Progress on AppNote 011

This commit is contained in:
Clifford Wolf 2013-12-01 14:07:44 +01:00
parent 7295b25955
commit 73e28f0e39
4 changed files with 200 additions and 24 deletions

View File

@ -427,6 +427,12 @@ Objects can not only be selected by their name but also by other properties.
For example {\tt select t:\$add} will select all cells of type {\tt \$add}. In
this case this is also yields the diagram shown in Fig.~\ref{seladd}.
\begin{figure}[b]
\lstinputlisting{APPNOTE_011_Design_Investigation/foobaraddsub.v}
\caption{Test module for operations on selections}
\label{foobaraddsub}
\end{figure}
The output of {\tt help select} contains a complete syntax reference for
matching different properties.
@ -437,14 +443,25 @@ help, this means that it will use the engine behind the {\tt select} command
to evaluate additional arguments and use the resulting selection instead of
the selection performed by the last {\tt select} command.
The command {\tt select -clear} can be used to reset the selection.
Normally the {\tt select} command overwrites a previous selection. The
commands {\tt select -add} and {\tt select -del} can be used to add
or remove objects from the current selection.
The command {\tt select -clear} can be used to reset the selection to the
default, which is a complete selection of everything in the current module.
\subsection{Operations on selections}
\begin{figure}[t]
\lstinputlisting{APPNOTE_011_Design_Investigation/sumprod.v}
\caption{Another test module for operations on selections}
\label{sumprod}
\end{figure}
\begin{figure}[b]
\lstinputlisting{APPNOTE_011_Design_Investigation/foobaraddsub.v}
\caption{Test module for operations on selections}
\label{foobaraddsub}
\includegraphics[width=\linewidth]{APPNOTE_011_Design_Investigation/sumprod_00.pdf}
\caption{Output of {\tt show a:sumstuff} on Fig.~\ref{sumprod}}
\label{sumprod_00}
\end{figure}
The {\tt select} command is actually much more powerful than it might seem on
@ -464,31 +481,20 @@ select -list} command to list the current selection.)
In many cases simply adding more and more stuff to the selection is an
ineffective way of selecting the interesting part of the design. Special
arguments can be used to differently combine the elements on the stack.
For example the {\tt \%i} arguments intersects the last two elements on
the stack. So the following command will select all {\$add} cells that
have the {\tt foo} attribute set:
For example the {\tt \%i} arguments pops the last two elements from
the stack, intersects them, and pushed the result back on the stack. So the
following command will select all {\$add} cells that have the {\tt foo}
attribute set:
\begin{verbatim}
select t:$add a:foo %i
\end{verbatim}
\begin{figure}[t]
\lstinputlisting{APPNOTE_011_Design_Investigation/sumprod.v}
\caption{Another test module for operations on selections}
\label{sumprod}
\end{figure}
The listing in Fig.~\ref{sumprod} used the Yosys non-standard {\tt \{* ... *\}}
The listing in Fig.~\ref{sumprod} uses the Yosys non-standard {\tt \{* ... *\}}
syntax to set the attribute {\tt sumstuff} on all cells generated by the first
assign statement. (This works on arbitrary large blocks of Verilog code an
can be used to mark portions of code for analysis.)
\begin{figure}[b]
\includegraphics[width=\linewidth]{APPNOTE_011_Design_Investigation/sumprod_00.pdf}
\caption{Output of {\tt show a:sumstuff} on Fig.~\ref{sumprod}}
\label{sumprod_00}
\end{figure}
Selecting {\tt a:sumstuff} in this module will yield the circuit diagram shown
in Fig.~\ref{sumprod_00}. As only the cells themselves are selected, but not
the temporary wire {\tt \$1\_Y}, the two adders are shown as two disjunct
@ -507,11 +513,144 @@ versa. So {\tt show a:sumstuff \%x} yields the diagram schon in Fig.~\ref{sumpro
\label{sumprod_01}
\end{figure}
\FIXME{}
\subsection{Selecting logic cones}
\FIXME{}
Fig.~\ref{sumprod_01} shows what is called the {\it input cone\/} of {\tt sum}, i.e.
all cells and signals that are used to generate the signal {\tt sum}. The {\tt \%ci}
action can be used to select the input cones of all object in the top selection
in the stack maintained by the {\tt select} command.
As the {\tt \%x} action, this commands broadens the selection by one "`step"'. But
this time to operation inly works against the direction of data flow. That means,
wires only select cells via output ports and cells only select wires via input ports.
Fig.~\ref{select_prod} show the sequence of diagrams generated by the following
commands:
\begin{verbatim}
show prod
show prod %ci
show prod %ci %ci
show prod %ci %ci %ci
\end{verbatim}
When selecting many levels of logic, repeating {\tt \%ci} over and over again
can be a bit dull. So there is a shortcut for that: the number of iterations
can be appended to the action. So for example the action {\tt \%ci3} is
identical to performing the {\tt \%ci} action three times.
The action {\tt \%ci*} performs the {\tt \%ci} action over and over again until
it has no effect anymore.
\begin{figure}[t]
\hfill \includegraphics[width=4cm,trim=0 1cm 0 1cm]{APPNOTE_011_Design_Investigation/sumprod_02.pdf} \\
\includegraphics[width=\linewidth,trim=0 0cm 0 1cm]{APPNOTE_011_Design_Investigation/sumprod_03.pdf} \\
\includegraphics[width=\linewidth,trim=0 0cm 0 1cm]{APPNOTE_011_Design_Investigation/sumprod_04.pdf} \\
\includegraphics[width=\linewidth,trim=0 2cm 0 1cm]{APPNOTE_011_Design_Investigation/sumprod_05.pdf} \\
\caption{Objects selected by {\tt select prod \%ci...}}
\label{select_prod}
\end{figure}
\medskip
In most cases there are certain cell types and/or ports that should not be considered for the {\tt \%ci}
action, or we only want to follow certain cell types and/or ports. This can be achieved using additional
patterns that can be appended to the {\tt \%ci} action.
Lets consider the design from Fig.~\ref{memdemo_src}. It serves no purpose other than being a non-trivial
circuit for demonstrating the usage of {\tt \%ci} pattern. We synthesize the circuit using {\tt proc;
opt; memory; opt} and change to the {\tt memdemo} module with {\tt cd memdemo}. If we type {\tt show}
now we see the diagram shown in Fig.~\ref{memdemo_00}.
\begin{figure}[b!]
\lstinputlisting{APPNOTE_011_Design_Investigation/memdemo.v}
\caption{Demo circuit for demonstrating cell/port pattern in {\tt \%ci} actions}
\label{memdemo_src}
\end{figure}
\begin{figure*}[t]
\includegraphics[width=\linewidth,trim=0 0cm 0 0cm]{APPNOTE_011_Design_Investigation/memdemo_00.pdf} \\
\caption{Complete circuit diagram for the design shown in Fig.~\ref{memdemo_src}}
\label{memdemo_00}
\end{figure*}
But maybe we are only interested in the tree of multiplexers that select the
output value. In order to get there, we would start by just showing the output signal
and its immediate predecessors:
\begin{verbatim}
show y %ci2
\end{verbatim}
From this we would learn that {\tt y} is driven by a {\tt \$dff cell}, that
{\tt y} is connected to the output port {\tt Q}, that the {\tt clk} signal goes
into the {\tt CLK} input port of the cell, and that the data comes from a
auto-generated wire into the input {\tt D} of the flip-flop cell.
As we are not interested in the clock signal we add an additional pattern to the {\tt \%ci}
action, that tells it to only follow ports {\tt Q} and {\tt D} of {\tt \$dff} cells:
\begin{verbatim}
show y %ci2:+$dff[Q,D]
\end{verbatim}
To add a pattern we add a colon followed by the pattern to the {\tt \%ci}
action. The pattern it self starts with {\tt -} or {\tt +}, indicating if it is
an include or exclude pattern, followed by an optional comma separated list
of cell types, followed by an optional comma separated list of port names in
square brackets.
Since we know that the only cell considered in this case we could as well only
specify the port names:
\begin{verbatim}
show y %ci2:+[Q,D]
\end{verbatim}
Or we could decide to tell the {\tt \%ci} action to not follow the {\tt CLK} input:
\begin{verbatim}
show y %ci2:-[CLK]
\end{verbatim}
\begin{figure}[b]
\includegraphics[width=\linewidth,trim=0 0cm 0 0cm]{APPNOTE_011_Design_Investigation/memdemo_01.pdf} \\
\caption{Output of {\tt show y \%ci2:+\$dff[Q,D] \%ci*:-\$mux[S]:-\$dff}}
\label{memdemo_01}
\end{figure}
Next we would investigate the next logic level by adding another {\tt \%ci2} to
the command:
\begin{verbatim}
show y %ci2:-[CLK] %ci2
\end{verbatim}
From this we would learn that the next cell is a {\tt \$mux} cell and we would add additional
pattern to narrow the selection on the path we are interested. In the end we would end up
with a commands such as
\begin{verbatim}
show y %ci2:+$dff[Q,D] %ci*:-$mux[S]:-$dff
\end{verbatim}
in which the first {\tt \%ci} jumps over the initial d-type flip-flop and the
2nd action selects the entire input cone without going multiplexer select
inputs and flip-flop cells. The diagram produces by this command is shown in
Fig.~\ref{memdemo_01}.
\medskip
Similar to {\tt \%ci} exists an action {\tt \%co} to select output cones that
accepts the same syntax for pattern and repetition. The {\tt \%x} action mentioned
previously also accepts this advanced syntax.
This actions for traversing the circuit graph, combined with the actions for
boolean operations such as intersection ({\tt \%i}) and difference ({\tt \%d})
are a powerful tool for extracting the relevant portions of the circuit under
investigation.
See {\tt help select} for a complete list of actions available in selections.
\subsection{Storing and recalling selections}

View File

@ -7,3 +7,9 @@ cmos_01.dot
splice.dot
sumprod_00.dot
sumprod_01.dot
sumprod_02.dot
sumprod_03.dot
sumprod_04.dot
sumprod_05.dot
memdemo_00.dot
memdemo_01.dot

View File

@ -5,7 +5,13 @@
../../yosys -p 'techmap; splitnets -ports; abc -liberty ../../techlibs/cmos/cmos_cells.lib;; show -lib ../../techlibs/cmos/cmos_cells.v -format dot -prefix cmos_01' cmos.v
../../yosys -p 'opt; cd sumprod; select a:sumstuff; show -format dot -prefix sumprod_00' sumprod.v
../../yosys -p 'opt; cd sumprod; select a:sumstuff %x; show -format dot -prefix sumprod_01' sumprod.v
sed -i '/^label=/ d;' example_*.dot splice.dot cmos_*.dot sumprod_*.dot
../../yosys -p 'opt; cd sumprod; select prod; show -format dot -prefix sumprod_02' sumprod.v
../../yosys -p 'opt; cd sumprod; select prod %ci; show -format dot -prefix sumprod_03' sumprod.v
../../yosys -p 'opt; cd sumprod; select prod %ci2; show -format dot -prefix sumprod_04' sumprod.v
../../yosys -p 'opt; cd sumprod; select prod %ci3; show -format dot -prefix sumprod_05' sumprod.v
../../yosys -p 'proc; opt; memory; opt; cd memdemo; show -format dot -prefix memdemo_00' memdemo.v
../../yosys -p 'proc; opt; memory; opt; cd memdemo; show -format dot -prefix memdemo_01 y %ci2:+$dff[Q,D] %ci*:-$mux[S]:-$dff' memdemo.v
sed -i '/^label=/ d;' example_*.dot splice.dot cmos_*.dot sumprod_*.dot memdemo_*.dot
dot -Tpdf -o example_00.pdf example_00.dot
dot -Tpdf -o example_01.pdf example_01.dot
dot -Tpdf -o example_02.pdf example_02.dot
@ -15,3 +21,9 @@ dot -Tpdf -o cmos_00.pdf cmos_00.dot
dot -Tpdf -o cmos_01.pdf cmos_01.dot
dot -Tpdf -o sumprod_00.pdf sumprod_00.dot
dot -Tpdf -o sumprod_01.pdf sumprod_01.dot
dot -Tpdf -o sumprod_02.pdf sumprod_02.dot
dot -Tpdf -o sumprod_03.pdf sumprod_03.dot
dot -Tpdf -o sumprod_04.pdf sumprod_04.dot
dot -Tpdf -o sumprod_05.pdf sumprod_05.dot
dot -Tpdf -o memdemo_00.pdf memdemo_00.dot
dot -Tpdf -o memdemo_01.pdf memdemo_01.dot

View File

@ -0,0 +1,19 @@
module memdemo(clk, d, y);
input clk;
input [3:0] d;
output reg [3:0] y;
integer i;
reg [1:0] s1, s2;
reg [3:0] mem [0:3];
always @(posedge clk) begin
for (i = 0; i < 4; i = i+1)
mem[i] <= mem[(i+1) % 4] + mem[(i+2) % 4];
{ s2, s1 } = d ? { s1, s2 } ^ d : 0;
mem[s1] <= d;
y <= mem[s2];
end
endmodule