xilinx_dsp: Initial DSP48A/DSP48A1 support.

This commit is contained in:
Marcin Kościelnicki 2019-12-22 20:43:39 +01:00
parent aa1adb0f1e
commit 666c6128a9
10 changed files with 921 additions and 14 deletions

View File

@ -22,8 +22,9 @@ $(eval $(call add_extra_objs,passes/pmgen/ice40_wrapcarry_pm.h))
# --------------------------------------
OBJS += passes/pmgen/xilinx_dsp.o
passes/pmgen/xilinx_dsp.o: passes/pmgen/xilinx_dsp_pm.h passes/pmgen/xilinx_dsp_CREG_pm.h passes/pmgen/xilinx_dsp_cascade_pm.h
passes/pmgen/xilinx_dsp.o: passes/pmgen/xilinx_dsp_pm.h passes/pmgen/xilinx_dsp48a_pm.h passes/pmgen/xilinx_dsp_CREG_pm.h passes/pmgen/xilinx_dsp_cascade_pm.h
$(eval $(call add_extra_objs,passes/pmgen/xilinx_dsp_pm.h))
$(eval $(call add_extra_objs,passes/pmgen/xilinx_dsp48a_pm.h))
$(eval $(call add_extra_objs,passes/pmgen/xilinx_dsp_CREG_pm.h))
$(eval $(call add_extra_objs,passes/pmgen/xilinx_dsp_cascade_pm.h))

View File

@ -26,6 +26,7 @@ USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
#include "passes/pmgen/xilinx_dsp_pm.h"
#include "passes/pmgen/xilinx_dsp48a_pm.h"
#include "passes/pmgen/xilinx_dsp_CREG_pm.h"
#include "passes/pmgen/xilinx_dsp_cascade_pm.h"
@ -487,6 +488,190 @@ void xilinx_dsp_pack(xilinx_dsp_pm &pm)
pm.blacklist(cell);
}
void xilinx_dsp48a_pack(xilinx_dsp48a_pm &pm)
{
auto &st = pm.st_xilinx_dsp48a_pack;
log("Analysing %s.%s for Xilinx DSP48A/DSP48A1 packing.\n", log_id(pm.module), log_id(st.dsp));
log_debug("preAdd: %s\n", log_id(st.preAdd, "--"));
log_debug("ffA1: %s %s %s\n", log_id(st.ffA1, "--"), log_id(st.ffA1cemux, "--"), log_id(st.ffA1rstmux, "--"));
log_debug("ffA0: %s %s %s\n", log_id(st.ffA0, "--"), log_id(st.ffA0cemux, "--"), log_id(st.ffA0rstmux, "--"));
log_debug("ffB1: %s %s %s\n", log_id(st.ffB1, "--"), log_id(st.ffB1cemux, "--"), log_id(st.ffB1rstmux, "--"));
log_debug("ffB0: %s %s %s\n", log_id(st.ffB0, "--"), log_id(st.ffB0cemux, "--"), log_id(st.ffB0rstmux, "--"));
log_debug("ffD: %s %s %s\n", log_id(st.ffD, "--"), log_id(st.ffDcemux, "--"), log_id(st.ffDrstmux, "--"));
log_debug("dsp: %s\n", log_id(st.dsp, "--"));
log_debug("ffM: %s %s %s\n", log_id(st.ffM, "--"), log_id(st.ffMcemux, "--"), log_id(st.ffMrstmux, "--"));
log_debug("postAdd: %s\n", log_id(st.postAdd, "--"));
log_debug("postAddMux: %s\n", log_id(st.postAddMux, "--"));
log_debug("ffP: %s %s %s\n", log_id(st.ffP, "--"), log_id(st.ffPcemux, "--"), log_id(st.ffPrstmux, "--"));
Cell *cell = st.dsp;
SigSpec &opmode = cell->connections_.at(ID(OPMODE));
if (st.preAdd) {
log(" preadder %s (%s)\n", log_id(st.preAdd), log_id(st.preAdd->type));
bool D_SIGNED = st.preAdd->getParam(ID(A_SIGNED)).as_bool();
bool B_SIGNED = st.preAdd->getParam(ID(B_SIGNED)).as_bool();
st.sigB.extend_u0(18, B_SIGNED);
st.sigD.extend_u0(18, D_SIGNED);
cell->setPort(ID(B), st.sigB);
cell->setPort(ID(D), st.sigD);
opmode[4] = State::S1;
if (st.preAdd->type == ID($add))
opmode[6] = State::S0;
else if (st.preAdd->type == ID($sub))
opmode[6] = State::S1;
else
log_assert(!"strange pre-adder type");
pm.autoremove(st.preAdd);
}
if (st.postAdd) {
log(" postadder %s (%s)\n", log_id(st.postAdd), log_id(st.postAdd->type));
if (st.postAddMux) {
log_assert(st.ffP);
opmode[2] = st.postAddMux->getPort(ID(S));
pm.autoremove(st.postAddMux);
}
else if (st.ffP && st.sigC == st.sigP)
opmode[2] = State::S0;
else
opmode[2] = State::S1;
opmode[3] = State::S1;
if (opmode[2] != State::S0) {
if (st.postAddMuxAB == ID(A))
st.sigC.extend_u0(48, st.postAdd->getParam(ID(B_SIGNED)).as_bool());
else
st.sigC.extend_u0(48, st.postAdd->getParam(ID(A_SIGNED)).as_bool());
cell->setPort(ID(C), st.sigC);
}
pm.autoremove(st.postAdd);
}
if (st.clock != SigBit())
{
cell->setPort(ID(CLK), st.clock);
auto f = [&pm,cell](SigSpec &A, Cell* ff, Cell* cemux, bool cepol, IdString ceport, Cell* rstmux, bool rstpol, IdString rstport) {
SigSpec D = ff->getPort(ID(D));
SigSpec Q = pm.sigmap(ff->getPort(ID(Q)));
if (!A.empty())
A.replace(Q, D);
if (rstmux) {
SigSpec Y = rstmux->getPort(ID(Y));
SigSpec AB = rstmux->getPort(rstpol ? ID(A) : ID(B));
if (!A.empty())
A.replace(Y, AB);
if (rstport != IdString()) {
SigSpec S = rstmux->getPort(ID(S));
cell->setPort(rstport, rstpol ? S : pm.module->Not(NEW_ID, S));
}
}
else if (rstport != IdString())
cell->setPort(rstport, State::S0);
if (cemux) {
SigSpec Y = cemux->getPort(ID(Y));
SigSpec BA = cemux->getPort(cepol ? ID(B) : ID(A));
SigSpec S = cemux->getPort(ID(S));
if (!A.empty())
A.replace(Y, BA);
cell->setPort(ceport, cepol ? S : pm.module->Not(NEW_ID, S));
}
else
cell->setPort(ceport, State::S1);
for (auto c : Q.chunks()) {
auto it = c.wire->attributes.find(ID(init));
if (it == c.wire->attributes.end())
continue;
for (int i = c.offset; i < c.offset+c.width; i++) {
log_assert(it->second[i] == State::S0 || it->second[i] == State::Sx);
it->second[i] = State::Sx;
}
}
};
if (st.ffA0 || st.ffA1) {
SigSpec A = cell->getPort(ID(A));
if (st.ffA1) {
f(A, st.ffA1, st.ffA1cemux, st.ffAcepol, ID(CEA), st.ffA1rstmux, st.ffArstpol, ID(RSTA));
cell->setParam(ID(A1REG), 1);
}
if (st.ffA0) {
f(A, st.ffA0, st.ffA0cemux, st.ffAcepol, ID(CEA), st.ffA0rstmux, st.ffArstpol, ID(RSTA));
cell->setParam(ID(A0REG), 1);
}
pm.add_siguser(A, cell);
cell->setPort(ID(A), A);
}
if (st.ffB0 || st.ffB1) {
SigSpec B = cell->getPort(ID(B));
if (st.ffB1) {
f(B, st.ffB1, st.ffB1cemux, st.ffBcepol, ID(CEB), st.ffB1rstmux, st.ffBrstpol, ID(RSTB));
cell->setParam(ID(B1REG), 1);
}
if (st.ffB0) {
f(B, st.ffB0, st.ffB0cemux, st.ffBcepol, ID(CEB), st.ffB0rstmux, st.ffBrstpol, ID(RSTB));
cell->setParam(ID(B0REG), 1);
}
pm.add_siguser(B, cell);
cell->setPort(ID(B), B);
}
if (st.ffD) {
SigSpec D = cell->getPort(ID(D));
f(D, st.ffD, st.ffDcemux, st.ffDcepol, ID(CED), st.ffDrstmux, st.ffDrstpol, ID(RSTD));
pm.add_siguser(D, cell);
cell->setPort(ID(D), D);
cell->setParam(ID(DREG), 1);
}
if (st.ffM) {
SigSpec M; // unused
f(M, st.ffM, st.ffMcemux, st.ffMcepol, ID(CEM), st.ffMrstmux, st.ffMrstpol, ID(RSTM));
st.ffM->connections_.at(ID(Q)).replace(st.sigM, pm.module->addWire(NEW_ID, GetSize(st.sigM)));
cell->setParam(ID(MREG), State::S1);
}
if (st.ffP) {
SigSpec P; // unused
f(P, st.ffP, st.ffPcemux, st.ffPcepol, ID(CEP), st.ffPrstmux, st.ffPrstpol, ID(RSTP));
st.ffP->connections_.at(ID(Q)).replace(st.sigP, pm.module->addWire(NEW_ID, GetSize(st.sigP)));
cell->setParam(ID(PREG), State::S1);
}
log(" clock: %s (%s)", log_signal(st.clock), "posedge");
if (st.ffA0)
log(" ffA0:%s", log_id(st.ffA0));
if (st.ffA1)
log(" ffA1:%s", log_id(st.ffA1));
if (st.ffB0)
log(" ffB0:%s", log_id(st.ffB0));
if (st.ffB1)
log(" ffB1:%s", log_id(st.ffB1));
if (st.ffD)
log(" ffD:%s", log_id(st.ffD));
if (st.ffM)
log(" ffM:%s", log_id(st.ffM));
if (st.ffP)
log(" ffP:%s", log_id(st.ffP));
}
log("\n");
SigSpec P = st.sigP;
if (GetSize(P) < 48)
P.append(pm.module->addWire(NEW_ID, 48-GetSize(P)));
cell->setPort(ID(P), P);
pm.blacklist(cell);
}
void xilinx_dsp_packC(xilinx_dsp_CREG_pm &pm)
{
auto &st = pm.st_xilinx_dsp_packC;
@ -592,33 +777,48 @@ struct XilinxDspPass : public Pass {
log("P output implementing the operation \"(P >= <power-of-2>)\" will be transformed\n");
log("into using the DSP48E1's pattern detector feature for overflow detection.\n");
log("\n");
log(" -family {xcup|xcu|xc7|xc6v|xc5v|xc4v|xc6s|xc3sda}\n");
log(" select the family to target\n");
log(" default: xc7\n");
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
{
log_header(design, "Executing XILINX_DSP pass (pack resources into DSPs).\n");
std::string family = "xc7";
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++)
{
// if (args[argidx] == "-singleton") {
// singleton_mode = true;
// continue;
// }
if ((args[argidx] == "-family" || args[argidx] == "-arch") && argidx+1 < args.size()) {
family = args[++argidx];
continue;
}
break;
}
extra_args(args, argidx, design);
// Don't bother distinguishing between those.
if (family == "xc6v")
family = "xc7";
if (family == "xcup")
family = "xcu";
for (auto module : design->selected_modules()) {
// Experimental feature: pack $add/$sub cells with
// (* use_dsp48="simd" *) into DSP48E1's using its
// SIMD feature
xilinx_simd_pack(module, module->selected_cells());
if (family == "xc7")
xilinx_simd_pack(module, module->selected_cells());
// Match for all features ([ABDMP][12]?REG, pre-adder,
// post-adder, pattern detector, etc.) except for CREG
{
if (family == "xc7") {
xilinx_dsp_pm pm(module, module->selected_cells());
pm.run_xilinx_dsp_pack(xilinx_dsp_pack);
} else if (family == "xc6s" || family == "xc3sda") {
xilinx_dsp48a_pm pm(module, module->selected_cells());
pm.run_xilinx_dsp48a_pack(xilinx_dsp48a_pack);
}
// Separating out CREG packing is necessary since there
// is no guarantee that the cell ordering corresponds

View File

@ -0,0 +1,673 @@
// This file describes the main pattern matcher setup (of three total) that
// forms the `xilinx_dsp` pass described in xilinx_dsp.cc — version for
// DSP48A/DSP48A1 (Spartan 3A DSP, Spartan 6).
// At a high level, it works as follows:
// ( 1) Starting from a DSP48A/DSP48A1 cell
// ( 2) Match the driver of the 'B' input to a possible $dff cell (B1REG)
// (attached to at most two $mux cells that implement clock-enable or
// reset functionality, using a subpattern discussed below)
// If B1REG matched, treat 'B' input as input of B1REG
// ( 3) Match the driver of the 'B' and 'D' inputs for a possible $add cell
// (pre-adder)
// ( 4) Match 'B' input for B0REG
// ( 5) Match 'A' input for A1REG
// If A1REG, then match 'A' input for A0REG
// ( 6) Match 'D' input for DREG
// ( 7) Match 'P' output that exclusively drives an MREG
// ( 8) Match 'P' output that exclusively drives one of two inputs to an $add
// cell (post-adder).
// The other input to the adder is assumed to come in from the 'C' input
// (note: 'P' -> 'C' connections that exist for accumulators are
// recognised in xilinx_dsp.cc).
// ( 9) Match 'P' output that exclusively drives a PREG
// (10) If post-adder and PREG both present, match for a $mux cell driving
// the 'C' input, where one of the $mux's inputs is the PREG output.
// This indicates an accumulator situation, and one where a $mux exists
// to override the accumulated value:
// +--------------------------------+
// | ____ |
// +--| \ |
// |$mux|-+ |
// 'C' ---|____/ | |
// | /-------\ +----+ |
// +----+ +-| post- |___|PREG|---+ 'P'
// |MREG|------ | adder | +----+
// +----+ \-------/
// Notes: see the notes in xilinx_dsp.pmg
pattern xilinx_dsp48a_pack
state <SigBit> clock
state <SigSpec> sigA sigB sigC sigD sigM sigP
state <IdString> postAddAB postAddMuxAB
state <bool> ffAcepol ffBcepol ffDcepol ffMcepol ffPcepol
state <bool> ffArstpol ffBrstpol ffDrstpol ffMrstpol ffPrstpol
state <Cell*> ffA0 ffA0cemux ffA0rstmux ffA1 ffA1cemux ffA1rstmux
state <Cell*> ffB0 ffB0cemux ffB0rstmux ffB1 ffB1cemux ffB1rstmux
state <Cell*> ffD ffDcemux ffDrstmux ffM ffMcemux ffMrstmux ffP ffPcemux ffPrstmux
// Variables used for subpatterns
state <SigSpec> argQ argD
state <bool> ffcepol ffrstpol
state <int> ffoffset
udata <SigSpec> dffD dffQ
udata <SigBit> dffclock
udata <Cell*> dff dffcemux dffrstmux
udata <bool> dffcepol dffrstpol
// (1) Starting from a DSP48A/DSP48A1 cell
match dsp
select dsp->type.in(\DSP48A, \DSP48A1)
endmatch
code sigA sigB sigC sigD sigM clock
auto unextend = [](const SigSpec &sig) {
int i;
for (i = GetSize(sig)-1; i > 0; i--)
if (sig[i] != sig[i-1])
break;
// Do not remove non-const sign bit
if (sig[i].wire)
++i;
return sig.extract(0, i);
};
sigA = unextend(port(dsp, \A));
sigB = unextend(port(dsp, \B));
sigC = port(dsp, \C, SigSpec());
sigD = port(dsp, \D, SigSpec());
SigSpec P = port(dsp, \P);
// Only care about those bits that are used
int i;
for (i = GetSize(P)-1; i >= 0; i--)
if (nusers(P[i]) > 1)
break;
i++;
log_assert(nusers(P.extract_end(i)) <= 1);
// This sigM could have no users if downstream sinks (e.g. $add) is
// narrower than $mul result, for example
if (i == 0)
reject;
sigM = P.extract(0, i);
clock = port(dsp, \CLK, SigBit());
endcode
// (2) Match the driver of the 'B' input to a possible $dff cell (B1REG)
// (attached to at most two $mux cells that implement clock-enable or
// reset functionality, using a subpattern discussed above)
// If matched, treat 'B' input as input of B1REG
code argQ ffB1 ffB1cemux ffB1rstmux ffBcepol ffBrstpol sigB clock
if (param(dsp, \B1REG).as_int() == 0 && param(dsp, \B0REG).as_int() == 0 && port(dsp, \OPMODE, SigSpec()).extract(4, 1).is_fully_zero()) {
argQ = sigB;
subpattern(in_dffe);
if (dff) {
ffB1 = dff;
clock = dffclock;
if (dffrstmux) {
ffB1rstmux = dffrstmux;
ffBrstpol = dffrstpol;
}
if (dffcemux) {
ffB1cemux = dffcemux;
ffBcepol = dffcepol;
}
sigB = dffD;
}
}
endcode
// (3) Match the driver of the 'B' and 'D' inputs for a possible $add cell
// (pre-adder)
match preAdd
if sigD.empty() || sigD.is_fully_zero()
if param(dsp, \B0REG).as_int() == 0
// Ensure that preAdder not already used
if port(dsp, \OPMODE, SigSpec()).extract(4, 1).is_fully_zero()
select preAdd->type.in($add, $sub)
// Output has to be 18 bits or less
select GetSize(port(preAdd, \Y)) <= 18
select nusers(port(preAdd, \Y)) == 2
// D port has to be 18 bits or less
select GetSize(port(preAdd, \A)) <= 18
// B port has to be 18 bits or less
select GetSize(port(preAdd, \B)) <= 18
index <SigSpec> port(preAdd, \Y) === sigB
optional
endmatch
code sigB sigD
if (preAdd) {
sigD = port(preAdd, \A);
sigB = port(preAdd, \B);
}
endcode
// (4) Match 'B' input for B0REG
code argQ ffB0 ffB0cemux ffB0rstmux ffBcepol ffBrstpol sigB clock
if (param(dsp, \B0REG).as_int() == 0) {
argQ = sigB;
subpattern(in_dffe);
if (dff) {
if (ffB1) {
if ((ffB1rstmux != nullptr) ^ (dffrstmux != nullptr))
goto ffB0_end;
if ((ffB1cemux != nullptr) ^ (dffcemux != nullptr))
goto ffB0_end;
if (dffrstmux) {
if (ffBrstpol != dffrstpol)
goto ffB0_end;
if (port(ffB1rstmux, \S) != port(dffrstmux, \S))
goto ffB0_end;
ffB0rstmux = dffrstmux;
}
if (dffcemux) {
if (ffBcepol != dffcepol)
goto ffB0_end;
if (port(ffB1cemux, \S) != port(dffcemux, \S))
goto ffB0_end;
ffB0cemux = dffcemux;
}
}
ffB0 = dff;
clock = dffclock;
if (dffrstmux) {
ffB0rstmux = dffrstmux;
ffBrstpol = dffrstpol;
}
if (dffcemux) {
ffB0cemux = dffcemux;
ffBcepol = dffcepol;
}
sigB = dffD;
}
}
ffB0_end:
endcode
// (5) Match 'A' input for A1REG
// If A1REG, then match 'A' input for A0REG
code argQ ffA1 ffA1cemux ffA1rstmux ffAcepol ffArstpol sigA clock ffA0 ffA0cemux ffA0rstmux
if (param(dsp, \A0REG).as_int() == 0 && param(dsp, \A1REG).as_int() == 0) {
argQ = sigA;
subpattern(in_dffe);
if (dff) {
ffA1 = dff;
clock = dffclock;
if (dffrstmux) {
ffA1rstmux = dffrstmux;
ffArstpol = dffrstpol;
}
if (dffcemux) {
ffA1cemux = dffcemux;
ffAcepol = dffcepol;
}
sigA = dffD;
// Now attempt to match A0
if (ffA1) {
argQ = sigA;
subpattern(in_dffe);
if (dff) {
if ((ffA1rstmux != nullptr) ^ (dffrstmux != nullptr))
goto ffA0_end;
if ((ffA1cemux != nullptr) ^ (dffcemux != nullptr))
goto ffA0_end;
if (dffrstmux) {
if (ffArstpol != dffrstpol)
goto ffA0_end;
if (port(ffA1rstmux, \S) != port(dffrstmux, \S))
goto ffA0_end;
ffA0rstmux = dffrstmux;
}
if (dffcemux) {
if (ffAcepol != dffcepol)
goto ffA0_end;
if (port(ffA1cemux, \S) != port(dffcemux, \S))
goto ffA0_end;
ffA0cemux = dffcemux;
}
ffA0 = dff;
clock = dffclock;
if (dffcemux) {
ffA0cemux = dffcemux;
ffAcepol = dffcepol;
}
sigA = dffD;
ffA0_end: ;
}
}
}
}
endcode
// (6) Match 'D' input for DREG
code argQ ffD ffDcemux ffDrstmux ffDcepol ffDrstpol sigD clock
if (param(dsp, \DREG).as_int() == 0) {
argQ = sigD;
subpattern(in_dffe);
if (dff) {
ffD = dff;
clock = dffclock;
if (dffrstmux) {
ffDrstmux = dffrstmux;
ffDrstpol = dffrstpol;
}
if (dffcemux) {
ffDcemux = dffcemux;
ffDcepol = dffcepol;
}
sigD = dffD;
}
}
endcode
// (7) Match 'P' output that exclusively drives an MREG
code argD ffM ffMcemux ffMrstmux ffMcepol ffMrstpol sigM sigP clock
if (param(dsp, \MREG).as_int() == 0 && nusers(sigM) == 2) {
argD = sigM;
subpattern(out_dffe);
if (dff) {
ffM = dff;
clock = dffclock;
if (dffrstmux) {
ffMrstmux = dffrstmux;
ffMrstpol = dffrstpol;
}
if (dffcemux) {
ffMcemux = dffcemux;
ffMcepol = dffcepol;
}
sigM = dffQ;
}
}
sigP = sigM;
endcode
// (8) Match 'P' output that exclusively drives one of two inputs to an $add
// cell (post-adder).
// The other input to the adder is assumed to come in from the 'C' input
// (note: 'P' -> 'C' connections that exist for accumulators are
// recognised in xilinx_dsp.cc).
match postAdd
// Ensure that Z mux is not already used
if port(dsp, \OPMODE, SigSpec()).extract(2,2).is_fully_zero()
select postAdd->type.in($add)
select GetSize(port(postAdd, \Y)) <= 48
choice <IdString> AB {\A, \B}
select nusers(port(postAdd, AB)) <= 3
filter ffMcemux || nusers(port(postAdd, AB)) == 2
filter !ffMcemux || nusers(port(postAdd, AB)) == 3
index <SigBit> port(postAdd, AB)[0] === sigP[0]
filter GetSize(port(postAdd, AB)) >= GetSize(sigP)
filter port(postAdd, AB).extract(0, GetSize(sigP)) == sigP
// Check that remainder of AB is a sign- or zero-extension
filter port(postAdd, AB).extract_end(GetSize(sigP)) == SigSpec(sigP[GetSize(sigP)-1], GetSize(port(postAdd, AB))-GetSize(sigP)) || port(postAdd, AB).extract_end(GetSize(sigP)) == SigSpec(State::S0, GetSize(port(postAdd, AB))-GetSize(sigP))
set postAddAB AB
optional
endmatch
code sigC sigP
if (postAdd) {
sigC = port(postAdd, postAddAB == \A ? \B : \A);
sigP = port(postAdd, \Y);
}
endcode
// (9) Match 'P' output that exclusively drives a PREG
code argD ffP ffPcemux ffPrstmux ffPcepol ffPrstpol sigP clock
if (param(dsp, \PREG).as_int() == 0) {
int users = 2;
// If ffMcemux and no postAdd new-value net must have three users: ffMcemux, ffM and ffPcemux
if (ffMcemux && !postAdd) users++;
if (nusers(sigP) == users) {
argD = sigP;
subpattern(out_dffe);
if (dff) {
ffP = dff;
clock = dffclock;
if (dffrstmux) {
ffPrstmux = dffrstmux;
ffPrstpol = dffrstpol;
}
if (dffcemux) {
ffPcemux = dffcemux;
ffPcepol = dffcepol;
}
sigP = dffQ;
}
}
}
endcode
// (10) If post-adder and PREG both present, match for a $mux cell driving
// the 'C' input, where one of the $mux's inputs is the PREG output.
// This indicates an accumulator situation, and one where a $mux exists
// to override the accumulated value:
// +--------------------------------+
// | ____ |
// +--| \ |
// |$mux|-+ |
// 'C' ---|____/ | |
// | /-------\ +----+ |
// +----+ +-| post- |___|PREG|---+ 'P'
// |MREG|------ | adder | +----+
// +----+ \-------/
match postAddMux
if postAdd
if ffP
select postAddMux->type.in($mux)
select nusers(port(postAddMux, \Y)) == 2
choice <IdString> AB {\A, \B}
index <SigSpec> port(postAddMux, AB) === sigP
index <SigSpec> port(postAddMux, \Y) === sigC
set postAddMuxAB AB
optional
endmatch
code sigC
if (postAddMux)
sigC = port(postAddMux, postAddMuxAB == \A ? \B : \A);
endcode
code
accept;
endcode
// #######################
// Subpattern for matching against input registers, based on knowledge of the
// 'Q' input. Typically, identifying registers with clock-enable and reset
// capability would be a task would be handled by other Yosys passes such as
// dff2dffe, but since DSP inference happens much before this, these patterns
// have to be manually identified.
// At a high level:
// (1) Starting from a $dff cell that (partially or fully) drives the given
// 'Q' argument
// (2) Match for a $mux cell implementing synchronous reset semantics ---
// one that exclusively drives the 'D' input of the $dff, with one of its
// $mux inputs being fully zero
// (3) Match for a $mux cell implement clock enable semantics --- one that
// exclusively drives the 'D' input of the $dff (or the other input of
// the reset $mux) and where one of this $mux's inputs is connected to
// the 'Q' output of the $dff
subpattern in_dffe
arg argD argQ clock
code
dff = nullptr;
if (GetSize(argQ) == 0)
reject;
for (const auto &c : argQ.chunks()) {
// Abandon matches when 'Q' is a constant
if (!c.wire)
reject;
// Abandon matches when 'Q' has the keep attribute set
if (c.wire->get_bool_attribute(\keep))
reject;
// Abandon matches when 'Q' has a non-zero init attribute set
// (not supported by DSP48E1)
Const init = c.wire->attributes.at(\init, Const());
if (!init.empty())
for (auto b : init.extract(c.offset, c.width))
if (b != State::Sx && b != State::S0)
reject;
}
endcode
// (1) Starting from a $dff cell that (partially or fully) drives the given
// 'Q' argument
match ff
select ff->type.in($dff)
// DSP48E1 does not support clock inversion
select param(ff, \CLK_POLARITY).as_bool()
slice offset GetSize(port(ff, \D))
index <SigBit> port(ff, \Q)[offset] === argQ[0]
// Check that the rest of argQ is present
filter GetSize(port(ff, \Q)) >= offset + GetSize(argQ)
filter port(ff, \Q).extract(offset, GetSize(argQ)) == argQ
filter clock == SigBit() || port(ff, \CLK) == clock
set ffoffset offset
endmatch
code argQ argD
SigSpec Q = port(ff, \Q);
dff = ff;
dffclock = port(ff, \CLK);
dffD = argQ;
argD = port(ff, \D);
argQ = Q;
dffD.replace(argQ, argD);
// Only search for ffrstmux if dffD only
// has two (ff, ffrstmux) users
if (nusers(dffD) > 2)
argD = SigSpec();
endcode
// (2) Match for a $mux cell implementing synchronous reset semantics ---
// exclusively drives the 'D' input of the $dff, with one of the $mux
// inputs being fully zero
match ffrstmux
if !argD.empty()
select ffrstmux->type.in($mux)
index <SigSpec> port(ffrstmux, \Y) === argD
choice <IdString> BA {\B, \A}
// DSP48E1 only supports reset to zero
select port(ffrstmux, BA).is_fully_zero()
define <bool> pol (BA == \B)
set ffrstpol pol
semioptional
endmatch
code argD
if (ffrstmux) {
dffrstmux = ffrstmux;
dffrstpol = ffrstpol;
argD = port(ffrstmux, ffrstpol ? \A : \B);
dffD.replace(port(ffrstmux, \Y), argD);
// Only search for ffcemux if argQ has at
// least 3 users (ff, <upstream>, ffrstmux) and
// dffD only has two (ff, ffrstmux)
if (!(nusers(argQ) >= 3 && nusers(dffD) == 2))
argD = SigSpec();
}
else
dffrstmux = nullptr;
endcode
// (3) Match for a $mux cell implement clock enable semantics --- one that
// exclusively drives the 'D' input of the $dff (or the other input of
// the reset $mux) and where one of this $mux's inputs is connected to
// the 'Q' output of the $dff
match ffcemux
if !argD.empty()
select ffcemux->type.in($mux)
index <SigSpec> port(ffcemux, \Y) === argD
choice <IdString> AB {\A, \B}
index <SigSpec> port(ffcemux, AB) === argQ
define <bool> pol (AB == \A)
set ffcepol pol
semioptional
endmatch
code argD
if (ffcemux) {
dffcemux = ffcemux;
dffcepol = ffcepol;
argD = port(ffcemux, ffcepol ? \B : \A);
dffD.replace(port(ffcemux, \Y), argD);
}
else
dffcemux = nullptr;
endcode
// #######################
// Subpattern for matching against output registers, based on knowledge of the
// 'D' input.
// At a high level:
// (1) Starting from an optional $mux cell that implements clock enable
// semantics --- one where the given 'D' argument (partially or fully)
// drives one of its two inputs
// (2) Starting from, or continuing onto, another optional $mux cell that
// implements synchronous reset semantics --- one where the given 'D'
// argument (or the clock enable $mux output) drives one of its two inputs
// and where the other input is fully zero
// (3) Match for a $dff cell (whose 'D' input is the 'D' argument, or the
// output of the previous clock enable or reset $mux cells)
subpattern out_dffe
arg argD argQ clock
code
dff = nullptr;
for (auto c : argD.chunks())
// Abandon matches when 'D' has the keep attribute set
if (c.wire->get_bool_attribute(\keep))
reject;
endcode
// (1) Starting from an optional $mux cell that implements clock enable
// semantics --- one where the given 'D' argument (partially or fully)
// drives one of its two inputs
match ffcemux
select ffcemux->type.in($mux)
// ffcemux output must have two users: ffcemux and ff.D
select nusers(port(ffcemux, \Y)) == 2
choice <IdString> AB {\A, \B}
// keep-last-value net must have at least three users: ffcemux, ff, downstream sink(s)
select nusers(port(ffcemux, AB)) >= 3
slice offset GetSize(port(ffcemux, \Y))
define <IdString> BA (AB == \A ? \B : \A)
index <SigBit> port(ffcemux, BA)[offset] === argD[0]
// Check that the rest of argD is present
filter GetSize(port(ffcemux, BA)) >= offset + GetSize(argD)
filter port(ffcemux, BA).extract(offset, GetSize(argD)) == argD
set ffoffset offset
define <bool> pol (AB == \A)
set ffcepol pol
semioptional
endmatch
code argD argQ
dffcemux = ffcemux;
if (ffcemux) {
SigSpec BA = port(ffcemux, ffcepol ? \B : \A);
SigSpec Y = port(ffcemux, \Y);
argQ = argD;
argD.replace(BA, Y);
argQ.replace(BA, port(ffcemux, ffcepol ? \A : \B));
dffcemux = ffcemux;
dffcepol = ffcepol;
}
endcode
// (2) Starting from, or continuing onto, another optional $mux cell that
// implements synchronous reset semantics --- one where the given 'D'
// argument (or the clock enable $mux output) drives one of its two inputs
// and where the other input is fully zero
match ffrstmux
select ffrstmux->type.in($mux)
// ffrstmux output must have two users: ffrstmux and ff.D
select nusers(port(ffrstmux, \Y)) == 2
choice <IdString> BA {\B, \A}
// DSP48E1 only supports reset to zero
select port(ffrstmux, BA).is_fully_zero()
slice offset GetSize(port(ffrstmux, \Y))
define <IdString> AB (BA == \B ? \A : \B)
index <SigBit> port(ffrstmux, AB)[offset] === argD[0]
// Check that offset is consistent
filter !ffcemux || ffoffset == offset
// Check that the rest of argD is present
filter GetSize(port(ffrstmux, AB)) >= offset + GetSize(argD)
filter port(ffrstmux, AB).extract(offset, GetSize(argD)) == argD
set ffoffset offset
define <bool> pol (AB == \A)
set ffrstpol pol
semioptional
endmatch
code argD argQ
dffrstmux = ffrstmux;
if (ffrstmux) {
SigSpec AB = port(ffrstmux, ffrstpol ? \A : \B);
SigSpec Y = port(ffrstmux, \Y);
argD.replace(AB, Y);
dffrstmux = ffrstmux;
dffrstpol = ffrstpol;
}
endcode
// (3) Match for a $dff cell (whose 'D' input is the 'D' argument, or the
// output of the previous clock enable or reset $mux cells)
match ff
select ff->type.in($dff)
// DSP48E1 does not support clock inversion
select param(ff, \CLK_POLARITY).as_bool()
slice offset GetSize(port(ff, \D))
index <SigBit> port(ff, \D)[offset] === argD[0]
// Check that offset is consistent
filter (!ffcemux && !ffrstmux) || ffoffset == offset
// Check that the rest of argD is present
filter GetSize(port(ff, \D)) >= offset + GetSize(argD)
filter port(ff, \D).extract(offset, GetSize(argD)) == argD
// Check that FF.Q is connected to CE-mux
filter !ffcemux || port(ff, \Q).extract(offset, GetSize(argQ)) == argQ
filter clock == SigBit() || port(ff, \CLK) == clock
set ffoffset offset
endmatch
code argQ
SigSpec D = port(ff, \D);
SigSpec Q = port(ff, \Q);
if (!ffcemux) {
argQ = argD;
argQ.replace(D, Q);
}
// Abandon matches when 'Q' has a non-zero init attribute set
// (not supported by DSP48E1)
for (auto c : argQ.chunks()) {
Const init = c.wire->attributes.at(\init, Const());
if (!init.empty())
for (auto b : init.extract(c.offset, c.width))
if (b != State::Sx && b != State::S0)
reject;
}
dff = ff;
dffQ = argQ;
dffclock = port(ff, \CLK);
endcode

View File

@ -1,7 +1,7 @@
// This file describes the second of three pattern matcher setups that
// forms the `xilinx_dsp` pass described in xilinx_dsp.cc
// At a high level, it works as follows:
// (1) Starting from a DSP48E1 cell that (a) doesn't have a CREG already,
// (1) Starting from a DSP48* cell that (a) doesn't have a CREG already,
// and (b) uses the 'C' port
// (2) Match the driver of the 'C' input to a possible $dff cell (CREG)
// (attached to at most two $mux cells that implement clock-enable or
@ -38,10 +38,10 @@ udata <SigBit> dffclock
udata <Cell*> dff dffcemux dffrstmux
udata <bool> dffcepol dffrstpol
// (1) Starting from a DSP48E1 cell that (a) doesn't have a CREG already,
// (1) Starting from a DSP48* cell that (a) doesn't have a CREG already,
// and (b) uses the 'C' port
match dsp
select dsp->type.in(\DSP48E1)
select dsp->type.in(\DSP48A, \DSP48A1, \DSP48E1)
select param(dsp, \CREG, 1).as_int() == 0
select nusers(port(dsp, \C, SigSpec())) > 1
endmatch
@ -60,7 +60,8 @@ code sigC sigP clock
sigC = unextend(port(dsp, \C, SigSpec()));
SigSpec P = port(dsp, \P);
if (param(dsp, \USE_MULT, Const("MULTIPLY")).decode_string() == "MULTIPLY") {
if (!dsp->type.in(\DSP48E1) ||
param(dsp, \USE_MULT, Const("MULTIPLY")).decode_string() == "MULTIPLY") {
// Only care about those bits that are used
int i;
for (i = GetSize(P)-1; i >= 0; i--)

View File

@ -387,7 +387,10 @@ struct SynthXilinxPass : public ScriptPass
run("opt_expr -fine");
run("wreduce");
run("select -clear");
run("xilinx_dsp");
if (help_mode)
run("xilinx_dsp -family <family>");
else
run("xilinx_dsp -family " + family);
run("chtype -set $mul t:$__soft_mul");
}
}

View File

@ -27,7 +27,7 @@ module \$__MUL18X18 (input [17:0] A, input [17:0] B, output [35:0] Y);
.D(18'b0),
.P(P_48),
.OPMODE(8'b0000010)
.OPMODE(8'b0000001)
);
assign Y = P_48;
endmodule

View File

@ -27,7 +27,7 @@ module \$__MUL18X18 (input [17:0] A, input [17:0] B, output [35:0] Y);
.D(18'b0),
.P(P_48),
.OPMODE(8'b0000010)
.OPMODE(8'b0000001)
);
assign Y = P_48;
endmodule

View File

@ -1,3 +1,6 @@
../../../yosys -qp "synth_xilinx -top macc2; rename -top macc2_uut" -o macc_uut.v macc.v
iverilog -o test_macc macc_tb.v macc_uut.v macc.v ../../../techlibs/xilinx/cells_sim.v
vvp -N ./test_macc
../../../yosys -qp "synth_xilinx -family xc6s -top macc2; rename -top macc2_uut" -o macc_uut.v macc.v
iverilog -o test_macc macc_tb.v macc_uut.v macc.v ../../../techlibs/xilinx/cells_sim.v
vvp -N ./test_macc

View File

@ -7,3 +7,15 @@ cd top # Constrain all select calls below inside the top module
select -assert-count 1 t:DSP48E1
select -assert-none t:DSP48E1 %% t:* %D
design -reset
read_verilog ../common/mul.v
hierarchy -top top
proc
equiv_opt -assert -map +/xilinx/cells_sim.v synth_xilinx -family xc6s # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd top # Constrain all select calls below inside the top module
select -assert-count 1 t:DSP48A1
select -assert-none t:DSP48A1 %% t:* %D

View File

@ -9,3 +9,17 @@ select -assert-count 1 t:BUFG
select -assert-count 1 t:DSP48E1
select -assert-count 30 t:FDRE
select -assert-none t:DSP48E1 t:FDRE t:BUFG %% t:* %D
design -reset
read_verilog mul_unsigned.v
hierarchy -top mul_unsigned
proc
equiv_opt -assert -map +/xilinx/cells_sim.v synth_xilinx -family xc6s # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd mul_unsigned # Constrain all select calls below inside the top module
select -assert-count 1 t:BUFG
select -assert-count 1 t:DSP48A1
select -assert-count 30 t:FDRE
select -assert-none t:DSP48A1 t:FDRE t:BUFG %% t:* %D