Added freduce command

This commit is contained in:
Clifford Wolf 2013-08-06 15:04:52 +02:00
parent 117489f95a
commit 6efca9ea5a
2 changed files with 362 additions and 0 deletions

View File

@ -1,4 +1,5 @@
OBJS += passes/sat/sat.o
OBJS += passes/sat/freduce.o
OBJS += passes/sat/eval.o

361
passes/sat/freduce.cc Normal file
View File

@ -0,0 +1,361 @@
/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/register.h"
#include "kernel/celltypes.h"
#include "kernel/consteval.h"
#include "kernel/sigtools.h"
#include "kernel/log.h"
#include "kernel/satgen.h"
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#define NUM_INITIAL_RANDOM_TEST_VECTORS 3
namespace {
struct FreduceHelper
{
RTLIL::Design *design;
RTLIL::Module *module;
ezDefaultSAT ez;
SigMap sigmap;
CellTypes ct;
SatGen satgen;
ConstEval ce;
SigPool inputs, nodes;
RTLIL::SigSpec input_sigs;
SigSet<RTLIL::SigSpec> driver_inputs;
std::vector<RTLIL::Const> test_vectors;
std::map<RTLIL::SigSpec, RTLIL::Const> node_to_data;
std::map<RTLIL::SigSpec, RTLIL::SigSpec> node_result;
std::vector<RTLIL::SigSig> result_groups;
SigPool groups_unlink;
uint32_t xorshift32_state;
uint32_t xorshift32() {
xorshift32_state ^= xorshift32_state << 13;
xorshift32_state ^= xorshift32_state >> 17;
xorshift32_state ^= xorshift32_state << 5;
return xorshift32_state;
}
FreduceHelper(RTLIL::Design *design, RTLIL::Module *module) :
design(design), module(module), sigmap(module), satgen(&ez, design, &sigmap), ce(module)
{
ct.setup_internals();
ct.setup_stdcells();
xorshift32_state = 123456789;
xorshift32();
xorshift32();
xorshift32();
}
void run_test(RTLIL::SigSpec test_vec)
{
ce.clear();
ce.set(input_sigs, test_vec.as_const());
for (auto &bit : nodes.bits) {
RTLIL::SigSpec nodesig(bit.first, 1, bit.second), nodeval = nodesig;
if (!ce.eval(nodeval))
log_error("Evaluation of node %s failed!\n", log_signal(nodesig));
node_to_data[nodesig].bits.push_back(nodeval.as_const().bits.at(0));
}
}
void dump_node_data()
{
int max_node_len = 20;
for (auto &it : node_to_data)
max_node_len = std::max(max_node_len, int(strlen(log_signal(it.first))));
for (auto &it : node_to_data)
log(" %-*s %s\n", max_node_len+5, log_signal(it.first), log_signal(it.second));
}
void check(RTLIL::SigSpec sig1, RTLIL::SigSpec sig2)
{
log(" performing SAT proof: %s == %s ->", log_signal(sig1), log_signal(sig2));
std::vector<int> vec1 = satgen.importSigSpec(sig1);
std::vector<int> vec2 = satgen.importSigSpec(sig2);
std::vector<int> model = satgen.importSigSpec(input_sigs);
std::vector<bool> testvect;
if (ez.solve(model, testvect, ez.vec_ne(vec1, vec2))) {
RTLIL::SigSpec testvect_sig;
for (int i = 0; i < input_sigs.width; i++)
testvect_sig.append(testvect.at(i) ? RTLIL::State::S1 : RTLIL::State::S0);
testvect_sig.optimize();
log(" failed: %s\n", log_signal(testvect_sig));
test_vectors.push_back(testvect_sig.as_const());
run_test(testvect_sig);
} else {
log(" success.\n");
if (!sig1.is_fully_const())
node_result[sig1].append(sig2);
if (!sig2.is_fully_const())
node_result[sig2].append(sig1);
}
}
void analyze_const()
{
for (auto &it : node_to_data)
{
if (node_result.count(it.first))
continue;
if (it.second == RTLIL::Const(RTLIL::State::S0, it.second.bits.size()))
check(it.first, RTLIL::SigSpec(RTLIL::State::S0));
if (it.second == RTLIL::Const(RTLIL::State::S1, it.second.bits.size()))
check(it.first, RTLIL::SigSpec(RTLIL::State::S1));
}
}
void analyze_alias()
{
restart:
std::map<RTLIL::Const, RTLIL::SigSpec> reverse_map;
for (auto &it : node_to_data)
reverse_map[it.second].append(it.first);
for (auto &it : reverse_map)
{
if (it.second.width <= 1)
continue;
it.second.expand();
for (int i = 0; i < it.second.width; i++)
for (int j = i+1; j < it.second.width; j++) {
RTLIL::SigSpec sig1 = it.second.chunks.at(i), sig2 = it.second.chunks.at(j);
if (node_result.count(sig1) && node_result.count(sig2))
continue;
if (node_to_data.at(sig1) != node_to_data.at(sig2))
goto restart;
check(it.second.chunks.at(i), it.second.chunks.at(j));
}
}
}
bool topsort_helper(RTLIL::SigSpec cursor, RTLIL::SigSpec stoplist)
{
if (stoplist.extract(cursor).width != 0)
return false;
stoplist.append(cursor);
std::set<RTLIL::SigSpec> next = driver_inputs.find(cursor);
for (auto &it : next)
if (!topsort_helper(it, stoplist))
return false;
return true;
}
// KISS topological sort of bits in signal. return one element of sig
// without dependencies to the others (or empty if input is not a DAG).
RTLIL::SigSpec topsort(RTLIL::SigSpec sig)
{
sig.expand();
for (auto &c : sig.chunks) {
RTLIL::SigSpec stoplist = sig;
stoplist.remove(c);
if (topsort_helper(c, stoplist))
return c;
}
return RTLIL::SigSpec();
}
void analyze_groups()
{
SigMap to_group_major;
for (auto &it : node_result) {
it.second.expand();
for (auto &c : it.second.chunks)
to_group_major.add(it.first, c);
}
std::map<RTLIL::SigSpec, RTLIL::SigSpec> major_to_rest;
for (auto &it : node_result)
major_to_rest[to_group_major(it.first)].append(it.first);
for (auto &it : major_to_rest)
{
RTLIL::SigSig group = it;
if (!it.first.is_fully_const()) {
group.first = topsort(it.second);
if (group.first.width == 0)
log_error("Operating on non-DAG input: failed to find topological root for `%s'.\n", log_signal(it.second));
group.second.remove(group.first);
}
group.first.optimize();
group.second.sort_and_unify();
result_groups.push_back(group);
}
}
void run()
{
log("\nFunctionally reduce module %s:\n", RTLIL::id2cstr(module->name));
// find inputs and nodes (nets driven by internal cells)
// add all internal cells to sat solver
for (auto &cell_it : module->cells) {
RTLIL::Cell *cell = cell_it.second;
if (!ct.cell_known(cell->type))
continue;
RTLIL::SigSpec cell_inputs, cell_outputs;
for (auto &conn : cell->connections)
if (ct.cell_output(cell->type, conn.first)) {
nodes.add(sigmap(conn.second));
cell_outputs.append(sigmap(conn.second));
} else {
inputs.add(sigmap(conn.second));
cell_inputs.append(sigmap(conn.second));
}
cell_inputs.sort_and_unify();
cell_outputs.sort_and_unify();
cell_inputs.expand();
for (auto &c : cell_inputs.chunks)
if (c.wire != NULL)
driver_inputs.insert(cell_outputs, c);
if (!satgen.importCell(cell))
log_error("Failed to import cell to SAT solver: %s (%s)\n",
RTLIL::id2cstr(cell->name), RTLIL::id2cstr(cell->type));
}
inputs.del(nodes);
nodes.add(inputs);
log(" found %d nodes (%d inputs).\n", int(nodes.size()), int(inputs.size()));
// initialise input_sigs and add all-zero, all-one and a few random test vectors
input_sigs = inputs.export_all();
test_vectors.push_back(RTLIL::SigSpec(RTLIL::State::S0, input_sigs.width).as_const());
test_vectors.push_back(RTLIL::SigSpec(RTLIL::State::S1, input_sigs.width).as_const());
for (int i = 0; i < NUM_INITIAL_RANDOM_TEST_VECTORS; i++) {
RTLIL::SigSpec sig;
for (int j = 0; j < input_sigs.width; j++)
sig.append(xorshift32() % 2 ? RTLIL::State::S1 : RTLIL::State::S0);
sig.optimize();
assert(sig.width == input_sigs.width);
test_vectors.push_back(sig.as_const());
}
for (auto &test_vec : test_vectors)
run_test(test_vec);
// run the analysis
analyze_const();
analyze_alias();
log(" input vector: %s\n", log_signal(input_sigs));
for (auto &test_vec : test_vectors)
log(" test vector: %s\n", log_signal(test_vec));
analyze_groups();
for (auto &it : result_groups) {
log(" found group: %s -> %s\n", log_signal(it.first), log_signal(it.second));
groups_unlink.add(it.second);
}
for (auto &cell_it : module->cells) {
RTLIL::Cell *cell = cell_it.second;
if (!ct.cell_known(cell->type))
continue;
for (auto &conn : cell->connections)
if (ct.cell_output(cell->type, conn.first)) {
conn.second.expand();
for (auto &c : conn.second.chunks) {
if (c.wire == NULL || !groups_unlink.check_any(c))
continue;
c.wire = new RTLIL::Wire;
c.wire->name = NEW_ID;
module->add(c.wire);
assert(c.width == 1);
c.offset = 0;
}
}
}
for (auto &it : result_groups) {
it.second.expand();
for (auto &c : it.second.chunks)
module->connections.push_back(RTLIL::SigSig(c, it.first));
}
}
};
} /* namespace */
struct FreducePass : public Pass {
FreducePass() : Pass("freduce", "perform functional reduction") { }
virtual void help()
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" freduce [options] [selection]\n");
log("\n");
log("This pass performs functional reduction in the circuit. I.e. if two nodes are\n");
log("equivialent, they are merged to one node and one of the redundant drivers is\n");
log("removed.\n");
log("\n");
// log(" -enable_invert\n");
// log(" also detect nodes that are inverse to each other.\n");
// log("\n");
}
virtual void execute(std::vector<std::string> args, RTLIL::Design *design)
{
bool enable_invert = false;
log_header("Executing FREDUCE pass (perform functional reduction).\n");
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) {
if (args[argidx] == "-enable_invert") {
enable_invert = true;
continue;
}
break;
}
extra_args(args, argidx, design);
for (auto &mod_it : design->modules)
{
RTLIL::Module *module = mod_it.second;
if (design->selected(module))
FreduceHelper(design, module).run();
}
}
} FreducePass;