map;
RTLIL::Module *module;
bool clk_polarity, en_polarity;
RTLIL::SigSpec clk_sig, en_sig;
inline std::string remap_name(RTLIL::IdString abc9_name)
{
@ -201,64 +196,30 @@ struct abc9_output_filter
}
};
void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::string script_file, std::string exe_file,
/*bool cleanup,*/ vector<int> lut_costs, bool dff_mode, std::string clk_str,
bool /*keepff*/, std::string delay_target, std::string /*lutin_shared*/, bool fast_mode,
bool show_tempdir, std::string box_file, std::string lut_file,
void abc9_module(RTLIL::Design *design, RTLIL::Module *module, std::string script_file, std::string exe_file,
vector<int> lut_costs, std::string delay_target, std::string /*lutin_shared*/, bool fast_mode,
const std::vector<RTLIL::Cell*> &/*cells*/, bool show_tempdir, std::string box_file, std::string lut_file,
std::string wire_delay, const dict<int,IdString> &box_lookup, bool nomfs, std::string tempdir_name
)
{
module = current_module;
map_autoidx = autoidx++;
if (clk_str != "$")
{
clk_polarity = true;
clk_sig = RTLIL::SigSpec();
en_polarity = true;
en_sig = RTLIL::SigSpec();
}
if (!clk_str.empty() && clk_str != "$")
{
if (clk_str.find(',') != std::string::npos) {
int pos = clk_str.find(',');
std::string en_str = clk_str.substr(pos+1);
clk_str = clk_str.substr(0, pos);
if (en_str[0] == '!') {
en_polarity = false;
en_str = en_str.substr(1);
}
if (module->wires_.count(RTLIL::escape_id(en_str)) != 0)
en_sig = assign_map(RTLIL::SigSpec(module->wires_.at(RTLIL::escape_id(en_str)), 0));
}
if (clk_str[0] == '!') {
clk_polarity = false;
clk_str = clk_str.substr(1);
}
if (module->wires_.count(RTLIL::escape_id(clk_str)) != 0)
clk_sig = assign_map(RTLIL::SigSpec(module->wires_.at(RTLIL::escape_id(clk_str)), 0));
}
if (dff_mode && clk_sig.empty())
log_cmd_error("Clock domain %s not found.\n", clk_str.c_str());
log_header(design, "Extracting gate netlist of module `%s' to `%s/input.xaig'..\n",
module->name.c_str(), replace_tempdir(tempdir_name, tempdir_name, show_tempdir).c_str());
//FIXME:
//log_header(design, "Extracting gate netlist of module `%s' to `%s/input.xaig'..\n",
// module->name.c_str(), replace_tempdir(tempdir_name, tempdir_name, show_tempdir).c_str());
std::string abc9_script;
if (!lut_costs.empty()) {
abc9_script += stringf("read_lut %s/lutdefs.txt; ", tempdir_name.c_str());
if (!box_file.empty())
abc9_script += stringf("read_box -v %s; ", box_file.c_str());
abc9_script += stringf("read_box %s; ", box_file.c_str());
}
else
if (!lut_file.empty()) {
abc9_script += stringf("read_lut %s; ", lut_file.c_str());
if (!box_file.empty())
abc9_script += stringf("read_box -v %s; ", box_file.c_str());
abc9_script += stringf("read_box %s; ", box_file.c_str());
}
else
log_abort();
@ -277,20 +238,10 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri
} else
abc9_script += stringf("source %s", script_file.c_str());
} else if (!lut_costs.empty() || !lut_file.empty()) {
//bool all_luts_cost_same = true;
//for (int this_cost : lut_costs)
// if (this_cost != lut_costs.front())
// all_luts_cost_same = false;
abc9_script += fast_mode ? ABC_FAST_COMMAND_LUT : ABC_COMMAND_LUT;
//if (all_luts_cost_same && !fast_mode)
// abc9_script += "; lutpack {S}";
} else
log_abort();
//if (script_file.empty() && !delay_target.empty())
// for (size_t pos = abc9_script.find("dretime;"); pos != std::string::npos; pos = abc9_script.find("dretime;", pos+1))
// abc9_script = abc9_script.substr(0, pos) + "dretime; retime -o {D};" + abc9_script.substr(pos+8);
for (size_t pos = abc9_script.find("{D}"); pos != std::string::npos; pos = abc9_script.find("{D}", pos))
abc9_script = abc9_script.substr(0, pos) + delay_target + abc9_script.substr(pos+3);
@ -304,7 +255,7 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri
for (size_t pos = abc9_script.find("&mfs"); pos != std::string::npos; pos = abc9_script.find("&mfs", pos))
abc9_script = abc9_script.erase(pos, strlen("&mfs"));
abc9_script += stringf("; &write %s/output.aig", tempdir_name.c_str());
abc9_script += stringf("; &write -n %s/output.aig", tempdir_name.c_str());
abc9_script = add_echos_to_abc9_cmd(abc9_script);
for (size_t i = 0; i+1 < abc9_script.size(); i++)
@ -315,22 +266,17 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri
fprintf(f, "%s\n", abc9_script.c_str());
fclose(f);
if (dff_mode || !clk_str.empty())
{
if (clk_sig.size() == 0)
log("No%s clock domain found. Not extracting any FF cells.\n", clk_str.empty() ? "" : " matching");
else {
log("Found%s %s clock domain: %s", clk_str.empty() ? "" : " matching", clk_polarity ? "posedge" : "negedge", log_signal(clk_sig));
if (en_sig.size() != 0)
log(", enabled by %s%s", en_polarity ? "" : "!", log_signal(en_sig));
log("\n");
}
}
log_push();
//if (count_output)
{
// FIXME:
/*int count_outputs = design->scratchpad_get_int("write_xaiger.num_outputs");
log("Extracted %d AND gates and %d wires to a netlist network with %d inputs and %d outputs.\n",
design->scratchpad_get_int("write_xaiger.num_ands"),
design->scratchpad_get_int("write_xaiger.num_wires"),
design->scratchpad_get_int("write_xaiger.num_inputs"),
count_outputs);
if (count_outputs > 0)*/ {
std::string buffer;
std::ifstream ifs;
#if 0
@ -342,14 +288,14 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri
log_assert(!design->module(ID($__abc9__)));
{
AigerReader reader(design, ifs, ID($__abc9__), "" /* clk_name */, buffer.c_str() /* map_filename */, true /* wideports */);
reader.parse_xaiger();
reader.parse_xaiger(box_lookup);
}
ifs.close();
Pass::call(design, stringf("write_verilog -noexpr -norename"));
Pass::call_on_module(design, design->module(ID($__abc9__)), stringf("write_verilog -noexpr -norename -selected"));
design->remove(design->module(ID($__abc9__)));
#endif
log_header(design, "Executing ABC9_MAP.\n");
log_header(design, "Executing ABC9.\n");
if (!lut_costs.empty()) {
buffer = stringf("%s/lutdefs.txt", tempdir_name.c_str());
@ -398,7 +344,7 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri
ifs.close();
#if 0
Pass::call(design, stringf("write_verilog -noexpr -norename"));
Pass::call_on_module(design, design->module(ID($__abc9__)), stringf("write_verilog -noexpr -norename -selected"));
#endif
log_header(design, "Re-integrating ABC9 results.\n");
@ -406,33 +352,16 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri
if (mapped_mod == NULL)
log_error("ABC output file does not contain a module `$__abc9__'.\n");
pool<RTLIL::SigBit> output_bits;
for (auto &it : mapped_mod->wires_) {
RTLIL::Wire *w = it.second;
RTLIL::Wire *remap_wire = module->addWire(remap_name(w->name), GetSize(w));
if (markgroups) remap_wire->attributes[ID(abcgroup)] = map_autoidx;
if (w->port_output) {
RTLIL::Wire *wire = module->wire(w->name);
log_assert(wire);
for (int i = 0; i < GetSize(w); i++)
output_bits.insert({wire, i});
}
}
for (auto &it : module->connections_) {
auto &signal = it.first;
auto bits = signal.bits();
for (auto &b : bits)
if (output_bits.count(b))
b = module->addWire(NEW_ID);
signal = std::move(bits);
}
dict<IdString, bool> abc9_box;
vector<RTLIL::Cell*> boxes;
for (const auto &it : module->cells_) {
auto cell = it.second;
if (cell->type.in(ID($_AND_), ID($_NOT_))) {
for (auto cell : module->selected_cells()) {
if (cell->type.in(ID($_AND_), ID($_NOT_), ID($__ABC9_FF_))) {
module->remove(cell);
continue;
}
@ -441,8 +370,16 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri
RTLIL::Module* box_module = design->module(cell->type);
jt = abc9_box.insert(std::make_pair(cell->type, box_module && box_module->attributes.count(ID(abc9_box_id)))).first;
}
if (jt->second)
boxes.emplace_back(cell);
if (jt->second) {
auto kt = cell->attributes.find("\\abc9_keep");
bool abc9_keep = false;
if (kt != cell->attributes.end()) {
abc9_keep = kt->second.as_bool();
cell->attributes.erase(kt);
}
if (!abc9_keep)
boxes.emplace_back(cell);
}
}
dict<SigBit, pool<IdString>> bit_drivers, bit_users;
@ -451,19 +388,19 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri
dict<SigBit, std::vector<RTLIL::Cell*>> bit2sinks;
std::map<IdString, int> cell_stats;
for (auto c : mapped_mod->cells())
for (auto mapped_cell : mapped_mod->cells())
{
toposort.node(c->name);
toposort.node(mapped_cell->name);
RTLIL::Cell *cell = nullptr;
if (c->type == ID($_NOT_)) {
RTLIL::SigBit a_bit = c->getPort(ID::A);
RTLIL::SigBit y_bit = c->getPort(ID::Y);
bit_users[a_bit].insert(c->name);
bit_drivers[y_bit].insert(c->name);
if (mapped_cell->type == ID($_NOT_)) {
RTLIL::SigBit a_bit = mapped_cell->getPort(ID::A);
RTLIL::SigBit y_bit = mapped_cell->getPort(ID::Y);
bit_users[a_bit].insert(mapped_cell->name);
bit_drivers[y_bit].insert(mapped_cell->name);
if (!a_bit.wire) {
c->setPort(ID::Y, module->addWire(NEW_ID));
mapped_cell->setPort(ID::Y, module->addWire(NEW_ID));
RTLIL::Wire *wire = module->wire(remap_name(y_bit.wire->name));
log_assert(wire);
module->connect(RTLIL::SigBit(wire, y_bit.offset), State::S1);
@ -487,7 +424,7 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri
if (!driver_lut) {
// If a driver couldn't be found (could be from PI or box CI)
// then implement using a LUT
cell = module->addLut(remap_name(stringf("%s$lut", c->name.c_str())),
cell = module->addLut(remap_name(stringf("%s$lut", mapped_cell->name.c_str())),
RTLIL::SigBit(module->wires_.at(remap_name(a_bit.wire->name)), a_bit.offset),
RTLIL::SigBit(module->wires_.at(remap_name(y_bit.wire->name)), y_bit.offset),
RTLIL::Const::from_string("01"));
@ -495,7 +432,7 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri
cell_stats[ID($lut)]++;
}
else
not2drivers[c] = driver_lut;
not2drivers[mapped_cell] = driver_lut;
continue;
}
else
@ -503,24 +440,26 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri
if (cell && markgroups) cell->attributes[ID(abcgroup)] = map_autoidx;
continue;
}
cell_stats[c->type]++;
cell_stats[mapped_cell->type]++;
RTLIL::Cell *existing_cell = nullptr;
if (c->type == ID($lut)) {
if (GetSize(c->getPort(ID::A)) == 1 && c->getParam(ID(LUT)) == RTLIL::Const::from_string("01")) {
SigSpec my_a = module->wires_.at(remap_name(c->getPort(ID::A).as_wire()->name));
SigSpec my_y = module->wires_.at(remap_name(c->getPort(ID::Y).as_wire()->name));
if (mapped_cell->type.in(ID($lut), ID($__ABC9_FF_))) {
if (mapped_cell->type == ID($lut) &&
GetSize(mapped_cell->getPort(ID::A)) == 1 &&
mapped_cell->getParam(ID(LUT)) == RTLIL::Const::from_string("01")) {
SigSpec my_a = module->wires_.at(remap_name(mapped_cell->getPort(ID::A).as_wire()->name));
SigSpec my_y = module->wires_.at(remap_name(mapped_cell->getPort(ID::Y).as_wire()->name));
module->connect(my_y, my_a);
if (markgroups) c->attributes[ID(abcgroup)] = map_autoidx;
if (markgroups) mapped_cell->attributes[ID(abcgroup)] = map_autoidx;
log_abort();
continue;
}
cell = module->addCell(remap_name(c->name), c->type);
cell = module->addCell(remap_name(mapped_cell->name), mapped_cell->type);
}
else {
existing_cell = module->cell(c->name);
existing_cell = module->cell(mapped_cell->name);
log_assert(existing_cell);
cell = module->addCell(remap_name(c->name), c->type);
cell = module->addCell(remap_name(mapped_cell->name), mapped_cell->type);
}
if (markgroups) cell->attributes[ID(abcgroup)] = map_autoidx;
@ -529,10 +468,13 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri
cell->attributes = existing_cell->attributes;
}
else {
cell->parameters = c->parameters;
cell->attributes = c->attributes;
cell->parameters = mapped_cell->parameters;
cell->attributes = mapped_cell->attributes;
}
for (auto &conn : c->connections()) {
RTLIL::Module* box_module = design->module(mapped_cell->type);
auto abc9_flop = box_module && box_module->attributes.count("\\abc9_flop");
for (auto &conn : mapped_cell->connections()) {
RTLIL::SigSpec newsig;
for (auto c : conn.second.chunks()) {
if (c.width == 0)
@ -544,15 +486,17 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri
}
cell->setPort(conn.first, newsig);
if (cell->input(conn.first)) {
for (auto i : newsig)
bit2sinks[i].push_back(cell);
for (auto i : conn.second)
bit_users[i].insert(c->name);
if (!abc9_flop) {
if (cell->input(conn.first)) {
for (auto i : newsig)
bit2sinks[i].push_back(cell);
for (auto i : conn.second)
bit_users[i].insert(mapped_cell->name);
}
if (cell->output(conn.first))
for (auto i : conn.second)
bit_drivers[i].insert(mapped_cell->name);
}
if (cell->output(conn.first))
for (auto i : conn.second)
bit_drivers[i].insert(c->name);
}
}
@ -787,10 +731,6 @@ struct Abc9TechmapPass : public Pass {
// log(" -keepff\n");
// log(" set the \"keep\" attribute on flip-flop output wires. (and thus preserve\n");
// log(" them, for example for equivalence checking.)\n");
// log("\n");
// log(" -nocleanup\n");
// log(" when this option is used, the temporary files created by this pass\n");
// log(" are not removed. this is useful for debugging.\n");
// log("\n");
log(" -showtmp\n");
log(" print the temp dir name in log. usually this is suppressed so that the\n");
@ -822,8 +762,6 @@ struct Abc9TechmapPass : public Pass {
log_header(design, "Executing ABC9_MAP pass (technology mapping using ABC9).\n");
log_push();
assign_map.clear();
#ifdef ABCEXTERNAL
std::string exe_file = ABCEXTERNAL;
#else
@ -832,7 +770,7 @@ struct Abc9TechmapPass : public Pass {
std::string script_file, clk_str, box_file, lut_file;
std::string delay_target, lutin_shared = "-S 1", wire_delay;
std::string tempdir_name;
bool fast_mode = false, dff_mode = false, keepff = false /*, cleanup = true*/;
bool fast_mode = false;
bool show_tempdir = false;
bool nomfs = false;
vector<int> lut_costs;
@ -923,23 +861,6 @@ struct Abc9TechmapPass : public Pass {
fast_mode = true;
continue;
}
//if (arg == "-dff") {
// dff_mode = true;
// continue;
//}
//if (arg == "-clk" && argidx+1 < args.size()) {
// clk_str = args[++argidx];
// dff_mode = true;
// continue;
//}
//if (arg == "-keepff") {
// keepff = true;
// continue;
//}
//if (arg == "-nocleanup") {
// cleanup = false;
// continue;
//}
if (arg == "-showtmp") {
show_tempdir = true;
continue;
@ -1040,174 +961,60 @@ struct Abc9TechmapPass : public Pass {
}
}
for (auto mod : design->selected_modules())
SigMap assign_map;
CellTypes ct(design);
for (auto module : design->selected_modules())
{
if (mod->attributes.count(ID(abc9_box_id)))
if (module->attributes.count(ID(abc9_box_id)))
continue;
if (mod->processes.size() > 0) {
log("Skipping module %s as it contains processes.\n", log_id(mod));
if (module->processes.size() > 0) {
log("Skipping module %s as it contains processes.\n", log_id(module));
continue;
}
assign_map.set(mod);
assign_map.set(module);
if (!dff_mode || !clk_str.empty()) {
abc9_module(design, mod, script_file, exe_file, /*cleanup,*/ lut_costs, dff_mode, clk_str, keepff,
delay_target, lutin_shared, fast_mode, show_tempdir,
box_file, lut_file, wire_delay, box_lookup, nomfs, tempdir_name);
continue;
}
typedef SigSpec clkdomain_t;
dict<clkdomain_t, int> clk_to_mergeability;
CellTypes ct(design);
const std::vector<RTLIL::Cell*> all_cells = module->selected_cells();
std::vector<RTLIL::Cell*> all_cells = mod->selected_cells();
std::set<RTLIL::Cell*> unassigned_cells(all_cells.begin(), all_cells.end());
std::set<RTLIL::Cell*> expand_queue, next_expand_queue;
std::set<RTLIL::Cell*> expand_queue_up, next_expand_queue_up;
std::set<RTLIL::Cell*> expand_queue_down, next_expand_queue_down;
typedef tuple<bool, RTLIL::SigSpec, bool, RTLIL::SigSpec> clkdomain_t;
std::map<clkdomain_t, std::vector<RTLIL::Cell*>> assigned_cells;
std::map<RTLIL::Cell*, clkdomain_t> assigned_cells_reverse;
std::map<RTLIL::Cell*, std::set<RTLIL::SigBit>> cell_to_bit, cell_to_bit_up, cell_to_bit_down;
std::map<RTLIL::SigBit, std::set<RTLIL::Cell*>> bit_to_cell, bit_to_cell_up, bit_to_cell_down;
for (auto cell : all_cells)
{
clkdomain_t key;
for (auto &conn : cell->connections())
for (auto bit : conn.second) {
bit = assign_map(bit);
if (bit.wire != nullptr) {
cell_to_bit[cell].insert(bit);
bit_to_cell[bit].insert(cell);
if (ct.cell_input(cell->type, conn.first)) {
cell_to_bit_up[cell].insert(bit);
bit_to_cell_down[bit].insert(cell);
}
if (ct.cell_output(cell->type, conn.first)) {
cell_to_bit_down[cell].insert(bit);
bit_to_cell_up[bit].insert(cell);
}
}
}
if (cell->type.in(ID($_DFF_N_), ID($_DFF_P_)))
{
key = clkdomain_t(cell->type == ID($_DFF_P_), assign_map(cell->getPort(ID(C))), true, RTLIL::SigSpec());
}
else
if (cell->type.in(ID($_DFFE_NN_), ID($_DFFE_NP_), ID($_DFFE_PN_), ID($_DFFE_PP_)))
{
bool this_clk_pol = cell->type.in(ID($_DFFE_PN_), ID($_DFFE_PP_));
bool this_en_pol = cell->type.in(ID($_DFFE_NP_), ID($_DFFE_PP_));
key = clkdomain_t(this_clk_pol, assign_map(cell->getPort(ID(C))), this_en_pol, assign_map(cell->getPort(ID(E))));
}
else
for (auto cell : all_cells) {
auto inst_module = design->module(cell->type);
if (!inst_module || !inst_module->attributes.count("\\abc9_flop")
|| cell->get_bool_attribute("\\abc9_keep"))
continue;
unassigned_cells.erase(cell);
expand_queue.insert(cell);
expand_queue_up.insert(cell);
expand_queue_down.insert(cell);
Wire *abc9_clock_wire = module->wire(stringf("%s.$abc9_clock", cell->name.c_str()));
if (abc9_clock_wire == NULL)
log_error("'%s$abc9_clock' is not a wire present in module '%s'.\n", cell->name.c_str(), log_id(module));
SigSpec abc9_clock = assign_map(abc9_clock_wire);
assigned_cells[key].push_back(cell);
assigned_cells_reverse[cell] = key;
clkdomain_t key(abc9_clock);
auto r = clk_to_mergeability.insert(std::make_pair(abc9_clock, clk_to_mergeability.size() + 1));
auto r2 YS_ATTRIBUTE(unused) = cell->attributes.insert(std::make_pair(ID(abc9_mergeability), r.first->second));
log_assert(r2.second);
Wire *abc9_init_wire = module->wire(stringf("%s.$abc9_init", cell->name.c_str()));
if (abc9_init_wire == NULL)
log_error("'%s.$abc9_init' is not a wire present in module '%s'.\n", cell->name.c_str(), log_id(module));
log_assert(GetSize(abc9_init_wire) == 1);
SigSpec abc9_init = assign_map(abc9_init_wire);
if (!abc9_init.is_fully_const())
log_error("'%s.$abc9_init' is not a constant wire present in module '%s'.\n", cell->name.c_str(), log_id(module));
r2 = cell->attributes.insert(std::make_pair(ID(abc9_init), abc9_init.as_const()));
log_assert(r2.second);
}
while (!expand_queue_up.empty() || !expand_queue_down.empty())
{
if (!expand_queue_up.empty())
{
RTLIL::Cell *cell = *expand_queue_up.begin();
clkdomain_t key = assigned_cells_reverse.at(cell);
expand_queue_up.erase(cell);
for (auto bit : cell_to_bit_up[cell])
for (auto c : bit_to_cell_up[bit])
if (unassigned_cells.count(c)) {
unassigned_cells.erase(c);
next_expand_queue_up.insert(c);
assigned_cells[key].push_back(c);
assigned_cells_reverse[c] = key;
expand_queue.insert(c);
}
}
if (!expand_queue_down.empty())
{
RTLIL::Cell *cell = *expand_queue_down.begin();
clkdomain_t key = assigned_cells_reverse.at(cell);
expand_queue_down.erase(cell);
for (auto bit : cell_to_bit_down[cell])
for (auto c : bit_to_cell_down[bit])
if (unassigned_cells.count(c)) {
unassigned_cells.erase(c);
next_expand_queue_up.insert(c);
assigned_cells[key].push_back(c);
assigned_cells_reverse[c] = key;
expand_queue.insert(c);
}
}
if (expand_queue_up.empty() && expand_queue_down.empty()) {
expand_queue_up.swap(next_expand_queue_up);
expand_queue_down.swap(next_expand_queue_down);
}
}
while (!expand_queue.empty())
{
RTLIL::Cell *cell = *expand_queue.begin();
clkdomain_t key = assigned_cells_reverse.at(cell);
expand_queue.erase(cell);
for (auto bit : cell_to_bit.at(cell)) {
for (auto c : bit_to_cell[bit])
if (unassigned_cells.count(c)) {
unassigned_cells.erase(c);
next_expand_queue.insert(c);
assigned_cells[key].push_back(c);
assigned_cells_reverse[c] = key;
}
bit_to_cell[bit].clear();
}
if (expand_queue.empty())
expand_queue.swap(next_expand_queue);
}
clkdomain_t key(true, RTLIL::SigSpec(), true, RTLIL::SigSpec());
for (auto cell : unassigned_cells) {
assigned_cells[key].push_back(cell);
assigned_cells_reverse[cell] = key;
}
log_header(design, "Summary of detected clock domains:\n");
for (auto &it : assigned_cells)
log(" %d cells in clk=%s%s, en=%s%s\n", GetSize(it.second),
std::get<0>(it.first) ? "" : "!", log_signal(std::get<1>(it.first)),
std::get<2>(it.first) ? "" : "!", log_signal(std::get<3>(it.first)));
for (auto &it : assigned_cells) {
clk_polarity = std::get<0>(it.first);
clk_sig = assign_map(std::get<1>(it.first));
en_polarity = std::get<2>(it.first);
en_sig = assign_map(std::get<3>(it.first));
abc9_module(design, mod, script_file, exe_file, /*cleanup,*/ lut_costs, !clk_sig.empty(), "$",
keepff, delay_target, lutin_shared, fast_mode, show_tempdir,
box_file, lut_file, wire_delay, box_lookup, nomfs, tempdir_name);
assign_map.set(mod);
}
design->selected_active_module = module->name.str();
abc9_module(design, module, script_file, exe_file, lut_costs,
delay_target, lutin_shared, fast_mode, all_cells, show_tempdir,
box_file, lut_file, wire_delay, box_lookup, nomfs, tempdir_name);
design->selected_active_module.clear();
}
assign_map.clear();
log_pop();
}
} Abc9TechmapPass;

View File

@ -18,7 +18,449 @@
*
*/
// ============================================================================
// The following techmapping rules are intended to be run (with -max_iter 1)
// before invoking the `abc9` pass in order to transform the design into
// a format that it understands.
//
// For example, (complex) flip-flops are expected to be described as an
// combinatorial box (containing all control logic such as clock enable
// or synchronous resets) followed by a basic D-Q flop.
// Yosys will automatically analyse the simulation model (described in
// cells_sim.v) and detach any $_DFF_P_ or $_DFF_N_ cells present in
// order to extract the combinatorial control logic left behind.
// Specifically, a simulation model similar to the one below:
//
// ++===================================++
// || Sim model ||
// || /\/\/\/\ ||
// D -->>-----< > +------+ ||
// R -->>-----< Comb. > |$_DFF_| ||
// CE -->>-----< logic >-----| [NP]_|---+---->>-- Q
// || +--< > +------+ | ||
// || | \/\/\/\/ | ||
// || | | ||
// || +----------------------------+ ||
// || ||
// ++===================================++
//
// is transformed into:
//
// ++==================++
// || Comb box ||
// || ||
// || /\/\/\/\ ||
// D -->>-----< > ||
// R -->>-----< Comb. > || +----------+
// CE -->>-----< logic >--->>-- $Q --|$__ABC_FF_|--+-->> Q
// $abc9_currQ +-->>-----< > || +----------+ |
// | || \/\/\/\/ || |
// | || || |
// | ++==================++ |
// | |
// +----------------------------------------------+
//
// The purpose of the following FD* rules are to wrap the flop with:
// (a) a special $__ABC9_FF_ in front of the FD*'s output, indicating to abc9
// the connectivity of its basic D-Q flop
// (b) an optional $__ABC9_ASYNC_ cell in front of $__ABC_FF_'s output to
// capture asynchronous behaviour
// (c) a special _TECHMAP_REPLACE_.$abc9_clock wire to capture its clock
// domain and polarity (used when partitioning the module so that `abc9' only
// performs sequential synthesis (with reachability analysis) correctly on
// one domain at a time) and also used to infer the optional delay target
// from the (* abc9_clock_period = %d *) attribute attached to any wire
// within
// (d) a special _TECHMAP_REPLACE_.$abc9_init wire to encode the flop's initial
// state
// (e) a special _TECHMAP_REPLACE_.$abc9_currQ wire that will be used for feedback
// into the (combinatorial) FD* cell to facilitate clock-enable behaviour
//
// In order to perform sequential synthesis, `abc9' also requires that
// the initial value of all flops be zero.
module FDRE (output Q, input C, CE, D, R);
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_R_INVERTED = 1'b0;
`ifdef DFF_MODE
wire QQ, $Q;
generate if (INIT == 1'b1) begin
assign Q = ~QQ;
FDSE #(
.INIT(1'b0),
.IS_C_INVERTED(IS_C_INVERTED),
.IS_D_INVERTED(IS_D_INVERTED),
.IS_S_INVERTED(IS_R_INVERTED)
) _TECHMAP_REPLACE_ (
.D(~D), .Q($Q), .C(C), .CE(CE), .S(R)
);
end
else begin
assign Q = QQ;
FDRE #(
.INIT(1'b0),
.IS_C_INVERTED(IS_C_INVERTED),
.IS_D_INVERTED(IS_D_INVERTED),
.IS_R_INVERTED(IS_R_INVERTED)
) _TECHMAP_REPLACE_ (
.D(D), .Q($Q), .C(C), .CE(CE), .R(R)
);
end
endgenerate
$__ABC9_FF_ abc_dff (.D($Q), .Q(QQ));
// Special signals
wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED};
wire [0:0] _TECHMAP_REPLACE_.$abc9_init = 1'b0;
wire [0:0] _TECHMAP_REPLACE_.$abc9_currQ = QQ;
`else
(* abc9_keep *)
FDRE #(
.INIT(INIT),
.IS_C_INVERTED(IS_C_INVERTED),
.IS_D_INVERTED(IS_D_INVERTED),
.IS_R_INVERTED(IS_R_INVERTED)
) _TECHMAP_REPLACE_ (
.D(D), .Q(Q), .C(C), .CE(CE), .R(R)
);
`endif
endmodule
module FDRE_1 (output Q, input C, CE, D, R);
parameter [0:0] INIT = 1'b0;
`ifdef DFF_MODE
wire QQ, $Q;
generate if (INIT == 1'b1) begin
assign Q = ~QQ;
FDSE_1 #(
.INIT(1'b0)
) _TECHMAP_REPLACE_ (
.D(~D), .Q($Q), .C(C), .CE(CE), .S(R)
);
end
else begin
assign Q = QQ;
FDRE_1 #(
.INIT(1'b0)
) _TECHMAP_REPLACE_ (
.D(D), .Q($Q), .C(C), .CE(CE), .R(R)
);
end
endgenerate
$__ABC9_FF_ abc_dff (.D($Q), .Q(QQ));
// Special signals
wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
wire [0:0] _TECHMAP_REPLACE_.$abc9_init = 1'b0;
wire [0:0] _TECHMAP_REPLACE_.$abc9_currQ = QQ;
`else
(* abc9_keep *)
FDRE_1 #(
.INIT(INIT)
) _TECHMAP_REPLACE_ (
.D(D), .Q(Q), .C(C), .CE(CE), .R(R)
);
`endif
endmodule
module FDCE (output Q, input C, CE, D, CLR);
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_CLR_INVERTED = 1'b0;
`ifdef DFF_MODE
wire QQ, $Q, $abc9_currQ;
generate if (INIT == 1'b1) begin
assign Q = ~QQ;
FDPE #(
.INIT(1'b0),
.IS_C_INVERTED(IS_C_INVERTED),
.IS_D_INVERTED(IS_D_INVERTED),
.IS_PRE_INVERTED(IS_CLR_INVERTED)
) _TECHMAP_REPLACE_ (
.D(~D), .Q($Q), .C(C), .CE(CE), .PRE(CLR)
// ^^^ Note that async
// control is not directly
// supported by abc9 but its
// behaviour is captured by
// $__ABC9_ASYNC1 below
);
// Since this is an async flop, async behaviour is dealt with here
$__ABC9_ASYNC0 abc_async (.A($abc9_currQ), .S(CLR ^ IS_CLR_INVERTED), .Y(QQ));
end
else begin
assign Q = QQ;
FDCE #(
.INIT(1'b0),
.IS_C_INVERTED(IS_C_INVERTED),
.IS_D_INVERTED(IS_D_INVERTED),
.IS_CLR_INVERTED(IS_CLR_INVERTED)
) _TECHMAP_REPLACE_ (
.D(D), .Q($Q), .C(C), .CE(CE), .CLR(CLR)
// ^^^ Note that async
// control is not directly
// supported by abc9 but its
// behaviour is captured by
// $__ABC9_ASYNC0 below
);
// Since this is an async flop, async behaviour is dealt with here
$__ABC9_ASYNC1 abc_async (.A($abc9_currQ), .S(CLR ^ IS_CLR_INVERTED), .Y(QQ));
end endgenerate
$__ABC9_FF_ abc_dff (.D($Q), .Q($abc9_currQ));
// Special signals
wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED};
wire [0:0] _TECHMAP_REPLACE_.$abc9_init = 1'b0;
wire [0:0] _TECHMAP_REPLACE_.$abc9_currQ = $abc9_currQ;
`else
(* abc9_keep *)
FDCE #(
.INIT(INIT),
.IS_C_INVERTED(IS_C_INVERTED),
.IS_D_INVERTED(IS_D_INVERTED),
.IS_CLR_INVERTED(IS_CLR_INVERTED)
) _TECHMAP_REPLACE_ (
.D(D), .Q(Q), .C(C), .CE(CE), .CLR(CLR)
);
`endif
endmodule
module FDCE_1 (output Q, input C, CE, D, CLR);
parameter [0:0] INIT = 1'b0;
`ifdef DFF_MODE
wire QQ, $Q, $abc9_currQ;
generate if (INIT == 1'b1) begin
assign Q = ~QQ;
FDPE_1 #(
.INIT(1'b0)
) _TECHMAP_REPLACE_ (
.D(~D), .Q($Q), .C(C), .CE(CE), .PRE(CLR)
// ^^^ Note that async
// control is not directly
// supported by abc9 but its
// behaviour is captured by
// $__ABC9_ASYNC1 below
);
$__ABC9_ASYNC1 abc_async (.A($abc9_currQ), .S(CLR), .Y(QQ));
end
else begin
assign Q = QQ;
FDCE_1 #(
.INIT(1'b0)
) _TECHMAP_REPLACE_ (
.D(D), .Q($Q), .C(C), .CE(CE), .CLR(CLR)
// ^^^ Note that async
// control is not directly
// supported by abc9 but its
// behaviour is captured by
// $__ABC9_ASYNC0 below
);
$__ABC9_ASYNC0 abc_async (.A($abc9_currQ), .S(CLR), .Y(QQ));
end endgenerate
$__ABC9_FF_ abc_dff (.D($Q), .Q($abc9_currQ));
// Special signals
wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
wire [0:0] _TECHMAP_REPLACE_.$abc9_init = 1'b0;
wire [0:0] _TECHMAP_REPLACE_.$abc9_currQ = $abc9_currQ;
`else
(* abc9_keep *)
FDCE_1 #(
.INIT(INIT)
) _TECHMAP_REPLACE_ (
.D(D), .Q(Q), .C(C), .CE(CE), .CLR(CLR)
);
`endif
endmodule
module FDPE (output Q, input C, CE, D, PRE);
parameter [0:0] INIT = 1'b1;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_PRE_INVERTED = 1'b0;
`ifdef DFF_MODE
wire QQ, $Q, $abc9_currQ;
generate if (INIT == 1'b1) begin
assign Q = ~QQ;
FDCE #(
.INIT(1'b0),
.IS_C_INVERTED(IS_C_INVERTED),
.IS_D_INVERTED(IS_D_INVERTED),
.IS_CLR_INVERTED(IS_PRE_INVERTED),
) _TECHMAP_REPLACE_ (
.D(~D), .Q($Q), .C(C), .CE(CE), .CLR(PRE)
// ^^^ Note that async
// control is not directly
// supported by abc9 but its
// behaviour is captured by
// $__ABC9_ASYNC0 below
);
$__ABC9_ASYNC0 abc_async (.A($abc9_currQ), .S(PRE ^ IS_PRE_INVERTED), .Y(QQ));
end
else begin
assign Q = QQ;
FDPE #(
.INIT(1'b0),
.IS_C_INVERTED(IS_C_INVERTED),
.IS_D_INVERTED(IS_D_INVERTED),
.IS_PRE_INVERTED(IS_PRE_INVERTED),
) _TECHMAP_REPLACE_ (
.D(D), .Q($Q), .C(C), .CE(CE), .PRE(PRE)
// ^^^ Note that async
// control is not directly
// supported by abc9 but its
// behaviour is captured by
// $__ABC9_ASYNC1 below
);
$__ABC9_ASYNC1 abc_async (.A($abc9_currQ), .S(PRE ^ IS_PRE_INVERTED), .Y(QQ));
end endgenerate
$__ABC9_FF_ abc_dff (.D($Q), .Q($abc9_currQ));
// Special signals
wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED};
wire [0:0] _TECHMAP_REPLACE_.$abc9_init = 1'b0;
wire [0:0] _TECHMAP_REPLACE_.$abc9_currQ = $abc9_currQ;
`else
(* abc9_keep *)
FDPE #(
.INIT(INIT),
.IS_C_INVERTED(IS_C_INVERTED),
.IS_D_INVERTED(IS_D_INVERTED),
.IS_PRE_INVERTED(IS_PRE_INVERTED),
) _TECHMAP_REPLACE_ (
.D(D), .Q(Q), .C(C), .CE(CE), .PRE(PRE)
);
`endif
endmodule
module FDPE_1 (output Q, input C, CE, D, PRE);
parameter [0:0] INIT = 1'b1;
`ifdef DFF_MODE
wire QQ, $Q, $abc9_currQ;
generate if (INIT == 1'b1) begin
assign Q = ~QQ;
FDCE_1 #(
.INIT(1'b0)
) _TECHMAP_REPLACE_ (
.D(~D), .Q($Q), .C(C), .CE(CE), .CLR(PRE)
// ^^^ Note that async
// control is not directly
// supported by abc9 but its
// behaviour is captured by
// $__ABC9_ASYNC0 below
);
$__ABC9_ASYNC0 abc_async (.A($abc9_currQ), .S(PRE), .Y(QQ));
end
else begin
assign Q = QQ;
FDPE_1 #(
.INIT(1'b0)
) _TECHMAP_REPLACE_ (
.D(D), .Q($Q), .C(C), .CE(CE), .PRE(PRE)
// ^^^ Note that async
// control is not directly
// supported by abc9 but its
// behaviour is captured by
// $__ABC9_ASYNC1 below
);
$__ABC9_ASYNC1 abc_async (.A($abc9_currQ), .S(PRE), .Y(QQ));
end endgenerate
$__ABC9_FF_ abc_dff (.D($Q), .Q($abc9_currQ));
// Special signals
wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
wire [0:0] _TECHMAP_REPLACE_.$abc9_init = 1'b0;
wire [0:0] _TECHMAP_REPLACE_.$abc9_currQ = $abc9_currQ;
`else
(* abc9_keep *)
FDPE_1 #(
.INIT(INIT)
) _TECHMAP_REPLACE_ (
.D(D), .Q(Q), .C(C), .CE(CE), .PRE(PRE)
);
`endif
endmodule
module FDSE (output Q, input C, CE, D, S);
parameter [0:0] INIT = 1'b1;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_S_INVERTED = 1'b0;
`ifdef DFF_MODE
wire QQ, $Q;
generate if (INIT == 1'b1) begin
assign Q = ~QQ;
FDRE #(
.INIT(1'b0),
.IS_C_INVERTED(IS_C_INVERTED),
.IS_D_INVERTED(IS_D_INVERTED),
.IS_R_INVERTED(IS_S_INVERTED)
) _TECHMAP_REPLACE_ (
.D(~D), .Q($Q), .C(C), .CE(CE), .R(S)
);
end
else begin
assign Q = QQ;
FDSE #(
.INIT(1'b0),
.IS_C_INVERTED(IS_C_INVERTED),
.IS_D_INVERTED(IS_D_INVERTED),
.IS_S_INVERTED(IS_S_INVERTED)
) _TECHMAP_REPLACE_ (
.D(D), .Q($Q), .C(C), .CE(CE), .S(S)
);
end endgenerate
$__ABC9_FF_ abc_dff (.D($Q), .Q(QQ));
// Special signals
wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED};
wire [0:0] _TECHMAP_REPLACE_.$abc9_init = 1'b0;
wire [0:0] _TECHMAP_REPLACE_.$abc9_currQ = QQ;
`else
(* abc9_keep *)
FDSE #(
.INIT(INIT),
.IS_C_INVERTED(IS_C_INVERTED),
.IS_D_INVERTED(IS_D_INVERTED),
.IS_S_INVERTED(IS_S_INVERTED)
) _TECHMAP_REPLACE_ (
.D(D), .Q(Q), .C(C), .CE(CE), .S(S)
);
`endif
endmodule
module FDSE_1 (output Q, input C, CE, D, S);
parameter [0:0] INIT = 1'b1;
`ifdef DFF_MODE
wire QQ, $Q;
generate if (INIT == 1'b1) begin
assign Q = ~QQ;
FDRE_1 #(
.INIT(1'b0)
) _TECHMAP_REPLACE_ (
.D(~D), .Q($Q), .C(C), .CE(CE), .R(S)
);
end
else begin
assign Q = QQ;
FDSE_1 #(
.INIT(1'b0)
) _TECHMAP_REPLACE_ (
.D(D), .Q($Q), .C(C), .CE(CE), .S(S)
);
end endgenerate
$__ABC9_FF_ abc_dff (.D($Q), .Q(QQ));
// Special signals
wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
wire [0:0] _TECHMAP_REPLACE_.$abc9_init = 1'b0;
wire [0:0] _TECHMAP_REPLACE_.$abc9_currQ = QQ;
`else
(* abc9_keep *)
FDSE_1 #(
.INIT(INIT)
) _TECHMAP_REPLACE_ (
.D(D), .Q(Q), .C(C), .CE(CE), .S(S)
);
`endif
endmodule
module RAM32X1D (
output DPO, SPO,
@ -30,17 +472,17 @@ module RAM32X1D (
);
parameter INIT = 32'h0;
parameter IS_WCLK_INVERTED = 1'b0;
wire \$DPO , \$SPO ;
wire $DPO, $SPO;
RAM32X1D #(
.INIT(INIT), .IS_WCLK_INVERTED(IS_WCLK_INVERTED)
) _TECHMAP_REPLACE_ (
.DPO(\$DPO ), .SPO(\$SPO ),
.DPO($DPO), .SPO($SPO),
.D(D), .WCLK(WCLK), .WE(WE),
.A0(A0), .A1(A1), .A2(A2), .A3(A3), .A4(A4),
.DPRA0(DPRA0), .DPRA1(DPRA1), .DPRA2(DPRA2), .DPRA3(DPRA3), .DPRA4(DPRA4)
);
\$__ABC9_LUT6 spo (.A(\$SPO ), .S({1'b1, A4, A3, A2, A1, A0}), .Y(SPO));
\$__ABC9_LUT6 dpo (.A(\$DPO ), .S({1'b1, DPRA4, DPRA3, DPRA2, DPRA1, DPRA0}), .Y(DPO));
$__ABC9_LUT6 spo (.A($SPO), .S({1'b1, A4, A3, A2, A1, A0}), .Y(SPO));
$__ABC9_LUT6 dpo (.A($DPO), .S({1'b1, DPRA4, DPRA3, DPRA2, DPRA1, DPRA0}), .Y(DPO));
endmodule
module RAM64X1D (
@ -53,17 +495,17 @@ module RAM64X1D (
);
parameter INIT = 64'h0;
parameter IS_WCLK_INVERTED = 1'b0;
wire \$DPO , \$SPO ;
wire $DPO, $SPO;
RAM64X1D #(
.INIT(INIT), .IS_WCLK_INVERTED(IS_WCLK_INVERTED)
) _TECHMAP_REPLACE_ (
.DPO(\$DPO ), .SPO(\$SPO ),
.DPO($DPO), .SPO($SPO),
.D(D), .WCLK(WCLK), .WE(WE),
.A0(A0), .A1(A1), .A2(A2), .A3(A3), .A4(A4), .A5(A5),
.DPRA0(DPRA0), .DPRA1(DPRA1), .DPRA2(DPRA2), .DPRA3(DPRA3), .DPRA4(DPRA4), .DPRA5(DPRA5)
);
\$__ABC9_LUT6 spo (.A(\$SPO ), .S({A5, A4, A3, A2, A1, A0}), .Y(SPO));
\$__ABC9_LUT6 dpo (.A(\$DPO ), .S({DPRA5, DPRA4, DPRA3, DPRA2, DPRA1, DPRA0}), .Y(DPO));
$__ABC9_LUT6 spo (.A($SPO), .S({A5, A4, A3, A2, A1, A0}), .Y(SPO));
$__ABC9_LUT6 dpo (.A($DPO), .S({DPRA5, DPRA4, DPRA3, DPRA2, DPRA1, DPRA0}), .Y(DPO));
endmodule
module RAM128X1D (
@ -75,17 +517,17 @@ module RAM128X1D (
);
parameter INIT = 128'h0;
parameter IS_WCLK_INVERTED = 1'b0;
wire \$DPO , \$SPO ;
wire $DPO, $SPO;
RAM128X1D #(
.INIT(INIT), .IS_WCLK_INVERTED(IS_WCLK_INVERTED)
) _TECHMAP_REPLACE_ (
.DPO(\$DPO ), .SPO(\$SPO ),
.DPO($DPO), .SPO($SPO),
.D(D), .WCLK(WCLK), .WE(WE),
.A(A),
.DPRA(DPRA)
);
\$__ABC9_LUT7 spo (.A(\$SPO ), .S(A), .Y(SPO));
\$__ABC9_LUT7 dpo (.A(\$DPO ), .S(DPRA), .Y(DPO));
$__ABC9_LUT7 spo (.A($SPO), .S(A), .Y(SPO));
$__ABC9_LUT7 dpo (.A($DPO), .S(DPRA), .Y(DPO));
endmodule
module RAM32M (
@ -109,24 +551,24 @@ module RAM32M (
parameter [63:0] INIT_C = 64'h0000000000000000;
parameter [63:0] INIT_D = 64'h0000000000000000;
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
wire [1:0] \$DOA , \$DOB , \$DOC , \$DOD ;
wire [1:0] $DOA, $DOB, $DOC, $DOD;
RAM32M #(
.INIT_A(INIT_A), .INIT_B(INIT_B), .INIT_C(INIT_C), .INIT_D(INIT_D),
.IS_WCLK_INVERTED(IS_WCLK_INVERTED)
) _TECHMAP_REPLACE_ (
.DOA(\$DOA ), .DOB(\$DOB ), .DOC(\$DOC ), .DOD(\$DOD ),
.DOA($DOA), .DOB($DOB), .DOC($DOC), .DOD($DOD),
.WCLK(WCLK), .WE(WE),
.ADDRA(ADDRA), .ADDRB(ADDRB), .ADDRC(ADDRC), .ADDRD(ADDRD),
.DIA(DIA), .DIB(DIB), .DIC(DIC), .DID(DID)
);
\$__ABC9_LUT6 doa0 (.A(\$DOA [0]), .S({1'b1, ADDRA}), .Y(DOA[0]));
\$__ABC9_LUT6 doa1 (.A(\$DOA [1]), .S({1'b1, ADDRA}), .Y(DOA[1]));
\$__ABC9_LUT6 dob0 (.A(\$DOB [0]), .S({1'b1, ADDRB}), .Y(DOB[0]));
\$__ABC9_LUT6 dob1 (.A(\$DOB [1]), .S({1'b1, ADDRB}), .Y(DOB[1]));
\$__ABC9_LUT6 doc0 (.A(\$DOC [0]), .S({1'b1, ADDRC}), .Y(DOC[0]));
\$__ABC9_LUT6 doc1 (.A(\$DOC [1]), .S({1'b1, ADDRC}), .Y(DOC[1]));
\$__ABC9_LUT6 dod0 (.A(\$DOD [0]), .S({1'b1, ADDRD}), .Y(DOD[0]));
\$__ABC9_LUT6 dod1 (.A(\$DOD [1]), .S({1'b1, ADDRD}), .Y(DOD[1]));
$__ABC9_LUT6 doa0 (.A($DOA[0]), .S({1'b1, ADDRA}), .Y(DOA[0]));
$__ABC9_LUT6 doa1 (.A($DOA[1]), .S({1'b1, ADDRA}), .Y(DOA[1]));
$__ABC9_LUT6 dob0 (.A($DOB[0]), .S({1'b1, ADDRB}), .Y(DOB[0]));
$__ABC9_LUT6 dob1 (.A($DOB[1]), .S({1'b1, ADDRB}), .Y(DOB[1]));
$__ABC9_LUT6 doc0 (.A($DOC[0]), .S({1'b1, ADDRC}), .Y(DOC[0]));
$__ABC9_LUT6 doc1 (.A($DOC[1]), .S({1'b1, ADDRC}), .Y(DOC[1]));
$__ABC9_LUT6 dod0 (.A($DOD[0]), .S({1'b1, ADDRD}), .Y(DOD[0]));
$__ABC9_LUT6 dod1 (.A($DOD[1]), .S({1'b1, ADDRD}), .Y(DOD[1]));
endmodule
module RAM64M (
@ -150,20 +592,20 @@ module RAM64M (
parameter [63:0] INIT_C = 64'h0000000000000000;
parameter [63:0] INIT_D = 64'h0000000000000000;
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
wire \$DOA , \$DOB , \$DOC , \$DOD ;
wire $DOA, $DOB, $DOC, $DOD;
RAM64M #(
.INIT_A(INIT_A), .INIT_B(INIT_B), .INIT_C(INIT_C), .INIT_D(INIT_D),
.IS_WCLK_INVERTED(IS_WCLK_INVERTED)
) _TECHMAP_REPLACE_ (
.DOA(\$DOA ), .DOB(\$DOB ), .DOC(\$DOC ), .DOD(\$DOD ),
.DOA($DOA), .DOB($DOB), .DOC($DOC), .DOD($DOD),
.WCLK(WCLK), .WE(WE),
.ADDRA(ADDRA), .ADDRB(ADDRB), .ADDRC(ADDRC), .ADDRD(ADDRD),
.DIA(DIA), .DIB(DIB), .DIC(DIC), .DID(DID)
);
\$__ABC9_LUT6 doa (.A(\$DOA ), .S(ADDRA), .Y(DOA));
\$__ABC9_LUT6 dob (.A(\$DOB ), .S(ADDRB), .Y(DOB));
\$__ABC9_LUT6 doc (.A(\$DOC ), .S(ADDRC), .Y(DOC));
\$__ABC9_LUT6 dod (.A(\$DOD ), .S(ADDRD), .Y(DOD));
$__ABC9_LUT6 doa (.A($DOA), .S(ADDRA), .Y(DOA));
$__ABC9_LUT6 dob (.A($DOB), .S(ADDRB), .Y(DOB));
$__ABC9_LUT6 doc (.A($DOC), .S(ADDRC), .Y(DOC));
$__ABC9_LUT6 dod (.A($DOD), .S(ADDRD), .Y(DOD));
endmodule
module SRL16E (
@ -172,14 +614,14 @@ module SRL16E (
);
parameter [15:0] INIT = 16'h0000;
parameter [0:0] IS_CLK_INVERTED = 1'b0;
wire \$Q ;
wire $Q;
SRL16E #(
.INIT(INIT), .IS_CLK_INVERTED(IS_CLK_INVERTED)
) _TECHMAP_REPLACE_ (
.Q(\$Q ),
.Q($Q),
.A0(A0), .A1(A1), .A2(A2), .A3(A3), .CE(CE), .CLK(CLK), .D(D)
);
\$__ABC9_LUT6 q (.A(\$Q ), .S({1'b1, A3, A2, A1, A0, 1'b1}), .Y(Q));
$__ABC9_LUT6 q (.A($Q), .S({1'b1, A3, A2, A1, A0, 1'b1}), .Y(Q));
endmodule
module SRLC32E (
@ -190,14 +632,14 @@ module SRLC32E (
);
parameter [31:0] INIT = 32'h00000000;
parameter [0:0] IS_CLK_INVERTED = 1'b0;
wire \$Q ;
wire $Q;
SRLC32E #(
.INIT(INIT), .IS_CLK_INVERTED(IS_CLK_INVERTED)
) _TECHMAP_REPLACE_ (
.Q(\$Q ), .Q31(Q31),
.Q($Q), .Q31(Q31),
.A(A), .CE(CE), .CLK(CLK), .D(D)
);
\$__ABC9_LUT6 q (.A(\$Q ), .S({1'b1, A}), .Y(Q));
$__ABC9_LUT6 q (.A($Q), .S({1'b1, A}), .Y(Q));
endmodule
module DSP48E1 (
@ -386,15 +828,15 @@ __CELL__ #(
if (AREG == 0 && MREG == 0 && PREG == 0)
assign iA = A, pA = 1'bx;
else
\$__ABC9_REG #(.WIDTH(30)) rA (.I(A), .O(iA), .Q(pA));
$__ABC9_REG #(.WIDTH(30)) rA (.I(A), .O(iA), .Q(pA));
if (BREG == 0 && MREG == 0 && PREG == 0)
assign iB = B, pB = 1'bx;
else
\$__ABC9_REG #(.WIDTH(18)) rB (.I(B), .O(iB), .Q(pB));
$__ABC9_REG #(.WIDTH(18)) rB (.I(B), .O(iB), .Q(pB));
if (CREG == 0 && PREG == 0)
assign iC = C, pC = 1'bx;
else
\$__ABC9_REG #(.WIDTH(48)) rC (.I(C), .O(iC), .Q(pC));
$__ABC9_REG #(.WIDTH(48)) rC (.I(C), .O(iC), .Q(pC));
if (DREG == 0)
assign iD = D;
else if (techmap_guard)
@ -405,27 +847,27 @@ __CELL__ #(
assign pAD = 1'bx;
if (PREG == 0) begin
if (MREG == 1)
\$__ABC9_REG rM (.Q(pM));
$__ABC9_REG rM (.Q(pM));
else
assign pM = 1'bx;
assign pP = 1'bx;
end else begin
assign pM = 1'bx;
\$__ABC9_REG rP (.Q(pP));
$__ABC9_REG rP (.Q(pP));
end
if (MREG == 0 && PREG == 0)
assign mP = oP, mPCOUT = oPCOUT;
else
assign mP = 1'bx, mPCOUT = 1'bx;
\$__ABC9_DSP48E1_MULT_P_MUX muxP (
$__ABC9_DSP48E1_MULT_P_MUX muxP (
.Aq(pA), .Bq(pB), .Cq(pC), .Dq(pD), .ADq(pAD), .I(oP), .Mq(pM), .P(mP), .Pq(pP), .O(P)
);
\$__ABC9_DSP48E1_MULT_PCOUT_MUX muxPCOUT (
$__ABC9_DSP48E1_MULT_PCOUT_MUX muxPCOUT (
.Aq(pA), .Bq(pB), .Cq(pC), .Dq(pD), .ADq(pAD), .I(oPCOUT), .Mq(pM), .P(mPCOUT), .Pq(pP), .O(PCOUT)
);
`DSP48E1_INST(\$__ABC9_DSP48E1_MULT )
`DSP48E1_INST($__ABC9_DSP48E1_MULT )
end
else if (USE_MULT == "MULTIPLY" && USE_DPORT == "TRUE") begin
// Disconnect the A-input if MREG is enabled, since
@ -433,26 +875,26 @@ __CELL__ #(
if (AREG == 0 && ADREG == 0 && MREG == 0 && PREG == 0)
assign iA = A, pA = 1'bx;
else
\$__ABC9_REG #(.WIDTH(30)) rA (.I(A), .O(iA), .Q(pA));
$__ABC9_REG #(.WIDTH(30)) rA (.I(A), .O(iA), .Q(pA));
if (BREG == 0 && MREG == 0 && PREG == 0)
assign iB = B, pB = 1'bx;
else
\$__ABC9_REG #(.WIDTH(18)) rB (.I(B), .O(iB), .Q(pB));
$__ABC9_REG #(.WIDTH(18)) rB (.I(B), .O(iB), .Q(pB));
if (CREG == 0 && PREG == 0)
assign iC = C, pC = 1'bx;
else
\$__ABC9_REG #(.WIDTH(48)) rC (.I(C), .O(iC), .Q(pC));
$__ABC9_REG #(.WIDTH(48)) rC (.I(C), .O(iC), .Q(pC));
if (DREG == 0 && ADREG == 0)
assign iD = D, pD = 1'bx;
else
\$__ABC9_REG #(.WIDTH(25)) rD (.I(D), .O(iD), .Q(pD));
$__ABC9_REG #(.WIDTH(25)) rD (.I(D), .O(iD), .Q(pD));
if (PREG == 0) begin
if (MREG == 1) begin
assign pAD = 1'bx;
\$__ABC9_REG rM (.Q(pM));
$__ABC9_REG rM (.Q(pM));
end else begin
if (ADREG == 1)
\$__ABC9_REG rAD (.Q(pAD));
$__ABC9_REG rAD (.Q(pAD));
else
assign pAD = 1'bx;
assign pM = 1'bx;
@ -460,21 +902,21 @@ __CELL__ #(
assign pP = 1'bx;
end else begin
assign pAD = 1'bx, pM = 1'bx;
\$__ABC9_REG rP (.Q(pP));
$__ABC9_REG rP (.Q(pP));
end
if (MREG == 0 && PREG == 0)
assign mP = oP, mPCOUT = oPCOUT;
else
assign mP = 1'bx, mPCOUT = 1'bx;
\$__ABC9_DSP48E1_MULT_DPORT_P_MUX muxP (
$__ABC9_DSP48E1_MULT_DPORT_P_MUX muxP (
.Aq(pA), .Bq(pB), .Cq(pC), .Dq(pD), .ADq(pAD), .I(oP), .Mq(pM), .P(mP), .Pq(pP), .O(P)
);
\$__ABC9_DSP48E1_MULT_DPORT_PCOUT_MUX muxPCOUT (
$__ABC9_DSP48E1_MULT_DPORT_PCOUT_MUX muxPCOUT (
.Aq(pA), .Bq(pB), .Cq(pC), .Dq(pD), .ADq(pAD), .I(oPCOUT), .Mq(pM), .P(mPCOUT), .Pq(pP), .O(PCOUT)
);
`DSP48E1_INST(\$__ABC9_DSP48E1_MULT_DPORT )
`DSP48E1_INST($__ABC9_DSP48E1_MULT_DPORT )
end
else if (USE_MULT == "NONE" && USE_DPORT == "FALSE") begin
// Disconnect the A-input if MREG is enabled, since
@ -482,15 +924,15 @@ __CELL__ #(
if (AREG == 0 && PREG == 0)
assign iA = A, pA = 1'bx;
else
\$__ABC9_REG #(.WIDTH(30)) rA (.I(A), .O(iA), .Q(pA));
$__ABC9_REG #(.WIDTH(30)) rA (.I(A), .O(iA), .Q(pA));
if (BREG == 0 && PREG == 0)
assign iB = B, pB = 1'bx;
else
\$__ABC9_REG #(.WIDTH(18)) rB (.I(B), .O(iB), .Q(pB));
$__ABC9_REG #(.WIDTH(18)) rB (.I(B), .O(iB), .Q(pB));
if (CREG == 0 && PREG == 0)
assign iC = C, pC = 1'bx;
else
\$__ABC9_REG #(.WIDTH(48)) rC (.I(C), .O(iC), .Q(pC));
$__ABC9_REG #(.WIDTH(48)) rC (.I(C), .O(iC), .Q(pC));
if (DREG == 1 && techmap_guard)
$error("Invalid DSP48E1 configuration: DREG enabled but USE_DPORT == \"FALSE\"");
assign pD = 1'bx;
@ -501,7 +943,7 @@ __CELL__ #(
$error("Invalid DSP48E1 configuration: MREG enabled but USE_MULT == \"NONE\"");
assign pM = 1'bx;
if (PREG == 1)
\$__ABC9_REG rP (.Q(pP));
$__ABC9_REG rP (.Q(pP));
else
assign pP = 1'bx;
@ -509,14 +951,14 @@ __CELL__ #(
assign mP = oP, mPCOUT = oPCOUT;
else
assign mP = 1'bx, mPCOUT = 1'bx;
\$__ABC9_DSP48E1_P_MUX muxP (
$__ABC9_DSP48E1_P_MUX muxP (
.Aq(pA), .Bq(pB), .Cq(pC), .Dq(pD), .ADq(pAD), .I(oP), .Mq(pM), .P(mP), .Pq(pP), .O(P)
);
\$__ABC9_DSP48E1_PCOUT_MUX muxPCOUT (
$__ABC9_DSP48E1_PCOUT_MUX muxPCOUT (
.Aq(pA), .Bq(pB), .Cq(pC), .Dq(pD), .ADq(pAD), .I(oPCOUT), .Mq(pM), .P(mPCOUT), .Pq(pP), .O(PCOUT)
);
`DSP48E1_INST(\$__ABC9_DSP48E1 )
`DSP48E1_INST($__ABC9_DSP48E1 )
end
else
$error("Invalid DSP48E1 configuration");

View File

@ -30,7 +30,22 @@ module \$__XILINX_MUXF78 (output O, input I0, I1, I2, I3, S0, S1);
: (S0 ? I1 : I0);
endmodule
// Box to emulate comb/seq behaviour of RAMD{32,64} and SRL{16,32}
module \$__ABC9_FF_ (input D, output Q);
endmodule
// Box to emulate async behaviour of FDC*
(* abc_box_id = 1000 *)
module \$__ABC9_ASYNC0 (input A, S, output Y);
assign Y = S ? 1'b0 : A;
endmodule
// Box to emulate async behaviour of FDP*
(* abc_box_id = 1001 *)
module \$__ABC9_ASYNC1 (input A, S, output Y);
assign Y = S ? 1'b0 : A;
endmodule
// Box to emulate comb/seq behaviour of RAM{32,64} and SRL{16,32}
// Necessary since RAMD* and SRL* have both combinatorial (i.e.
// same-cycle read operation) and sequential (write operation
// is only committed on the next clock edge).
@ -39,7 +54,7 @@ endmodule
(* abc9_box_id=2000 *)
module \$__ABC9_LUT6 (input A, input [5:0] S, output Y);
endmodule
// Box to emulate comb/seq behaviour of RAMD128
// Box to emulate comb/seq behaviour of RAM128
(* abc9_box_id=2001 *)
module \$__ABC9_LUT7 (input A, input [6:0] S, output Y);
endmodule

View File

@ -20,6 +20,15 @@
// ============================================================================
(* techmap_celltype = "$__ABC9_ASYNC0 $__ABC9_ASYNC1" *)
module \$__ABC9_ASYNC01 (input A, S, output Y);
assign Y = A;
endmodule
module \$__ABC9_FF_ (input D, output Q);
assign Q = D;
endmodule
module \$__ABC9_LUT6 (input A, input [5:0] S, output Y);
assign Y = A;
endmodule

View File

@ -41,6 +41,72 @@ CARRY4 4 1 10 8
592 540 520 356 - 512 548 292 - 228
580 526 507 398 385 508 528 378 380 114
# Box to emulate async behaviour of FDC*
# Inputs: A S
# Outputs: Y
$__ABC9_ASYNC0 1000 1 2 1
0 764
# Box to emulate async behaviour of FDP*
# Inputs: A S
# Outputs: Y
$__ABC9_ASYNC1 1001 1 2 1
0 764
# Max delays from https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L237-L251
# https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L265-L277
# NB: Inputs/Outputs must be ordered alphabetically
# (with exception for \$currQ)
# Inputs: C CE D R \$currQ
# Outputs: Q
FDRE 1100 1 5 1
#0 109 -46 404 0
0 109 0 404 0 # Clamp -46ps Tsu
# Inputs: C CE D R \$currQ
# Outputs: Q
FDRE_1 1101 1 5 1
#0 109 0 -46 404
0 109 0 0 404 # Clamp -46ps Tsu
# Inputs: C CE CLR D \$currQ
# Outputs: Q
FDCE 1102 1 5 1
#0 109 764 -46 0
0 109 764 0 0 # Clamp -46ps Tsu
# Inputs: C CE CLR D \$currQ
# Outputs: Q
FDCE_1 1103 1 5 1
#0 109 764 -46 0
0 109 764 0 0 # Clamp -46ps Tsu
# Inputs: C CE D PRE \$currQ
# Outputs: Q
FDPE 1104 1 5 1
#0 109 -46 764 0
0 109 0 764 0 # Clamp -46ps Tsu
# Inputs: C CE D PRE \$currQ
# Outputs: Q
FDPE_1 1105 1 5 1
#0 109 -46 764 0
0 109 0 764 0 # Clamp -46ps Tsu
# Inputs: C CE D S \$currQ
# Outputs: Q
FDSE 1106 1 5 1
#0 109 -46 446 0
0 109 0 446 0 # Clamp -46ps Tsu
# Inputs: C CE D S \$currQ
# Outputs: Q
FDSE_1 1107 1 5 1
#0 109 -46 446 0
0 109 0 446 0 # Clamp -46ps Tsu
# SLICEM/A6LUT
# Box to emulate comb/seq behaviour of RAMD{32,64} and SRL{16,32}
# Necessary since RAMD* and SRL* have both combinatorial (i.e.
@ -56,7 +122,7 @@ $__ABC9_LUT6 2000 0 7 1
# SLICEM/A6LUT + F7BMUX
# Box to emulate comb/seq behaviour of RAMD128
# Inputs: A S0 S1 S2 S3 S4 S5 S6
# Outputs: DPO SPO
# Outputs: Y
$__ABC9_LUT7 2001 0 8 1
0 1047 1036 877 812 643 532 478

View File

@ -325,6 +325,7 @@ endmodule
// Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLL_L.sdf#L238-L250
(* abc9_box_id=1100, lib_whitebox, abc9_flop *)
module FDRE (
(* abc9_arrival=303 *)
output reg Q,
@ -348,27 +349,17 @@ module FDRE (
endcase endgenerate
endmodule
module FDSE (
(* abc9_box_id=1101, lib_whitebox, abc9_flop *)
module FDRE_1 (
(* abc9_arrival=303 *)
output reg Q,
(* clkbuf_sink *)
(* invertible_pin = "IS_C_INVERTED" *)
input C,
input CE,
(* invertible_pin = "IS_D_INVERTED" *)
input D,
(* invertible_pin = "IS_S_INVERTED" *)
input S
input CE, D, R
);
parameter [0:0] INIT = 1'b1;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_S_INVERTED = 1'b0;
parameter [0:0] INIT = 1'b0;
initial Q <= INIT;
generate case (|IS_C_INVERTED)
1'b0: always @(posedge C) if (S == !IS_S_INVERTED) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
1'b1: always @(negedge C) if (S == !IS_S_INVERTED) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
endcase endgenerate
always @(negedge C) if (R) Q <= 1'b0; else if (CE) Q <= D;
endmodule
module FDRSE (
@ -406,6 +397,7 @@ module FDRSE (
Q <= d;
endmodule
(* abc9_box_id=1102, lib_whitebox, abc9_flop *)
module FDCE (
(* abc9_arrival=303 *)
output reg Q,
@ -431,29 +423,17 @@ module FDCE (
endcase endgenerate
endmodule
module FDPE (
(* abc9_box_id=1103, lib_whitebox, abc9_flop *)
module FDCE_1 (
(* abc9_arrival=303 *)
output reg Q,
(* clkbuf_sink *)
(* invertible_pin = "IS_C_INVERTED" *)
input C,
input CE,
(* invertible_pin = "IS_D_INVERTED" *)
input D,
(* invertible_pin = "IS_PRE_INVERTED" *)
input PRE
input CE, D, CLR
);
parameter [0:0] INIT = 1'b1;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_PRE_INVERTED = 1'b0;
parameter [0:0] INIT = 1'b0;
initial Q <= INIT;
generate case ({|IS_C_INVERTED, |IS_PRE_INVERTED})
2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
endcase endgenerate
always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else if (CE) Q <= D;
endmodule
module FDCPE (
@ -501,42 +481,33 @@ module FDCPE (
assign Q = qs ? qp : qc;
endmodule
module FDRE_1 (
(* abc9_box_id=1104, lib_whitebox, abc9_flop *)
module FDPE (
(* abc9_arrival=303 *)
output reg Q,
(* clkbuf_sink *)
(* invertible_pin = "IS_C_INVERTED" *)
input C,
input CE, D, R
);
parameter [0:0] INIT = 1'b0;
initial Q <= INIT;
always @(negedge C) if (R) Q <= 1'b0; else if(CE) Q <= D;
endmodule
module FDSE_1 (
(* abc9_arrival=303 *)
output reg Q,
(* clkbuf_sink *)
input C,
input CE, D, S
input CE,
(* invertible_pin = "IS_D_INVERTED" *)
input D,
(* invertible_pin = "IS_PRE_INVERTED" *)
input PRE
);
parameter [0:0] INIT = 1'b1;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_PRE_INVERTED = 1'b0;
initial Q <= INIT;
always @(negedge C) if (S) Q <= 1'b1; else if(CE) Q <= D;
endmodule
module FDCE_1 (
(* abc9_arrival=303 *)
output reg Q,
(* clkbuf_sink *)
input C,
input CE, D, CLR
);
parameter [0:0] INIT = 1'b0;
initial Q <= INIT;
always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else if (CE) Q <= D;
generate case ({|IS_C_INVERTED, |IS_PRE_INVERTED})
2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
endcase endgenerate
endmodule
(* abc9_box_id=1105, lib_whitebox, abc9_flop *)
module FDPE_1 (
(* abc9_arrival=303 *)
output reg Q,
@ -549,6 +520,43 @@ module FDPE_1 (
always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else if (CE) Q <= D;
endmodule
(* abc9_box_id=1106, lib_whitebox, abc9_flop *)
module FDSE (
(* abc9_arrival=303 *)
output reg Q,
(* clkbuf_sink *)
(* invertible_pin = "IS_C_INVERTED" *)
input C,
input CE,
(* invertible_pin = "IS_D_INVERTED" *)
input D,
(* invertible_pin = "IS_S_INVERTED" *)
input S
);
parameter [0:0] INIT = 1'b1;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_S_INVERTED = 1'b0;
initial Q <= INIT;
generate case (|IS_C_INVERTED)
1'b0: always @(posedge C) if (S == !IS_S_INVERTED) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
1'b1: always @(negedge C) if (S == !IS_S_INVERTED) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
endcase endgenerate
endmodule
(* abc9_box_id=1107, lib_whitebox, abc9_flop *)
module FDSE_1 (
(* abc9_arrival=303 *)
output reg Q,
(* clkbuf_sink *)
input C,
input CE, D, S
);
parameter [0:0] INIT = 1'b1;
initial Q <= INIT;
always @(negedge C) if (S) Q <= 1'b1; else if (CE) Q <= D;
endmodule
module LDCE (
output reg Q,
(* invertible_pin = "IS_CLR_INVERTED" *)

View File

@ -107,6 +107,9 @@ struct SynthXilinxPass : public ScriptPass
log(" -flatten\n");
log(" flatten design before synthesis\n");
log("\n");
log(" -dff\n");
log(" run 'abc9' with -dff option\n");
log("\n");
log(" -retime\n");
log(" run 'abc' with -dff option\n");
log("\n");
@ -120,7 +123,8 @@ struct SynthXilinxPass : public ScriptPass
}
std::string top_opt, edif_file, blif_file, family;
bool flatten, retime, vpr, ise, noiopad, noclkbuf, nobram, nolutram, nosrl, nocarry, nowidelut, nodsp, uram, abc9;
bool flatten, retime, vpr, ise, noiopad, noclkbuf, nobram, nolutram, nosrl, nocarry, nowidelut, nodsp, uram;
bool abc9, dff_mode;
bool flatten_before_abc;
int widemux;
@ -145,6 +149,7 @@ struct SynthXilinxPass : public ScriptPass
nodsp = false;
uram = false;
abc9 = false;
dff_mode = false;
flatten_before_abc = false;
widemux = 0;
}
@ -252,6 +257,10 @@ struct SynthXilinxPass : public ScriptPass
uram = true;
continue;
}
if (args[argidx] == "-dff") {
dff_mode = true;
continue;
}
break;
}
extra_args(args, argidx, design);
@ -287,10 +296,11 @@ struct SynthXilinxPass : public ScriptPass
ff_map_file = "+/xilinx/xc7_ff_map.v";
if (check_label("begin")) {
std::string read_args;
if (vpr)
run("read_verilog -lib -D_EXPLICIT_CARRY +/xilinx/cells_sim.v");
else
run("read_verilog -lib +/xilinx/cells_sim.v");
read_args += " -D_EXPLICIT_CARRY";
read_args += " -lib +/xilinx/cells_sim.v";
run("read_verilog" + read_args);
run("read_verilog -lib +/xilinx/cells_xtra.v");
@ -537,7 +547,10 @@ struct SynthXilinxPass : public ScriptPass
if (family != "xc7")
log_warning("'synth_xilinx -abc9' not currently supported for the '%s' family, "
"will use timing for 'xc7' instead.\n", family.c_str());
run("techmap -map +/xilinx/abc9_map.v -max_iter 1");
std::string techmap_args = "-map +/xilinx/abc9_map.v -max_iter 1";
if (dff_mode)
techmap_args += " -D DFF_MODE";
run("techmap " + techmap_args);
run("read_verilog -icells -lib +/xilinx/abc9_model.v");
std::string abc9_opts = " -box +/xilinx/abc9_xc7.box";
abc9_opts += stringf(" -W %d", XC7_WIRE_DELAY);
@ -547,6 +560,7 @@ struct SynthXilinxPass : public ScriptPass
else
abc9_opts += " -lut +/xilinx/abc9_xc7.lut";
run("abc9" + abc9_opts);
run("techmap -map +/xilinx/abc9_unmap.v");
}
else {
if (nowidelut)
@ -562,14 +576,11 @@ struct SynthXilinxPass : public ScriptPass
run("xilinx_srl -fixed -minlen 3", "(skip if '-nosrl')");
std::string techmap_args = "-map +/xilinx/lut_map.v -map +/xilinx/cells_map.v";
if (help_mode)
techmap_args += " [-map " + ff_map_file + "]";
else if (abc9)
techmap_args += " -map +/xilinx/abc9_unmap.v";
else
techmap_args += " -map " + ff_map_file;
run("techmap " + techmap_args);
techmap_args += stringf("[-map %s]", ff_map_file.c_str());
else if (!abc9)
techmap_args += stringf(" -map %s", ff_map_file.c_str());
run("techmap " + techmap_args, "(option without '-abc9')");
run("xilinx_dffopt");
run("clean");
}
if (check_label("finalize")) {
@ -577,6 +588,7 @@ struct SynthXilinxPass : public ScriptPass
run("clkbufmap -buf BUFG O:I ", "(skip if '-noclkbuf')");
if (help_mode || ise)
run("extractinv -inv INV O:I", "(only if '-ise')");
run("clean");
}
if (check_label("check")) {

View File

@ -0,0 +1,91 @@
read_verilog <<EOT
module top(input C, CE, D, R, output [1:0] Q);
FDRE #(.INIT(1'b1)) ff1 (.C(C), .CE(CE), .D(D), .R(R), .Q(Q[0]));
FDRE_1 #(.INIT(1'b1)) ff2 (.C(C), .CE(CE), .D(D), .R(R), .Q(Q[1]));
endmodule
EOT
design -save gold
techmap -map +/xilinx/abc9_map.v -max_iter 1
techmap -map +/xilinx/abc9_unmap.v
select -assert-count 1 t:FDSE
select -assert-count 1 t:FDSE_1
techmap -autoproc -map +/xilinx/cells_sim.v
design -stash gate
design -import gold -as gold
design -import gate -as gate
techmap -autoproc -map +/xilinx/cells_sim.v
miter -equiv -flatten -make_assert -make_outputs gold gate miter
sat -seq 2 -verify -prove-asserts -show-ports miter
design -reset
read_verilog <<EOT
module top(input C, CE, D, S, output [1:0] Q);
FDSE #(.INIT(1'b1)) ff1 (.C(C), .CE(CE), .D(D), .S(S), .Q(Q[0]));
FDSE_1 #(.INIT(1'b1)) ff2 (.C(C), .CE(CE), .D(D), .S(S), .Q(Q[1]));
endmodule
EOT
design -save gold
techmap -map +/xilinx/abc9_map.v -max_iter 1
techmap -map +/xilinx/abc9_unmap.v
select -assert-count 1 t:FDRE
select -assert-count 1 t:FDRE_1
techmap -autoproc -map +/xilinx/cells_sim.v
design -stash gate
design -import gold -as gold
design -import gate -as gate
techmap -autoproc -map +/xilinx/cells_sim.v
miter -equiv -flatten -make_assert -make_outputs gold gate miter
sat -seq 2 -set-init-zero -verify -prove-asserts -show-ports miter
design -reset
read_verilog <<EOT
module top(input C, CE, D, PRE, output [1:0] Q);
FDPE #(.INIT(1'b1)) ff1 (.C(C), .CE(CE), .D(D), .PRE(PRE), .Q(Q[0]));
FDPE_1 #(.INIT(1'b1)) ff2 (.C(C), .CE(CE), .D(D), .PRE(PRE), .Q(Q[1]));
endmodule
EOT
design -save gold
techmap -map +/xilinx/abc9_map.v -max_iter 1
techmap -map +/xilinx/abc9_unmap.v
select -assert-count 1 t:FDCE
select -assert-count 1 t:FDCE_1
techmap -autoproc -map +/xilinx/cells_sim.v
design -stash gate
design -import gold -as gold
design -import gate -as gate
techmap -autoproc -map +/xilinx/cells_sim.v
clk2fflogic
miter -equiv -flatten -make_assert -make_outputs gold gate miter
sat -seq 2 -set-init-zero -verify -prove-asserts -show-ports miter
design -reset
read_verilog <<EOT
module top(input C, CE, D, CLR, output [1:0] Q);
FDCE #(.INIT(1'b1)) ff1 (.C(C), .CE(CE), .D(D), .CLR(CLR), .Q(Q[0]));
FDCE_1 #(.INIT(1'b1)) ff2 (.C(C), .CE(CE), .D(D), .CLR(CLR), .Q(Q[1]));
endmodule
EOT
design -save gold
techmap -map +/xilinx/abc9_map.v -max_iter 1
techmap -map +/xilinx/abc9_unmap.v
select -assert-count 1 t:FDPE
techmap -autoproc -map +/xilinx/cells_sim.v
design -stash gate
design -import gold -as gold
design -import gate -as gate
techmap -autoproc -map +/xilinx/cells_sim.v
clk2fflogic
miter -equiv -flatten -make_assert -make_outputs gold gate miter
sat -seq 2 -set-init-zero -verify -prove-asserts -show-ports miter

View File

@ -264,3 +264,30 @@ always @*
if (en)
q <= d;
endmodule
module abc9_test031(input clk1, clk2, d, output reg q1, q2);
always @(posedge clk1) q1 <= d;
always @(negedge clk2) q2 <= q1;
endmodule
module abc9_test032(input clk, d, r, output reg q);
always @(posedge clk or posedge r)
if (r) q <= 1'b0;
else q <= d;
endmodule
module abc9_test033(input clk, d, r, output reg q);
always @(negedge clk or posedge r)
if (r) q <= 1'b1;
else q <= d;
endmodule
module abc9_test034(input clk, d, output reg q1, q2);
always @(posedge clk) q1 <= d;
always @(posedge clk) q2 <= q1;
endmodule
module abc9_test035(input clk, d, output reg [1:0] q);
always @(posedge clk) q[0] <= d;
always @(negedge clk) q[1] <= q[0];
endmodule

View File

@ -20,10 +20,12 @@ fi
cp ../simple/*.v .
cp ../simple/*.sv .
DOLLAR='?'
exec ${MAKE:-make} -f ../tools/autotest.mk $seed *.v EXTRA_FLAGS="-n 300 -p '\
exec ${MAKE:-make} -f ../tools/autotest.mk $seed *.v *.sv EXTRA_FLAGS="-n 300 -p '\
hierarchy; \
synth -run coarse; \
opt -full; \
techmap; abc9 -lut 4 -box ../abc.box; \
techmap; \
abc9 -lut 4 -box ../abc.box; \
clean; \
check -assert; \
select -assert-none t:${DOLLAR}_NOT_ t:${DOLLAR}_AND_ %%'"

View File

@ -9,3 +9,10 @@ wire w;
unknown u(~i, w);
unknown2 u2(w, o);
endmodule
module abc9_test032(input clk, d, r, output reg q);
initial q = 1'b0;
always @(negedge clk or negedge r)
if (!r) q <= 1'b0;
else q <= d;
endmodule

View File

@ -22,3 +22,19 @@ abc9 -lut 4
select -assert-count 1 t:$lut r:LUT=2'b01 r:WIDTH=1 %i %i
select -assert-count 1 t:unknown
select -assert-none t:$lut t:unknown %% t: %D
design -load read
hierarchy -top abc9_test032
proc
clk2fflogic
design -save gold
abc9 -lut 4
check
design -stash gate
design -import gold -as gold
design -import gate -as gate
miter -equiv -flatten -make_assert -make_outputs gold gate miter
sat -seq 10 -verify -prove-asserts -show-ports miter