cxxrtl: expose driver kind in debug information.

This can be useful to determine whether the wire should be a part of
a design checkpoint, whether it can be used to override design state,
and whether driving it may cause a conflict.
This commit is contained in:
whitequark 2020-09-02 17:16:10 +00:00
parent c7b2f07edf
commit 691418e13a
3 changed files with 112 additions and 12 deletions

View File

@ -837,6 +837,9 @@ struct debug_item : ::cxxrtl_object {
INPUT = CXXRTL_INPUT, INPUT = CXXRTL_INPUT,
OUTPUT = CXXRTL_OUTPUT, OUTPUT = CXXRTL_OUTPUT,
INOUT = CXXRTL_INOUT, INOUT = CXXRTL_INOUT,
DRIVEN_SYNC = CXXRTL_DRIVEN_SYNC,
DRIVEN_COMB = CXXRTL_DRIVEN_COMB,
UNDRIVEN = CXXRTL_UNDRIVEN,
}; };
debug_item(const ::cxxrtl_object &object) : cxxrtl_object(object) {} debug_item(const ::cxxrtl_object &object) : cxxrtl_object(object) {}
@ -856,11 +859,11 @@ struct debug_item : ::cxxrtl_object {
} }
template<size_t Bits> template<size_t Bits>
debug_item(const value<Bits> &item, size_t lsb_offset = 0, uint32_t flags_ = 0) { debug_item(const value<Bits> &item, size_t lsb_offset = 0) {
static_assert(sizeof(item) == value<Bits>::chunks * sizeof(chunk_t), static_assert(sizeof(item) == value<Bits>::chunks * sizeof(chunk_t),
"value<Bits> is not compatible with C layout"); "value<Bits> is not compatible with C layout");
type = VALUE; type = VALUE;
flags = flags_; flags = DRIVEN_COMB;
width = Bits; width = Bits;
lsb_at = lsb_offset; lsb_at = lsb_offset;
depth = 1; depth = 1;
@ -903,7 +906,7 @@ struct debug_item : ::cxxrtl_object {
static_assert(sizeof(item) == value<Bits>::chunks * sizeof(chunk_t), static_assert(sizeof(item) == value<Bits>::chunks * sizeof(chunk_t),
"value<Bits> is not compatible with C layout"); "value<Bits> is not compatible with C layout");
type = ALIAS; type = ALIAS;
flags = 0; flags = DRIVEN_COMB;
width = Bits; width = Bits;
lsb_at = lsb_offset; lsb_at = lsb_offset;
depth = 1; depth = 1;
@ -918,7 +921,7 @@ struct debug_item : ::cxxrtl_object {
sizeof(item.next) == value<Bits>::chunks * sizeof(chunk_t), sizeof(item.next) == value<Bits>::chunks * sizeof(chunk_t),
"wire<Bits> is not compatible with C layout"); "wire<Bits> is not compatible with C layout");
type = ALIAS; type = ALIAS;
flags = 0; flags = DRIVEN_COMB;
width = Bits; width = Bits;
lsb_at = lsb_offset; lsb_at = lsb_offset;
depth = 1; depth = 1;

View File

@ -273,6 +273,7 @@ struct FlowGraph {
std::vector<Node*> nodes; std::vector<Node*> nodes;
dict<const RTLIL::Wire*, pool<Node*, hash_ptr_ops>> wire_comb_defs, wire_sync_defs, wire_uses; dict<const RTLIL::Wire*, pool<Node*, hash_ptr_ops>> wire_comb_defs, wire_sync_defs, wire_uses;
dict<const RTLIL::Wire*, bool> wire_def_elidable, wire_use_elidable; dict<const RTLIL::Wire*, bool> wire_def_elidable, wire_use_elidable;
dict<RTLIL::SigBit, bool> bit_has_state;
~FlowGraph() ~FlowGraph()
{ {
@ -294,6 +295,8 @@ struct FlowGraph {
wire_comb_defs[chunk.wire].insert(node); wire_comb_defs[chunk.wire].insert(node);
} }
} }
for (auto bit : sig.bits())
bit_has_state[bit] |= is_ff;
// Only comb defs of an entire wire in the right order can be elided. // Only comb defs of an entire wire in the right order can be elided.
if (!is_ff && sig.is_wire()) if (!is_ff && sig.is_wire())
wire_def_elidable[sig.as_wire()] = elidable; wire_def_elidable[sig.as_wire()] = elidable;
@ -550,6 +553,7 @@ struct CxxrtlWorker {
pool<const RTLIL::Wire*> localized_wires; pool<const RTLIL::Wire*> localized_wires;
dict<const RTLIL::Wire*, const RTLIL::Wire*> debug_alias_wires; dict<const RTLIL::Wire*, const RTLIL::Wire*> debug_alias_wires;
dict<const RTLIL::Wire*, RTLIL::Const> debug_const_wires; dict<const RTLIL::Wire*, RTLIL::Const> debug_const_wires;
dict<RTLIL::SigBit, bool> bit_has_state;
dict<const RTLIL::Module*, pool<std::string>> blackbox_specializations; dict<const RTLIL::Module*, pool<std::string>> blackbox_specializations;
dict<const RTLIL::Module*, bool> eval_converges; dict<const RTLIL::Module*, bool> eval_converges;
@ -1636,6 +1640,10 @@ struct CxxrtlWorker {
size_t count_alias_wires = 0; size_t count_alias_wires = 0;
size_t count_member_wires = 0; size_t count_member_wires = 0;
size_t count_skipped_wires = 0; size_t count_skipped_wires = 0;
size_t count_driven_sync = 0;
size_t count_driven_comb = 0;
size_t count_undriven = 0;
size_t count_mixed_driver = 0;
inc_indent(); inc_indent();
f << indent << "assert(path.empty() || path[path.size() - 1] == ' ');\n"; f << indent << "assert(path.empty() || path[path.size() - 1] == ' ');\n";
for (auto wire : module->wires()) { for (auto wire : module->wires()) {
@ -1661,15 +1669,54 @@ struct CxxrtlWorker {
count_alias_wires++; count_alias_wires++;
} else if (!localized_wires.count(wire)) { } else if (!localized_wires.count(wire)) {
// Member wire // Member wire
std::vector<std::string> flags;
if (wire->port_input && wire->port_output)
flags.push_back("INOUT");
else if (wire->port_input)
flags.push_back("INPUT");
else if (wire->port_output)
flags.push_back("OUTPUT");
bool has_driven_sync = false;
bool has_driven_comb = false;
bool has_undriven = false;
SigSpec sig(wire);
for (auto bit : sig.bits())
if (!bit_has_state.count(bit))
has_undriven = true;
else if (bit_has_state[bit])
has_driven_sync = true;
else
has_driven_comb = true;
if (has_driven_sync)
flags.push_back("DRIVEN_SYNC");
if (has_driven_sync && !has_driven_comb && !has_undriven)
count_driven_sync++;
if (has_driven_comb)
flags.push_back("DRIVEN_COMB");
if (!has_driven_sync && has_driven_comb && !has_undriven)
count_driven_comb++;
if (has_undriven)
flags.push_back("UNDRIVEN");
if (!has_driven_sync && !has_driven_comb && has_undriven)
count_undriven++;
if (has_driven_sync + has_driven_comb + has_undriven > 1)
count_mixed_driver++;
f << indent << "items.add(path + " << escape_cxx_string(get_hdl_name(wire)); f << indent << "items.add(path + " << escape_cxx_string(get_hdl_name(wire));
f << ", debug_item(" << mangle(wire) << ", "; f << ", debug_item(" << mangle(wire) << ", ";
f << wire->start_offset; f << wire->start_offset;
if (wire->port_input && wire->port_output) bool first = true;
f << ", debug_item::INOUT"; for (auto flag : flags) {
else if (wire->port_input) if (first) {
f << ", debug_item::INPUT"; first = false;
else if (wire->port_output) f << ", ";
f << ", debug_item::OUTPUT"; } else {
f << "|";
}
f << "debug_item::" << flag;
}
f << "));\n"; f << "));\n";
count_member_wires++; count_member_wires++;
} else { } else {
@ -1698,7 +1745,11 @@ struct CxxrtlWorker {
log_debug(" Public wires: %zu, of which:\n", count_public_wires); log_debug(" Public wires: %zu, of which:\n", count_public_wires);
log_debug(" Const wires: %zu\n", count_const_wires); log_debug(" Const wires: %zu\n", count_const_wires);
log_debug(" Alias wires: %zu\n", count_alias_wires); log_debug(" Alias wires: %zu\n", count_alias_wires);
log_debug(" Member wires: %zu\n", count_member_wires); log_debug(" Member wires: %zu, of which:\n", count_member_wires);
log_debug(" Driven sync: %zu\n", count_driven_sync);
log_debug(" Driven comb: %zu\n", count_driven_comb);
log_debug(" Undriven: %zu\n", count_undriven);
log_debug(" Mixed driver: %zu\n", count_mixed_driver);
log_debug(" Other wires: %zu (no debug information)\n", count_skipped_wires); log_debug(" Other wires: %zu (no debug information)\n", count_skipped_wires);
} }
@ -2217,6 +2268,9 @@ struct CxxrtlWorker {
eval_converges[module] = feedback_wires.empty() && buffered_comb_wires.empty(); eval_converges[module] = feedback_wires.empty() && buffered_comb_wires.empty();
for (auto item : flow.bit_has_state)
bit_has_state.insert(item);
if (debug_info) { if (debug_info) {
// Find wires that alias other wires or are tied to a constant; debug information can be enriched with these // Find wires that alias other wires or are tied to a constant; debug information can be enriched with these
// at essentially zero additional cost. // at essentially zero additional cost.

View File

@ -73,6 +73,10 @@ int cxxrtl_commit(cxxrtl_handle handle);
size_t cxxrtl_step(cxxrtl_handle handle); size_t cxxrtl_step(cxxrtl_handle handle);
// Type of a simulated object. // Type of a simulated object.
//
// The type of a simulated object indicates the way it is stored and the operations that are legal
// to perform on it (i.e. won't crash the simulation). It says very little about object semantics,
// which is specified through flags.
enum cxxrtl_type { enum cxxrtl_type {
// Values correspond to singly buffered netlist nodes, i.e. nodes driven exclusively by // Values correspond to singly buffered netlist nodes, i.e. nodes driven exclusively by
// combinatorial cells, or toplevel input nodes. // combinatorial cells, or toplevel input nodes.
@ -86,7 +90,8 @@ enum cxxrtl_type {
CXXRTL_VALUE = 0, CXXRTL_VALUE = 0,
// Wires correspond to doubly buffered netlist nodes, i.e. nodes driven, at least in part, by // Wires correspond to doubly buffered netlist nodes, i.e. nodes driven, at least in part, by
// storage cells, or by combinatorial cells that are a part of a feedback path. // storage cells, or by combinatorial cells that are a part of a feedback path. They are also
// present in non-optimized builds.
// //
// Wires can be inspected via the `curr` pointer and modified via the `next` pointer (which are // Wires can be inspected via the `curr` pointer and modified via the `next` pointer (which are
// distinct for wires). Note that changes to the bits driven by combinatorial cells will be // distinct for wires). Note that changes to the bits driven by combinatorial cells will be
@ -113,6 +118,12 @@ enum cxxrtl_type {
}; };
// Flags of a simulated object. // Flags of a simulated object.
//
// The flags of a simulated object indicate its role in the netlist:
// * The flags `CXXRTL_INPUT` and `CXXRTL_OUTPUT` designate module ports.
// * The flags `CXXRTL_DRIVEN_SYNC`, `CXXRTL_DRIVEN_COMB`, and `CXXRTL_UNDRIVEN` specify
// the semantics of node state. An object with several of these flags set has different bits
// follow different semantics.
enum cxxrtl_flag { enum cxxrtl_flag {
// Node is a module input port. // Node is a module input port.
// //
@ -131,6 +142,38 @@ enum cxxrtl_flag {
// This flag can be set on objects of type `CXXRTL_WIRE`. It may be combined with other flags. // This flag can be set on objects of type `CXXRTL_WIRE`. It may be combined with other flags.
CXXRTL_INOUT = (CXXRTL_INPUT|CXXRTL_OUTPUT), CXXRTL_INOUT = (CXXRTL_INPUT|CXXRTL_OUTPUT),
// Node has bits that are driven by a storage cell.
//
// This flag can be set on objects of type `CXXRTL_WIRE`. It may be combined with
// `CXXRTL_DRIVEN_COMB` and `CXXRTL_UNDRIVEN`, as well as other flags.
//
// This flag is set on wires that have bits connected directly to the output of a flip-flop or
// a latch, and hold its state. Many `CXXRTL_WIRE` objects may not have the `CXXRTL_DRIVEN_SYNC`
// flag set; for example, output ports and feedback wires generally won't. Writing to the `next`
// pointer of these wires updates stored state, and for designs without combinatorial loops,
// capturing the value from every of these wires through the `curr` pointer creates a complete
// snapshot of the design state.
CXXRTL_DRIVEN_SYNC = 1 << 2,
// Node has bits that are driven by a combinatorial cell or another node.
//
// This flag can be set on objects of type `CXXRTL_VALUE` and `CXXRTL_WIRE`. It may be combined
// with `CXXRTL_DRIVEN_SYNC` and `CXXRTL_UNDRIVEN`, as well as other flags.
//
// This flag is set on objects that have bits connected to the output of a combinatorial cell,
// or directly to another node. For designs without combinatorial loops, writing to such bits
// through the `next` pointer (if it is not NULL) has no effect.
CXXRTL_DRIVEN_COMB = 1 << 3,
// Node has bits that are not driven.
//
// This flag can be set on objects of type `CXXRTL_VALUE` and `CXXRTL_WIRE`. It may be combined
// with `CXXRTL_DRIVEN_SYNC` and `CXXRTL_DRIVEN_COMB`, as well as other flags.
//
// This flag is set on objects that have bits not driven by an output of any cell or by another
// node, such as inputs and dangling wires.
CXXRTL_UNDRIVEN = 1 << 4,
// More object flags may be added in the future, but the existing ones will never change. // More object flags may be added in the future, but the existing ones will never change.
}; };