recover_reduce: Reindent using tabs

This commit is contained in:
Robert Ou 2017-08-27 02:12:41 -07:00
parent 8a5887464c
commit 74d0f17fd4
1 changed files with 164 additions and 164 deletions

View File

@ -24,196 +24,196 @@ USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
struct RecoverReduceCorePass : public Pass {
enum GateType {
And,
Or,
Xor
};
enum GateType {
And,
Or,
Xor
};
RecoverReduceCorePass() : Pass("recover_reduce_core", "converts gate chains into $reduce_*") { }
virtual void help()
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" recover_reduce_core\n");
log("\n");
log("converts gate chains into $reduce_*\n");
log("\n");
log("This performs the core step of the recover_reduce command. This step recognizes\n");
log("chains of gates found by the previous steps and converts these chains into one\n");
log("logical cell.\n");
log("\n");
}
virtual void execute(std::vector<std::string> args, RTLIL::Design *design)
{
(void)args;
RecoverReduceCorePass() : Pass("recover_reduce_core", "converts gate chains into $reduce_*") { }
virtual void help()
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" recover_reduce_core\n");
log("\n");
log("converts gate chains into $reduce_*\n");
log("\n");
log("This performs the core step of the recover_reduce command. This step recognizes\n");
log("chains of gates found by the previous steps and converts these chains into one\n");
log("logical cell.\n");
log("\n");
}
virtual void execute(std::vector<std::string> args, RTLIL::Design *design)
{
(void)args;
for (auto module : design->selected_modules())
{
SigMap sigmap(module);
for (auto module : design->selected_modules())
{
SigMap sigmap(module);
// Index all of the nets in the module
dict<SigBit, Cell*> sig_to_driver;
dict<SigBit, pool<Cell*>> sig_to_sink;
for (auto cell : module->selected_cells())
{
for (auto &conn : cell->connections())
{
if (cell->output(conn.first))
for (auto bit : sigmap(conn.second))
sig_to_driver[bit] = cell;
// Index all of the nets in the module
dict<SigBit, Cell*> sig_to_driver;
dict<SigBit, pool<Cell*>> sig_to_sink;
for (auto cell : module->selected_cells())
{
for (auto &conn : cell->connections())
{
if (cell->output(conn.first))
for (auto bit : sigmap(conn.second))
sig_to_driver[bit] = cell;
if (cell->input(conn.first))
{
for (auto bit : sigmap(conn.second))
{
if (sig_to_sink.count(bit) == 0)
sig_to_sink[bit] = pool<Cell*>();
sig_to_sink[bit].insert(cell);
}
}
}
}
if (cell->input(conn.first))
{
for (auto bit : sigmap(conn.second))
{
if (sig_to_sink.count(bit) == 0)
sig_to_sink[bit] = pool<Cell*>();
sig_to_sink[bit].insert(cell);
}
}
}
}
// Need to check if any wires connect to module ports
pool<SigBit> port_sigs;
for (auto wire : module->selected_wires())
if (wire->port_input || wire->port_output)
for (auto bit : sigmap(wire))
port_sigs.insert(bit);
// Need to check if any wires connect to module ports
pool<SigBit> port_sigs;
for (auto wire : module->selected_wires())
if (wire->port_input || wire->port_output)
for (auto bit : sigmap(wire))
port_sigs.insert(bit);
// Actual logic starts here
pool<Cell*> consumed_cells;
for (auto cell : module->selected_cells())
{
if (consumed_cells.count(cell))
continue;
// Actual logic starts here
pool<Cell*> consumed_cells;
for (auto cell : module->selected_cells())
{
if (consumed_cells.count(cell))
continue;
GateType gt;
GateType gt;
if (cell->type == "$_AND_")
gt = GateType::And;
else if (cell->type == "$_OR_")
gt = GateType::Or;
else if (cell->type == "$_XOR_")
gt = GateType::Xor;
else
continue;
if (cell->type == "$_AND_")
gt = GateType::And;
else if (cell->type == "$_OR_")
gt = GateType::Or;
else if (cell->type == "$_XOR_")
gt = GateType::Xor;
else
continue;
log("Working on cell %s...\n", cell->name.c_str());
log("Working on cell %s...\n", cell->name.c_str());
// Go all the way to the sink
Cell* head_cell = cell;
Cell* x = cell;
while (true)
{
if (!((x->type == "$_AND_" && gt == GateType::And) ||
(x->type == "$_OR_" && gt == GateType::Or) ||
(x->type == "$_XOR_" && gt == GateType::Xor)))
break;
// Go all the way to the sink
Cell* head_cell = cell;
Cell* x = cell;
while (true)
{
if (!((x->type == "$_AND_" && gt == GateType::And) ||
(x->type == "$_OR_" && gt == GateType::Or) ||
(x->type == "$_XOR_" && gt == GateType::Xor)))
break;
head_cell = x;
head_cell = x;
auto y = sigmap(x->getPort("\\Y"));
log_assert(y.size() == 1);
auto y = sigmap(x->getPort("\\Y"));
log_assert(y.size() == 1);
// Should only continue if there is one fanout back into a cell (not to a port)
if (sig_to_sink[y[0]].size() != 1)
break;
// Should only continue if there is one fanout back into a cell (not to a port)
if (sig_to_sink[y[0]].size() != 1)
break;
x = *sig_to_sink[y[0]].begin();
}
x = *sig_to_sink[y[0]].begin();
}
log(" Head cell is %s\n", head_cell->name.c_str());
log(" Head cell is %s\n", head_cell->name.c_str());
pool<Cell*> cur_supercell;
std::deque<Cell*> bfs_queue = {head_cell};
while (bfs_queue.size())
{
Cell* x = bfs_queue.front();
bfs_queue.pop_front();
pool<Cell*> cur_supercell;
std::deque<Cell*> bfs_queue = {head_cell};
while (bfs_queue.size())
{
Cell* x = bfs_queue.front();
bfs_queue.pop_front();
cur_supercell.insert(x);
cur_supercell.insert(x);
auto a = sigmap(x->getPort("\\A"));
log_assert(a.size() == 1);
// Must have only one sink
// XXX: Check that it is indeed this node?
if (sig_to_sink[a[0]].size() + port_sigs.count(a[0]) == 1)
{
Cell* cell_a = sig_to_driver[a[0]];
if (((cell_a->type == "$_AND_" && gt == GateType::And) ||
(cell_a->type == "$_OR_" && gt == GateType::Or) ||
(cell_a->type == "$_XOR_" && gt == GateType::Xor)))
{
// The cell here is the correct type, and it's definitely driving only
// this current cell.
bfs_queue.push_back(cell_a);
}
}
auto a = sigmap(x->getPort("\\A"));
log_assert(a.size() == 1);
// Must have only one sink
// XXX: Check that it is indeed this node?
if (sig_to_sink[a[0]].size() + port_sigs.count(a[0]) == 1)
{
Cell* cell_a = sig_to_driver[a[0]];
if (((cell_a->type == "$_AND_" && gt == GateType::And) ||
(cell_a->type == "$_OR_" && gt == GateType::Or) ||
(cell_a->type == "$_XOR_" && gt == GateType::Xor)))
{
// The cell here is the correct type, and it's definitely driving only
// this current cell.
bfs_queue.push_back(cell_a);
}
}
auto b = sigmap(x->getPort("\\B"));
log_assert(b.size() == 1);
// Must have only one sink
// XXX: Check that it is indeed this node?
if (sig_to_sink[b[0]].size() + port_sigs.count(b[0]) == 1)
{
Cell* cell_b = sig_to_driver[b[0]];
if (((cell_b->type == "$_AND_" && gt == GateType::And) ||
(cell_b->type == "$_OR_" && gt == GateType::Or) ||
(cell_b->type == "$_XOR_" && gt == GateType::Xor)))
{
// The cell here is the correct type, and it's definitely driving only
// this current cell.
bfs_queue.push_back(cell_b);
}
}
}
auto b = sigmap(x->getPort("\\B"));
log_assert(b.size() == 1);
// Must have only one sink
// XXX: Check that it is indeed this node?
if (sig_to_sink[b[0]].size() + port_sigs.count(b[0]) == 1)
{
Cell* cell_b = sig_to_driver[b[0]];
if (((cell_b->type == "$_AND_" && gt == GateType::And) ||
(cell_b->type == "$_OR_" && gt == GateType::Or) ||
(cell_b->type == "$_XOR_" && gt == GateType::Xor)))
{
// The cell here is the correct type, and it's definitely driving only
// this current cell.
bfs_queue.push_back(cell_b);
}
}
}
log(" Cells:\n");
for (auto x : cur_supercell)
log(" %s\n", x->name.c_str());
log(" Cells:\n");
for (auto x : cur_supercell)
log(" %s\n", x->name.c_str());
if (cur_supercell.size() > 1)
{
// Worth it to create reduce cell
log(" Creating $reduce_* cell!\n");
if (cur_supercell.size() > 1)
{
// Worth it to create reduce cell
log(" Creating $reduce_* cell!\n");
pool<SigBit> input_pool;
pool<SigBit> input_pool_intermed;
for (auto x : cur_supercell)
{
input_pool.insert(sigmap(x->getPort("\\A"))[0]);
input_pool.insert(sigmap(x->getPort("\\B"))[0]);
input_pool_intermed.insert(sigmap(x->getPort("\\Y"))[0]);
}
SigSpec input;
for (auto b : input_pool)
if (input_pool_intermed.count(b) == 0)
input.append_bit(b);
pool<SigBit> input_pool;
pool<SigBit> input_pool_intermed;
for (auto x : cur_supercell)
{
input_pool.insert(sigmap(x->getPort("\\A"))[0]);
input_pool.insert(sigmap(x->getPort("\\B"))[0]);
input_pool_intermed.insert(sigmap(x->getPort("\\Y"))[0]);
}
SigSpec input;
for (auto b : input_pool)
if (input_pool_intermed.count(b) == 0)
input.append_bit(b);
SigBit output = sigmap(head_cell->getPort("\\Y")[0]);
SigBit output = sigmap(head_cell->getPort("\\Y")[0]);
auto new_reduce_cell = module->addCell(NEW_ID,
gt == GateType::And ? "$reduce_and" :
gt == GateType::Or ? "$reduce_or" :
gt == GateType::Xor ? "$reduce_xor" : "");
new_reduce_cell->setParam("\\A_SIGNED", 0);
new_reduce_cell->setParam("\\A_WIDTH", input.size());
new_reduce_cell->setParam("\\Y_WIDTH", 1);
new_reduce_cell->setPort("\\A", input);
new_reduce_cell->setPort("\\Y", output);
auto new_reduce_cell = module->addCell(NEW_ID,
gt == GateType::And ? "$reduce_and" :
gt == GateType::Or ? "$reduce_or" :
gt == GateType::Xor ? "$reduce_xor" : "");
new_reduce_cell->setParam("\\A_SIGNED", 0);
new_reduce_cell->setParam("\\A_WIDTH", input.size());
new_reduce_cell->setParam("\\Y_WIDTH", 1);
new_reduce_cell->setPort("\\A", input);
new_reduce_cell->setPort("\\Y", output);
for (auto x : cur_supercell)
consumed_cells.insert(x);
}
}
for (auto x : cur_supercell)
consumed_cells.insert(x);
}
}
// Remove every cell that we've used up
for (auto cell : consumed_cells)
module->remove(cell);
}
}
// Remove every cell that we've used up
for (auto cell : consumed_cells)
module->remove(cell);
}
}
} RecoverReduceCorePass;
PRIVATE_NAMESPACE_END