mirror of https://github.com/YosysHQ/yosys.git
Remove xilinx_ug901 tests (will be moved to yosys-tests)
This commit is contained in:
parent
757c476f62
commit
6331fa5b02
1
Makefile
1
Makefile
|
@ -716,7 +716,6 @@ test: $(TARGETS) $(EXTRA_TARGETS)
|
|||
+cd tests/ice40 && bash run-test.sh $(SEEDOPT)
|
||||
+cd tests/rpc && bash run-test.sh
|
||||
+cd tests/xilinx && bash run-test.sh $(SEEDOPT)
|
||||
+cd tests/xilinx_ug901 && bash run-test.sh $(SEEDOPT)
|
||||
@echo ""
|
||||
@echo " Passed \"make test\"."
|
||||
@echo ""
|
||||
|
|
|
@ -1,74 +0,0 @@
|
|||
// Asymmetric port RAM
|
||||
// Read Wider than Write. Read Statement in loop
|
||||
//asym_ram_sdp_read_wider.v
|
||||
|
||||
module asym_ram_sdp_read_wider (clkA, clkB, enaA, weA, enaB, addrA, addrB, diA, doB);
|
||||
parameter WIDTHA = 4;
|
||||
parameter SIZEA = 1024;
|
||||
parameter ADDRWIDTHA = 10;
|
||||
|
||||
parameter WIDTHB = 16;
|
||||
parameter SIZEB = 256;
|
||||
parameter ADDRWIDTHB = 8;
|
||||
input clkA;
|
||||
input clkB;
|
||||
input weA;
|
||||
input enaA, enaB;
|
||||
input [ADDRWIDTHA-1:0] addrA;
|
||||
input [ADDRWIDTHB-1:0] addrB;
|
||||
input [WIDTHA-1:0] diA;
|
||||
output [WIDTHB-1:0] doB;
|
||||
`define max(a,b) {(a) > (b) ? (a) : (b)}
|
||||
`define min(a,b) {(a) < (b) ? (a) : (b)}
|
||||
|
||||
function integer log2;
|
||||
input integer value;
|
||||
reg [31:0] shifted;
|
||||
integer res;
|
||||
begin
|
||||
if (value < 2)
|
||||
log2 = value;
|
||||
else
|
||||
begin
|
||||
shifted = value-1;
|
||||
for (res=0; shifted>0; res=res+1)
|
||||
shifted = shifted>>1;
|
||||
log2 = res;
|
||||
end
|
||||
end
|
||||
endfunction
|
||||
|
||||
localparam maxSIZE = `max(SIZEA, SIZEB);
|
||||
localparam maxWIDTH = `max(WIDTHA, WIDTHB);
|
||||
localparam minWIDTH = `min(WIDTHA, WIDTHB);
|
||||
|
||||
localparam RATIO = maxWIDTH / minWIDTH;
|
||||
localparam log2RATIO = log2(RATIO);
|
||||
|
||||
reg [minWIDTH-1:0] RAM [0:maxSIZE-1];
|
||||
reg [WIDTHB-1:0] readB;
|
||||
|
||||
always @(posedge clkA)
|
||||
begin
|
||||
if (enaA) begin
|
||||
if (weA)
|
||||
RAM[addrA] <= diA;
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
always @(posedge clkB)
|
||||
begin : ramread
|
||||
integer i;
|
||||
reg [log2RATIO-1:0] lsbaddr;
|
||||
if (enaB) begin
|
||||
for (i = 0; i < RATIO; i = i+1) begin
|
||||
lsbaddr = i;
|
||||
readB[(i+1)*minWIDTH-1 -: minWIDTH] <= RAM[{addrB, lsbaddr}];
|
||||
end
|
||||
end
|
||||
end
|
||||
assign doB = readB;
|
||||
|
||||
endmodule
|
||||
|
|
@ -1,22 +0,0 @@
|
|||
read_verilog asym_ram_sdp_read_wider.v
|
||||
hierarchy -top asym_ram_sdp_read_wider
|
||||
proc
|
||||
memory -nomap
|
||||
equiv_opt -run :prove -map +/xilinx/cells_sim.v synth_xilinx
|
||||
memory
|
||||
opt -full
|
||||
|
||||
# TODO
|
||||
#equiv_opt -run prove: -assert null
|
||||
miter -equiv -flatten -make_assert -make_outputs gold gate miter
|
||||
#sat -verify -prove-asserts -tempinduct -show-inputs -show-outputs miter
|
||||
|
||||
design -load postopt
|
||||
cd asym_ram_sdp_read_wider
|
||||
stat
|
||||
#Vivado synthesizes 1 RAMB18E1.
|
||||
select -assert-count 2 t:BUFG
|
||||
select -assert-count 1 t:LUT2
|
||||
select -assert-count 4 t:RAMB18E1
|
||||
|
||||
select -assert-none t:BUFG t:LUT2 t:RAMB18E1 %% t:* %D
|
|
@ -1,75 +0,0 @@
|
|||
// Asymmetric port RAM
|
||||
// Write wider than Read. Write Statement in a loop.
|
||||
// asym_ram_sdp_write_wider.v
|
||||
|
||||
module asym_ram_sdp_write_wider (clkA, clkB, weA, enaA, enaB, addrA, addrB, diA, doB);
|
||||
parameter WIDTHB = 4;
|
||||
//Default parameters were changed because of slow test
|
||||
//parameter SIZEB = 1024;
|
||||
//parameter ADDRWIDTHB = 10;
|
||||
parameter SIZEB = 256;
|
||||
parameter ADDRWIDTHB = 8;
|
||||
|
||||
//parameter WIDTHA = 16;
|
||||
parameter WIDTHA = 8;
|
||||
parameter SIZEA = 256;
|
||||
parameter ADDRWIDTHA = 8;
|
||||
input clkA;
|
||||
input clkB;
|
||||
input weA;
|
||||
input enaA, enaB;
|
||||
input [ADDRWIDTHA-1:0] addrA;
|
||||
input [ADDRWIDTHB-1:0] addrB;
|
||||
input [WIDTHA-1:0] diA;
|
||||
output [WIDTHB-1:0] doB;
|
||||
`define max(a,b) {(a) > (b) ? (a) : (b)}
|
||||
`define min(a,b) {(a) < (b) ? (a) : (b)}
|
||||
|
||||
function integer log2;
|
||||
input integer value;
|
||||
reg [31:0] shifted;
|
||||
integer res;
|
||||
begin
|
||||
if (value < 2)
|
||||
log2 = value;
|
||||
else
|
||||
begin
|
||||
shifted = value-1;
|
||||
for (res=0; shifted>0; res=res+1)
|
||||
shifted = shifted>>1;
|
||||
log2 = res;
|
||||
end
|
||||
end
|
||||
endfunction
|
||||
|
||||
localparam maxSIZE = `max(SIZEA, SIZEB);
|
||||
localparam maxWIDTH = `max(WIDTHA, WIDTHB);
|
||||
localparam minWIDTH = `min(WIDTHA, WIDTHB);
|
||||
|
||||
localparam RATIO = maxWIDTH / minWIDTH;
|
||||
localparam log2RATIO = log2(RATIO);
|
||||
|
||||
reg [minWIDTH-1:0] RAM [0:maxSIZE-1];
|
||||
reg [WIDTHB-1:0] readB;
|
||||
|
||||
always @(posedge clkB) begin
|
||||
if (enaB) begin
|
||||
readB <= RAM[addrB];
|
||||
end
|
||||
end
|
||||
assign doB = readB;
|
||||
|
||||
always @(posedge clkA)
|
||||
begin : ramwrite
|
||||
integer i;
|
||||
reg [log2RATIO-1:0] lsbaddr;
|
||||
for (i=0; i< RATIO; i= i+ 1) begin : write1
|
||||
lsbaddr = i;
|
||||
if (enaA) begin
|
||||
if (weA)
|
||||
RAM[{addrA, lsbaddr}] <= diA[(i+1)*minWIDTH-1 -: minWIDTH];
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
|
@ -1,31 +0,0 @@
|
|||
read_verilog asym_ram_sdp_write_wider.v
|
||||
hierarchy -top asym_ram_sdp_write_wider
|
||||
proc
|
||||
memory -nomap
|
||||
equiv_opt -run :prove -map +/xilinx/cells_sim.v synth_xilinx
|
||||
memory
|
||||
opt -full
|
||||
|
||||
# TODO
|
||||
#equiv_opt -run prove: -assert null
|
||||
miter -equiv -flatten -make_assert -make_outputs gold gate miter
|
||||
#sat -verify -prove-asserts -tempinduct -show-inputs -show-outputs miter
|
||||
|
||||
design -load postopt
|
||||
cd asym_ram_sdp_write_wider
|
||||
stat
|
||||
#Vivado synthesizes 1 RAMB18E1.
|
||||
select -assert-count 2 t:BUFG
|
||||
select -assert-count 1028 t:FDRE
|
||||
select -assert-count 170 t:LUT2
|
||||
select -assert-count 6 t:LUT3
|
||||
select -assert-count 518 t:LUT4
|
||||
select -assert-count 10 t:LUT5
|
||||
select -assert-count 484 t:LUT6
|
||||
select -assert-count 157 t:MUXF7
|
||||
select -assert-count 3 t:MUXF8
|
||||
|
||||
#RRAM128X1D will be synthesized in case when the parameter WIDTHA=4
|
||||
#select -assert-count 8 t:RAM128X1D
|
||||
|
||||
select -assert-none t:BUFG t:FDRE t:LUT2 t:LUT3 t:LUT4 t:LUT5 t:LUT6 t:MUXF7 t:MUXF8 %% t:* %D
|
|
@ -1,85 +0,0 @@
|
|||
// Asymetric RAM - TDP
|
||||
// READ_FIRST MODE.
|
||||
// asym_ram_tdp_read_first.v
|
||||
|
||||
|
||||
module asym_ram_tdp_read_first (clkA, clkB, enaA, weA, enaB, weB, addrA, addrB, diA, doA, diB, doB);
|
||||
parameter WIDTHB = 4;
|
||||
parameter SIZEB = 1024;
|
||||
parameter ADDRWIDTHB = 10;
|
||||
parameter WIDTHA = 16;
|
||||
parameter SIZEA = 256;
|
||||
parameter ADDRWIDTHA = 8;
|
||||
input clkA;
|
||||
input clkB;
|
||||
input weA, weB;
|
||||
input enaA, enaB;
|
||||
|
||||
input [ADDRWIDTHA-1:0] addrA;
|
||||
input [ADDRWIDTHB-1:0] addrB;
|
||||
input [WIDTHA-1:0] diA;
|
||||
input [WIDTHB-1:0] diB;
|
||||
|
||||
output [WIDTHA-1:0] doA;
|
||||
output [WIDTHB-1:0] doB;
|
||||
|
||||
`define max(a,b) {(a) > (b) ? (a) : (b)}
|
||||
`define min(a,b) {(a) < (b) ? (a) : (b)}
|
||||
|
||||
function integer log2;
|
||||
input integer value;
|
||||
reg [31:0] shifted;
|
||||
integer res;
|
||||
begin
|
||||
if (value < 2)
|
||||
log2 = value;
|
||||
else
|
||||
begin
|
||||
shifted = value-1;
|
||||
for (res=0; shifted>0; res=res+1)
|
||||
shifted = shifted>>1;
|
||||
log2 = res;
|
||||
end
|
||||
end
|
||||
endfunction
|
||||
|
||||
localparam maxSIZE = `max(SIZEA, SIZEB);
|
||||
localparam maxWIDTH = `max(WIDTHA, WIDTHB);
|
||||
localparam minWIDTH = `min(WIDTHA, WIDTHB);
|
||||
|
||||
localparam RATIO = maxWIDTH / minWIDTH;
|
||||
localparam log2RATIO = log2(RATIO);
|
||||
|
||||
reg [minWIDTH-1:0] RAM [0:maxSIZE-1];
|
||||
reg [WIDTHA-1:0] readA;
|
||||
reg [WIDTHB-1:0] readB;
|
||||
|
||||
always @(posedge clkB)
|
||||
begin
|
||||
if (enaB) begin
|
||||
readB <= RAM[addrB] ;
|
||||
if (weB)
|
||||
RAM[addrB] <= diB;
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
always @(posedge clkA)
|
||||
begin : portA
|
||||
integer i;
|
||||
reg [log2RATIO-1:0] lsbaddr ;
|
||||
for (i=0; i< RATIO; i= i+ 1) begin
|
||||
lsbaddr = i;
|
||||
if (enaA) begin
|
||||
readA[(i+1)*minWIDTH -1 -: minWIDTH] <= RAM[{addrA, lsbaddr}];
|
||||
|
||||
if (weA)
|
||||
RAM[{addrA, lsbaddr}] <= diA[(i+1)*minWIDTH-1 -: minWIDTH];
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
assign doA = readA;
|
||||
assign doB = readB;
|
||||
|
||||
endmodule
|
|
@ -1,21 +0,0 @@
|
|||
read_verilog asym_ram_tdp_read_first.v
|
||||
hierarchy -top asym_ram_tdp_read_first
|
||||
proc
|
||||
memory -nomap
|
||||
equiv_opt -run :prove -map +/xilinx/cells_sim.v synth_xilinx
|
||||
memory
|
||||
opt -full
|
||||
|
||||
# TODO
|
||||
#equiv_opt -run prove: -assert null
|
||||
miter -equiv -flatten -make_assert -make_outputs gold gate miter
|
||||
#sat -verify -prove-asserts -tempinduct -show-inputs -show-outputs miter
|
||||
|
||||
design -load postopt
|
||||
cd asym_ram_tdp_read_first
|
||||
stat
|
||||
#Vivado synthesizes 1 RAMB18E1.
|
||||
select -assert-count 1 t:$mem
|
||||
select -assert-count 2 t:LUT2
|
||||
|
||||
select -assert-none t:$mem t:LUT2 %% t:* %D
|
|
@ -1,92 +0,0 @@
|
|||
// Asymmetric port RAM - TDP
|
||||
// WRITE_FIRST MODE.
|
||||
// asym_ram_tdp_write_first.v
|
||||
|
||||
|
||||
module asym_ram_tdp_write_first (clkA, clkB, enaA, weA, enaB, weB, addrA, addrB, diA, doA, diB, doB);
|
||||
parameter WIDTHB = 4;
|
||||
//Default parameters were changed because of slow test
|
||||
//parameter SIZEB = 1024;
|
||||
//parameter ADDRWIDTHB = 10;
|
||||
parameter SIZEB = 32;
|
||||
parameter ADDRWIDTHB = 8;
|
||||
|
||||
//parameter WIDTHA = 16;
|
||||
parameter WIDTHA = 4;
|
||||
//parameter SIZEA = 256;
|
||||
parameter SIZEA = 32;
|
||||
parameter ADDRWIDTHA = 8;
|
||||
input clkA;
|
||||
input clkB;
|
||||
input weA, weB;
|
||||
input enaA, enaB;
|
||||
|
||||
input [ADDRWIDTHA-1:0] addrA;
|
||||
input [ADDRWIDTHB-1:0] addrB;
|
||||
input [WIDTHA-1:0] diA;
|
||||
input [WIDTHB-1:0] diB;
|
||||
|
||||
output [WIDTHA-1:0] doA;
|
||||
output [WIDTHB-1:0] doB;
|
||||
|
||||
`define max(a,b) {(a) > (b) ? (a) : (b)}
|
||||
`define min(a,b) {(a) < (b) ? (a) : (b)}
|
||||
|
||||
function integer log2;
|
||||
input integer value;
|
||||
reg [31:0] shifted;
|
||||
integer res;
|
||||
begin
|
||||
if (value < 2)
|
||||
log2 = value;
|
||||
else
|
||||
begin
|
||||
shifted = value-1;
|
||||
for (res=0; shifted>0; res=res+1)
|
||||
shifted = shifted>>1;
|
||||
log2 = res;
|
||||
end
|
||||
end
|
||||
endfunction
|
||||
|
||||
localparam maxSIZE = `max(SIZEA, SIZEB);
|
||||
localparam maxWIDTH = `max(WIDTHA, WIDTHB);
|
||||
localparam minWIDTH = `min(WIDTHA, WIDTHB);
|
||||
|
||||
localparam RATIO = maxWIDTH / minWIDTH;
|
||||
localparam log2RATIO = log2(RATIO);
|
||||
|
||||
reg [minWIDTH-1:0] RAM [0:maxSIZE-1];
|
||||
reg [WIDTHA-1:0] readA;
|
||||
reg [WIDTHB-1:0] readB;
|
||||
|
||||
always @(posedge clkB)
|
||||
begin
|
||||
if (enaB) begin
|
||||
if (weB)
|
||||
RAM[addrB] = diB;
|
||||
readB = RAM[addrB] ;
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
always @(posedge clkA)
|
||||
begin : portA
|
||||
integer i;
|
||||
reg [log2RATIO-1:0] lsbaddr ;
|
||||
for (i=0; i< RATIO; i= i+ 1) begin
|
||||
lsbaddr = i;
|
||||
if (enaA) begin
|
||||
|
||||
if (weA)
|
||||
RAM[{addrA, lsbaddr}] = diA[(i+1)*minWIDTH-1 -: minWIDTH];
|
||||
|
||||
readA[(i+1)*minWIDTH -1 -: minWIDTH] = RAM[{addrA, lsbaddr}];
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
assign doA = readA;
|
||||
assign doB = readB;
|
||||
|
||||
endmodule
|
|
@ -1,29 +0,0 @@
|
|||
read_verilog asym_ram_tdp_write_first.v
|
||||
hierarchy -top asym_ram_tdp_write_first
|
||||
proc
|
||||
memory -nomap
|
||||
equiv_opt -run :prove -map +/xilinx/cells_sim.v synth_xilinx
|
||||
memory
|
||||
opt -full
|
||||
|
||||
# TODO
|
||||
#equiv_opt -run prove: -assert null
|
||||
miter -equiv -flatten -make_assert -make_outputs gold gate miter
|
||||
#sat -verify -prove-asserts -tempinduct -show-inputs -show-outputs miter
|
||||
|
||||
design -load postopt
|
||||
cd asym_ram_tdp_write_first
|
||||
stat
|
||||
#Vivado synthesizes 1 RAMB18E1.
|
||||
select -assert-count 2 t:BUFG
|
||||
select -assert-count 200 t:FDRE
|
||||
select -assert-count 10 t:LUT2
|
||||
select -assert-count 44 t:LUT3
|
||||
select -assert-count 81 t:LUT4
|
||||
select -assert-count 104 t:LUT5
|
||||
select -assert-count 560 t:LUT6
|
||||
select -assert-count 261 t:MUXF7
|
||||
select -assert-count 127 t:MUXF8
|
||||
|
||||
|
||||
select -assert-none t:BUFG t:FDRE t:LUT2 t:LUT3 t:LUT4 t:LUT5 t:LUT6 t:MUXF7 t:MUXF8 %% t:* %D
|
|
@ -1,19 +0,0 @@
|
|||
// Black Box
|
||||
// black_box_1.v
|
||||
//
|
||||
(* black_box *) module black_box1 (in1, in2, dout);
|
||||
input in1, in2;
|
||||
output dout;
|
||||
endmodule
|
||||
|
||||
module black_box_1 (DI_1, DI_2, DOUT);
|
||||
input DI_1, DI_2;
|
||||
output DOUT;
|
||||
|
||||
black_box1 U1 (
|
||||
.in1(DI_1),
|
||||
.in2(DI_2),
|
||||
.dout(DOUT)
|
||||
);
|
||||
|
||||
endmodule
|
|
@ -1,15 +0,0 @@
|
|||
read_verilog black_box_1.v
|
||||
hierarchy -top black_box_1
|
||||
proc
|
||||
tribuf
|
||||
flatten
|
||||
synth
|
||||
#equiv_opt -assert -map +/xilinx/cells_sim.v synth_xilinx # equivalency check
|
||||
equiv_opt -map +/xilinx/cells_sim.v synth_xilinx # equivalency check
|
||||
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
|
||||
cd black_box_1 # Constrain all select calls below inside the top module
|
||||
#Vivado synthesizes 1 black box.
|
||||
#stat
|
||||
#select -assert-count 0 t:LUT1
|
||||
#select -assert-count 1 t:$_TBUF_
|
||||
#select -assert-none t:LUT1 t:$_TBUF_ %% t:* %D
|
|
@ -1,42 +0,0 @@
|
|||
// Single-Port BRAM with Byte-wide Write Enable
|
||||
// Read-First mode
|
||||
// Single-process description
|
||||
// Compact description of the write with a generate-for
|
||||
// statement
|
||||
// Column width and number of columns easily configurable
|
||||
//
|
||||
// bytewrite_ram_1b.v
|
||||
//
|
||||
|
||||
module bytewrite_ram_1b (clk, we, addr, di, do);
|
||||
|
||||
parameter SIZE = 1024;
|
||||
parameter ADDR_WIDTH = 10;
|
||||
parameter COL_WIDTH = 8;
|
||||
parameter NB_COL = 4;
|
||||
|
||||
input clk;
|
||||
input [NB_COL-1:0] we;
|
||||
input [ADDR_WIDTH-1:0] addr;
|
||||
input [NB_COL*COL_WIDTH-1:0] di;
|
||||
output reg [NB_COL*COL_WIDTH-1:0] do;
|
||||
|
||||
reg [NB_COL*COL_WIDTH-1:0] RAM [SIZE-1:0];
|
||||
|
||||
always @(posedge clk)
|
||||
begin
|
||||
do <= RAM[addr];
|
||||
end
|
||||
|
||||
generate genvar i;
|
||||
for (i = 0; i < NB_COL; i = i+1)
|
||||
begin
|
||||
always @(posedge clk)
|
||||
begin
|
||||
if (we[i])
|
||||
RAM[addr][(i+1)*COL_WIDTH-1:i*COL_WIDTH] <= di[(i+1)*COL_WIDTH-1:i*COL_WIDTH];
|
||||
end
|
||||
end
|
||||
endgenerate
|
||||
|
||||
endmodule
|
|
@ -1,22 +0,0 @@
|
|||
read_verilog bytewrite_ram_1b.v
|
||||
hierarchy -top bytewrite_ram_1b
|
||||
proc
|
||||
memory -nomap
|
||||
equiv_opt -run :prove -map +/xilinx/cells_sim.v synth_xilinx
|
||||
memory
|
||||
opt -full
|
||||
|
||||
# TODO
|
||||
#equiv_opt -run prove: -assert null
|
||||
miter -equiv -flatten -make_assert -make_outputs gold gate miter
|
||||
#sat -verify -prove-asserts -tempinduct -show-inputs -show-outputs miter
|
||||
|
||||
design -load postopt
|
||||
cd bytewrite_ram_1b
|
||||
stat
|
||||
#Vivado synthesizes 1 RAMB36E1.
|
||||
select -assert-count 1 t:BUFG
|
||||
select -assert-count 32 t:LUT2
|
||||
select -assert-count 8 t:RAMB36E1
|
||||
|
||||
select -assert-none t:BUFG t:LUT2 t:RAMB36E1 %% t:* %D
|
|
@ -1,78 +0,0 @@
|
|||
//
|
||||
// True-Dual-Port BRAM with Byte-wide Write Enable
|
||||
// No-Change mode
|
||||
//
|
||||
// bytewrite_tdp_ram_nc.v
|
||||
//
|
||||
// ByteWide Write Enable, - NO_CHANGE mode template - Vivado recomended
|
||||
module bytewrite_tdp_ram_nc
|
||||
#(
|
||||
//---------------------------------------------------------------
|
||||
parameter NUM_COL = 4,
|
||||
parameter COL_WIDTH = 8,
|
||||
parameter ADDR_WIDTH = 10, // Addr Width in bits : 2**ADDR_WIDTH = RAM Depth
|
||||
parameter DATA_WIDTH = NUM_COL*COL_WIDTH // Data Width in bits
|
||||
//---------------------------------------------------------------
|
||||
) (
|
||||
input clkA,
|
||||
input enaA,
|
||||
input [NUM_COL-1:0] weA,
|
||||
input [ADDR_WIDTH-1:0] addrA,
|
||||
input [DATA_WIDTH-1:0] dinA,
|
||||
output reg [DATA_WIDTH-1:0] doutA,
|
||||
|
||||
input clkB,
|
||||
input enaB,
|
||||
input [NUM_COL-1:0] weB,
|
||||
input [ADDR_WIDTH-1:0] addrB,
|
||||
input [DATA_WIDTH-1:0] dinB,
|
||||
output reg [DATA_WIDTH-1:0] doutB
|
||||
);
|
||||
|
||||
|
||||
// Core Memory
|
||||
reg [DATA_WIDTH-1:0] ram_block [(2**ADDR_WIDTH)-1:0];
|
||||
|
||||
// Port-A Operation
|
||||
generate
|
||||
genvar i;
|
||||
for(i=0;i<NUM_COL;i=i+1) begin
|
||||
always @ (posedge clkA) begin
|
||||
if(enaA) begin
|
||||
if(weA[i]) begin
|
||||
ram_block[addrA][i*COL_WIDTH +: COL_WIDTH] <= dinA[i*COL_WIDTH +: COL_WIDTH];
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
endgenerate
|
||||
|
||||
always @ (posedge clkA) begin
|
||||
if(enaA) begin
|
||||
if (~|weA)
|
||||
doutA <= ram_block[addrA];
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
// Port-B Operation:
|
||||
generate
|
||||
for(i=0;i<NUM_COL;i=i+1) begin
|
||||
always @ (posedge clkB) begin
|
||||
if(enaB) begin
|
||||
if(weB[i]) begin
|
||||
ram_block[addrB][i*COL_WIDTH +: COL_WIDTH] <= dinB[i*COL_WIDTH +: COL_WIDTH];
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
endgenerate
|
||||
|
||||
always @ (posedge clkB) begin
|
||||
if(enaB) begin
|
||||
if (~|weB)
|
||||
doutB <= ram_block[addrB];
|
||||
end
|
||||
end
|
||||
|
||||
endmodule // bytewrite_tdp_ram_nc
|
|
@ -1,22 +0,0 @@
|
|||
read_verilog bytewrite_tdp_ram_nc.v
|
||||
hierarchy -top bytewrite_tdp_ram_nc
|
||||
proc
|
||||
memory -nomap
|
||||
equiv_opt -run :prove -map +/xilinx/cells_sim.v synth_xilinx
|
||||
memory
|
||||
opt -full
|
||||
|
||||
# TODO
|
||||
#equiv_opt -run prove: -assert null
|
||||
miter -equiv -flatten -make_assert -make_outputs gold gate miter
|
||||
#sat -verify -prove-asserts -tempinduct -show-inputs -show-outputs miter
|
||||
|
||||
design -load postopt
|
||||
cd bytewrite_tdp_ram_nc
|
||||
stat
|
||||
#Vivado synthesizes 1 RAMB36E1.
|
||||
select -assert-count 1 t:$mem
|
||||
select -assert-count 8 t:LUT2
|
||||
select -assert-count 64 t:LUT3
|
||||
select -assert-count 2 t:LUT5
|
||||
select -assert-none t:LUT2 t:LUT3 t:LUT5 t:$mem %% t:* %D
|
|
@ -1,71 +0,0 @@
|
|||
// ByteWide Write Enable, - Alternate READ_FIRST mode template - Vivado recomended
|
||||
// bytewrite_tdp_ram_readfirst2.v
|
||||
module bytewrite_tdp_ram_readfirst2
|
||||
#(
|
||||
//-------------------------------------------------------------------------
|
||||
parameter NUM_COL = 4,
|
||||
parameter COL_WIDTH = 8,
|
||||
parameter ADDR_WIDTH = 10, // Addr Width in bits : 2**ADDR_WIDTH = RAM Depth
|
||||
parameter DATA_WIDTH = NUM_COL*COL_WIDTH // Data Width in bits
|
||||
//-------------------------------------------------------------------------
|
||||
) (
|
||||
input clkA,
|
||||
input enaA,
|
||||
input [NUM_COL-1:0] weA,
|
||||
input [ADDR_WIDTH-1:0] addrA,
|
||||
input [DATA_WIDTH-1:0] dinA,
|
||||
output reg [DATA_WIDTH-1:0] doutA,
|
||||
|
||||
input clkB,
|
||||
input enaB,
|
||||
input [NUM_COL-1:0] weB,
|
||||
input [ADDR_WIDTH-1:0] addrB,
|
||||
input [DATA_WIDTH-1:0] dinB,
|
||||
output reg [DATA_WIDTH-1:0] doutB
|
||||
);
|
||||
|
||||
|
||||
// Core Memory
|
||||
reg [DATA_WIDTH-1:0] ram_block [(2**ADDR_WIDTH)-1:0];
|
||||
|
||||
// Port-A Operation
|
||||
generate
|
||||
genvar i;
|
||||
for(i=0;i<NUM_COL;i=i+1) begin
|
||||
always @ (posedge clkA) begin
|
||||
if(enaA) begin
|
||||
if(weA[i]) begin
|
||||
ram_block[addrA][i*COL_WIDTH +: COL_WIDTH] <= dinA[i*COL_WIDTH +: COL_WIDTH];
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
endgenerate
|
||||
|
||||
always @ (posedge clkA) begin
|
||||
if(enaA) begin
|
||||
doutA <= ram_block[addrA];
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
// Port-B Operation:
|
||||
generate
|
||||
for(i=0;i<NUM_COL;i=i+1) begin
|
||||
always @ (posedge clkB) begin
|
||||
if(enaB) begin
|
||||
if(weB[i]) begin
|
||||
ram_block[addrB][i*COL_WIDTH +: COL_WIDTH] <= dinB[i*COL_WIDTH +: COL_WIDTH];
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
endgenerate
|
||||
|
||||
always @ (posedge clkB) begin
|
||||
if(enaB) begin
|
||||
doutB <= ram_block[addrB];
|
||||
end
|
||||
end
|
||||
|
||||
endmodule // bytewrite_tdp_ram_readfirst2
|
|
@ -1,21 +0,0 @@
|
|||
read_verilog bytewrite_tdp_ram_readfirst2.v
|
||||
hierarchy -top bytewrite_tdp_ram_readfirst2
|
||||
proc
|
||||
memory -nomap
|
||||
equiv_opt -run :prove -map +/xilinx/cells_sim.v synth_xilinx
|
||||
memory
|
||||
opt -full
|
||||
|
||||
# TODO
|
||||
#equiv_opt -run prove: -assert null
|
||||
miter -equiv -flatten -make_assert -make_outputs gold gate miter
|
||||
#sat -verify -prove-asserts -tempinduct -show-inputs -show-outputs miter
|
||||
|
||||
design -load postopt
|
||||
cd bytewrite_tdp_ram_readfirst2
|
||||
stat
|
||||
#Vivado synthesizes 1 RAMB36E1.
|
||||
select -assert-count 1 t:$mem
|
||||
select -assert-count 8 t:LUT2
|
||||
select -assert-count 64 t:LUT3
|
||||
select -assert-none t:LUT2 t:LUT3 t:$mem %% t:* %D
|
|
@ -1,61 +0,0 @@
|
|||
// True-Dual-Port BRAM with Byte-wide Write Enable
|
||||
// Read-First mode
|
||||
// bytewrite_tdp_ram_rf.v
|
||||
//
|
||||
|
||||
module bytewrite_tdp_ram_rf
|
||||
#(
|
||||
//--------------------------------------------------------------------------
|
||||
parameter NUM_COL = 4,
|
||||
parameter COL_WIDTH = 8,
|
||||
parameter ADDR_WIDTH = 10,
|
||||
// Addr Width in bits : 2 *ADDR_WIDTH = RAM Depth
|
||||
parameter DATA_WIDTH = NUM_COL*COL_WIDTH // Data Width in bits
|
||||
//----------------------------------------------------------------------
|
||||
) (
|
||||
input clkA,
|
||||
input enaA,
|
||||
input [NUM_COL-1:0] weA,
|
||||
input [ADDR_WIDTH-1:0] addrA,
|
||||
input [DATA_WIDTH-1:0] dinA,
|
||||
output reg [DATA_WIDTH-1:0] doutA,
|
||||
|
||||
input clkB,
|
||||
input enaB,
|
||||
input [NUM_COL-1:0] weB,
|
||||
input [ADDR_WIDTH-1:0] addrB,
|
||||
input [DATA_WIDTH-1:0] dinB,
|
||||
output reg [DATA_WIDTH-1:0] doutB
|
||||
);
|
||||
|
||||
|
||||
// Core Memory
|
||||
reg [DATA_WIDTH-1:0] ram_block [(2**ADDR_WIDTH)-1:0];
|
||||
|
||||
integer i;
|
||||
// Port-A Operation
|
||||
always @ (posedge clkA) begin
|
||||
if(enaA) begin
|
||||
for(i=0;i<NUM_COL;i=i+1) begin
|
||||
if(weA[i]) begin
|
||||
ram_block[addrA][i*COL_WIDTH +: COL_WIDTH] <= dinA[i*COL_WIDTH +: COL_WIDTH];
|
||||
end
|
||||
end
|
||||
doutA <= ram_block[addrA];
|
||||
end
|
||||
end
|
||||
|
||||
// Port-B Operation:
|
||||
always @ (posedge clkB) begin
|
||||
if(enaB) begin
|
||||
for(i=0;i<NUM_COL;i=i+1) begin
|
||||
if(weB[i]) begin
|
||||
ram_block[addrB][i*COL_WIDTH +: COL_WIDTH] <= dinB[i*COL_WIDTH +: COL_WIDTH];
|
||||
end
|
||||
end
|
||||
|
||||
doutB <= ram_block[addrB];
|
||||
end
|
||||
end
|
||||
|
||||
endmodule // bytewrite_tdp_ram_rf
|
|
@ -1,21 +0,0 @@
|
|||
read_verilog bytewrite_tdp_ram_rf.v
|
||||
hierarchy -top bytewrite_tdp_ram_rf
|
||||
proc
|
||||
memory -nomap
|
||||
equiv_opt -run :prove -map +/xilinx/cells_sim.v synth_xilinx
|
||||
memory
|
||||
opt -full
|
||||
|
||||
# TODO
|
||||
#equiv_opt -run prove: -assert null
|
||||
miter -equiv -flatten -make_assert -make_outputs gold gate miter
|
||||
#sat -verify -prove-asserts -tempinduct -show-inputs -show-outputs miter
|
||||
|
||||
design -load postopt
|
||||
cd bytewrite_tdp_ram_rf
|
||||
stat
|
||||
#Vivado synthesizes 1 RAMB36E1.
|
||||
select -assert-count 1 t:$mem
|
||||
select -assert-count 8 t:LUT2
|
||||
select -assert-count 64 t:LUT3
|
||||
select -assert-none t:LUT2 t:LUT3 t:$mem %% t:* %D
|
|
@ -1,68 +0,0 @@
|
|||
// True-Dual-Port BRAM with Byte-wide Write Enable
|
||||
// Write-First mode
|
||||
// File: HDL_Coding_Techniques/rams/bytewrite_tdp_ram_wf.v
|
||||
//
|
||||
// ByteWide Write Enable, - WRITE_FIRST mode template - Vivado recomended
|
||||
module bytewrite_tdp_ram_wf
|
||||
#(
|
||||
//----------------------------------------------------------------------
|
||||
parameter NUM_COL = 4,
|
||||
parameter COL_WIDTH = 8,
|
||||
parameter ADDR_WIDTH = 10,
|
||||
// Addr Width in bits : 2**ADDR_WIDTH = RAM Depth
|
||||
parameter DATA_WIDTH = NUM_COL*COL_WIDTH // Data Width in bits
|
||||
//----------------------------------------------------------------------
|
||||
) (
|
||||
input clkA,
|
||||
input enaA,
|
||||
input [NUM_COL-1:0] weA,
|
||||
input [ADDR_WIDTH-1:0] addrA,
|
||||
input [DATA_WIDTH-1:0] dinA,
|
||||
output reg [DATA_WIDTH-1:0] doutA,
|
||||
|
||||
input clkB,
|
||||
input enaB,
|
||||
input [NUM_COL-1:0] weB,
|
||||
input [ADDR_WIDTH-1:0] addrB,
|
||||
input [DATA_WIDTH-1:0] dinB,
|
||||
output reg [DATA_WIDTH-1:0] doutB
|
||||
);
|
||||
|
||||
|
||||
// Core Memory
|
||||
reg [DATA_WIDTH-1:0] ram_block [(2**ADDR_WIDTH)-1:0];
|
||||
|
||||
// Port-A Operation
|
||||
generate
|
||||
genvar i;
|
||||
for(i=0;i<NUM_COL;i=i+1) begin
|
||||
always @ (posedge clkA) begin
|
||||
if(enaA) begin
|
||||
if(weA[i]) begin
|
||||
ram_block[addrA][i*COL_WIDTH +: COL_WIDTH] <= dinA[i*COL_WIDTH +: COL_WIDTH];
|
||||
doutA[i*COL_WIDTH +: COL_WIDTH] <= dinA[i*COL_WIDTH +: COL_WIDTH] ;
|
||||
end else begin
|
||||
doutA[i*COL_WIDTH +: COL_WIDTH] <= ram_block[addrA][i*COL_WIDTH +: COL_WIDTH] ;
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
endgenerate
|
||||
|
||||
// Port-B Operation:
|
||||
generate
|
||||
for(i=0;i<NUM_COL;i=i+1) begin
|
||||
always @ (posedge clkB) begin
|
||||
if(enaB) begin
|
||||
if(weB[i]) begin
|
||||
ram_block[addrB][i*COL_WIDTH +: COL_WIDTH] <= dinB[i*COL_WIDTH +: COL_WIDTH];
|
||||
doutB[i*COL_WIDTH +: COL_WIDTH] <= dinB[i*COL_WIDTH +: COL_WIDTH] ;
|
||||
end else begin
|
||||
doutB[i*COL_WIDTH +: COL_WIDTH] <= ram_block[addrB][i*COL_WIDTH +: COL_WIDTH] ;
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
endgenerate
|
||||
|
||||
endmodule // bytewrite_tdp_ram_wf
|
|
@ -1,23 +0,0 @@
|
|||
read_verilog bytewrite_tdp_ram_wf.v
|
||||
hierarchy -top bytewrite_tdp_ram_wf
|
||||
proc
|
||||
memory -nomap
|
||||
equiv_opt -run :prove -map +/xilinx/cells_sim.v synth_xilinx
|
||||
memory
|
||||
opt -full
|
||||
|
||||
# TODO
|
||||
#equiv_opt -run prove: -assert null
|
||||
miter -equiv -flatten -make_assert -make_outputs gold gate miter
|
||||
#sat -verify -prove-asserts -tempinduct -show-inputs -show-outputs miter
|
||||
|
||||
design -load postopt
|
||||
cd bytewrite_tdp_ram_wf
|
||||
stat
|
||||
#Vivado synthesizes 1 RAMB36E1.
|
||||
select -assert-count 1 t:$mem
|
||||
select -assert-count 2 t:BUFG
|
||||
select -assert-count 64 t:FDRE
|
||||
select -assert-count 8 t:LUT2
|
||||
select -assert-count 128 t:LUT3
|
||||
select -assert-none t:BUFG t:FDRE t:LUT2 t:LUT3 t:$mem %% t:* %D
|
|
@ -1,122 +0,0 @@
|
|||
// Complex Multiplier with accumulation (pr+i.pi) = (ar+i.ai)*(br+i.bi)
|
||||
// File: cmacc.v
|
||||
// The RTL below describes a complex multiplier with accumulation
|
||||
// which can be packed into 3 DSP blocks (Ultrascale architecture)
|
||||
//Default parameters were changed because of slow test
|
||||
//module cmacc # (parameter AWIDTH = 16, BWIDTH = 18, SIZEOUT = 40)
|
||||
module cmacc # (parameter AWIDTH = 4, BWIDTH = 5, SIZEOUT = 9)
|
||||
(
|
||||
input clk,
|
||||
input sload,
|
||||
input signed [AWIDTH-1:0] ar,
|
||||
input signed [AWIDTH-1:0] ai,
|
||||
input signed [BWIDTH-1:0] br,
|
||||
input signed [BWIDTH-1:0] bi,
|
||||
output signed [SIZEOUT-1:0] pr,
|
||||
output signed [SIZEOUT-1:0] pi);
|
||||
|
||||
reg signed [AWIDTH-1:0] ai_d, ai_dd, ai_ddd, ai_dddd;
|
||||
reg signed [AWIDTH-1:0] ar_d, ar_dd, ar_ddd, ar_dddd;
|
||||
reg signed [BWIDTH-1:0] bi_d, bi_dd, bi_ddd, br_d, br_dd, br_ddd;
|
||||
reg signed [AWIDTH:0] addcommon;
|
||||
reg signed [BWIDTH:0] addr, addi;
|
||||
reg signed [AWIDTH+BWIDTH:0] mult0, multr, multi;
|
||||
reg signed [SIZEOUT-1:0] pr_int, pi_int, old_result_real, old_result_im;
|
||||
reg signed [AWIDTH+BWIDTH:0] common, commonr1, commonr2;
|
||||
|
||||
reg sload_reg;
|
||||
|
||||
`ifdef SIM
|
||||
initial
|
||||
begin
|
||||
ai_d = 0;
|
||||
ai_dd = 0;
|
||||
ai_ddd = 0;
|
||||
ai_dddd = 0;
|
||||
ar_d = 0;
|
||||
ar_dd = 0;
|
||||
ar_ddd = 0;
|
||||
ar_dddd = 0;
|
||||
bi_d = 0;
|
||||
bi_dd = 0;
|
||||
bi_ddd = 0;
|
||||
br_d = 0;
|
||||
br_dd = 0;
|
||||
br_ddd = 0;
|
||||
end
|
||||
`endif
|
||||
|
||||
always @(posedge clk)
|
||||
begin
|
||||
ar_d <= ar;
|
||||
ar_dd <= ar_d;
|
||||
ai_d <= ai;
|
||||
ai_dd <= ai_d;
|
||||
br_d <= br;
|
||||
br_dd <= br_d;
|
||||
br_ddd <= br_dd;
|
||||
bi_d <= bi;
|
||||
bi_dd <= bi_d;
|
||||
bi_ddd <= bi_dd;
|
||||
sload_reg <= sload;
|
||||
end
|
||||
|
||||
// Common factor (ar ai) x bi, shared for the calculations of the real and imaginary final products
|
||||
//
|
||||
always @(posedge clk)
|
||||
begin
|
||||
addcommon <= ar_d - ai_d;
|
||||
mult0 <= addcommon * bi_dd;
|
||||
common <= mult0;
|
||||
end
|
||||
|
||||
// Accumulation loop (combinatorial) for *Real*
|
||||
//
|
||||
always @(sload_reg or pr_int)
|
||||
if (sload_reg)
|
||||
old_result_real <= 0;
|
||||
else
|
||||
// 'sload' is now and opens the accumulation loop.
|
||||
// The accumulator takes the next multiplier output
|
||||
// in the same cycle.
|
||||
old_result_real <= pr_int;
|
||||
|
||||
// Real product
|
||||
//
|
||||
always @(posedge clk)
|
||||
begin
|
||||
ar_ddd <= ar_dd;
|
||||
ar_dddd <= ar_ddd;
|
||||
addr <= br_ddd - bi_ddd;
|
||||
multr <= addr * ar_dddd;
|
||||
commonr1 <= common;
|
||||
pr_int <= multr + commonr1 + old_result_real;
|
||||
end
|
||||
|
||||
// Accumulation loop (combinatorial) for *Imaginary*
|
||||
//
|
||||
always @(sload_reg or pi_int)
|
||||
if (sload_reg)
|
||||
old_result_im <= 0;
|
||||
else
|
||||
// 'sload' is now and opens the accumulation loop.
|
||||
// The accumulator takes the next multiplier output
|
||||
// in the same cycle.
|
||||
old_result_im <= pi_int;
|
||||
|
||||
// Imaginary product
|
||||
//
|
||||
always @(posedge clk)
|
||||
begin
|
||||
ai_ddd <= ai_dd;
|
||||
ai_dddd <= ai_ddd;
|
||||
addi <= br_ddd + bi_ddd;
|
||||
multi <= addi * ai_dddd;
|
||||
commonr2 <= common;
|
||||
pi_int <= multi + commonr2 + old_result_im;
|
||||
end
|
||||
|
||||
assign pr = pr_int;
|
||||
assign pi = pi_int;
|
||||
|
||||
endmodule // cmacc
|
|
@ -1,25 +0,0 @@
|
|||
read_verilog cmacc.v
|
||||
hierarchy -top cmacc
|
||||
proc
|
||||
flatten
|
||||
equiv_opt -assert -map +/xilinx/cells_sim.v synth_xilinx # equivalency check
|
||||
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
|
||||
|
||||
cd cmacc
|
||||
#Vivado synthesizes 5 DSP48E1, 32 FDRE, 18 LUT.
|
||||
stat
|
||||
select -assert-count 1 t:BUFG
|
||||
select -assert-count 77 t:FDRE
|
||||
select -assert-count 5 t:LUT1
|
||||
select -assert-count 46 t:LUT2
|
||||
select -assert-count 25 t:LUT3
|
||||
select -assert-count 8 t:LUT4
|
||||
select -assert-count 16 t:LUT5
|
||||
select -assert-count 85 t:LUT6
|
||||
select -assert-count 54 t:MUXCY
|
||||
select -assert-count 8 t:MUXF7
|
||||
select -assert-count 2 t:MUXF8
|
||||
select -assert-count 22 t:SRL16E
|
||||
select -assert-count 62 t:XORCY
|
||||
|
||||
select -assert-none t:BUFG t:FDRE t:LUT1 t:LUT2 t:LUT3 t:LUT4 t:LUT5 t:LUT6 t:MUXCY t:MUXF7 t:MUXF8 t:SRL16E t:XORCY %% t:* %D
|
|
@ -1,71 +0,0 @@
|
|||
//
|
||||
// Complex Multiplier (pr+i.pi) = (ar+i.ai)*(br+i.bi)
|
||||
// file: cmult.v
|
||||
|
||||
module cmult # (parameter AWIDTH = 16, BWIDTH = 18)
|
||||
(
|
||||
input clk,
|
||||
input signed [AWIDTH-1:0] ar, ai,
|
||||
input signed [BWIDTH-1:0] br, bi,
|
||||
output signed [AWIDTH+BWIDTH:0] pr, pi
|
||||
);
|
||||
|
||||
reg signed [AWIDTH-1:0] ai_d, ai_dd, ai_ddd, ai_dddd ;
|
||||
reg signed [AWIDTH-1:0] ar_d, ar_dd, ar_ddd, ar_dddd ;
|
||||
reg signed [BWIDTH-1:0] bi_d, bi_dd, bi_ddd, br_d, br_dd, br_ddd ;
|
||||
reg signed [AWIDTH:0] addcommon ;
|
||||
reg signed [BWIDTH:0] addr, addi ;
|
||||
reg signed [AWIDTH+BWIDTH:0] mult0, multr, multi, pr_int, pi_int ;
|
||||
reg signed [AWIDTH+BWIDTH:0] common, commonr1, commonr2 ;
|
||||
|
||||
always @(posedge clk)
|
||||
begin
|
||||
ar_d <= ar;
|
||||
ar_dd <= ar_d;
|
||||
ai_d <= ai;
|
||||
ai_dd <= ai_d;
|
||||
br_d <= br;
|
||||
br_dd <= br_d;
|
||||
br_ddd <= br_dd;
|
||||
bi_d <= bi;
|
||||
bi_dd <= bi_d;
|
||||
bi_ddd <= bi_dd;
|
||||
end
|
||||
|
||||
// Common factor (ar ai) x bi, shared for the calculations of the real and imaginary final products
|
||||
//
|
||||
always @(posedge clk)
|
||||
begin
|
||||
addcommon <= ar_d - ai_d;
|
||||
mult0 <= addcommon * bi_dd;
|
||||
common <= mult0;
|
||||
end
|
||||
|
||||
// Real product
|
||||
//
|
||||
always @(posedge clk)
|
||||
begin
|
||||
ar_ddd <= ar_dd;
|
||||
ar_dddd <= ar_ddd;
|
||||
addr <= br_ddd - bi_ddd;
|
||||
multr <= addr * ar_dddd;
|
||||
commonr1 <= common;
|
||||
pr_int <= multr + commonr1;
|
||||
end
|
||||
|
||||
// Imaginary product
|
||||
//
|
||||
always @(posedge clk)
|
||||
begin
|
||||
ai_ddd <= ai_dd;
|
||||
ai_dddd <= ai_ddd;
|
||||
addi <= br_ddd + bi_ddd;
|
||||
multi <= addi * ai_dddd;
|
||||
commonr2 <= common;
|
||||
pi_int <= multi + commonr2;
|
||||
end
|
||||
|
||||
assign pr = pr_int;
|
||||
assign pi = pi_int;
|
||||
|
||||
endmodule // cmult
|
|
@ -1,31 +0,0 @@
|
|||
read_verilog cmult.v
|
||||
hierarchy -top cmult
|
||||
proc
|
||||
memory -nomap
|
||||
equiv_opt -run :prove -map +/xilinx/cells_sim.v synth_xilinx
|
||||
memory
|
||||
opt -full
|
||||
|
||||
# TODO
|
||||
#equiv_opt -run prove: -assert null
|
||||
miter -equiv -flatten -make_assert -make_outputs gold gate miter
|
||||
#sat -verify -prove-asserts -tempinduct -show-inputs -show-outputs miter
|
||||
|
||||
design -load postopt
|
||||
cd cmult
|
||||
#Vivado synthesizes 3 DSP48E1, 68 FDRE.
|
||||
select -assert-count 1 t:BUFG
|
||||
select -assert-count 281 t:FDRE
|
||||
select -assert-count 18 t:LUT1
|
||||
select -assert-count 467 t:LUT2
|
||||
select -assert-count 187 t:LUT3
|
||||
select -assert-count 98 t:LUT4
|
||||
select -assert-count 165 t:LUT5
|
||||
select -assert-count 1596 t:LUT6
|
||||
select -assert-count 222 t:MUXCY
|
||||
select -assert-count 393 t:MUXF7
|
||||
select -assert-count 121 t:MUXF8
|
||||
select -assert-count 85 t:SRL16E
|
||||
select -assert-count 230 t:XORCY
|
||||
|
||||
select -assert-none t:BUFG t:FDRE t:LUT1 t:LUT2 t:LUT3 t:LUT4 t:LUT5 t:LUT6 t:MUXCY t:MUXF7 t:MUXF8 t:SRL16E t:XORCY %% t:* %D
|
|
@ -1,21 +0,0 @@
|
|||
// 32-bit dynamic shift register.
|
||||
// Download:
|
||||
// File: dynamic_shift_registers_1.v
|
||||
|
||||
module dynamic_shift_register_1 (CLK, CE, SEL, SI, DO);
|
||||
parameter SELWIDTH = 5;
|
||||
input CLK, CE, SI;
|
||||
input [SELWIDTH-1:0] SEL;
|
||||
output DO;
|
||||
|
||||
localparam DATAWIDTH = 2**SELWIDTH;
|
||||
reg [DATAWIDTH-1:0] data;
|
||||
|
||||
assign DO = data[SEL];
|
||||
|
||||
always @(posedge CLK)
|
||||
begin
|
||||
if (CE == 1'b1)
|
||||
data <= {data[DATAWIDTH-2:0], SI};
|
||||
end
|
||||
endmodule
|
|
@ -1,15 +0,0 @@
|
|||
read_verilog dynamic_shift_registers_1.v
|
||||
hierarchy -top dynamic_shift_register_1
|
||||
proc
|
||||
flatten
|
||||
#ERROR: Found 1 unproven $equiv cells in 'equiv_status -assert'.
|
||||
#equiv_opt -assert -map +/xilinx/cells_sim.v synth_xilinx # equivalency check
|
||||
equiv_opt -map +/xilinx/cells_sim.v synth_xilinx # equivalency check
|
||||
|
||||
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
|
||||
cd dynamic_shift_register_1 # Constrain all select calls below inside the top module
|
||||
#Vivado synthesizes 1 BUFG, 3 SRLC32E.
|
||||
stat
|
||||
select -assert-count 1 t:BUFG
|
||||
select -assert-count 1 t:SRLC32E
|
||||
select -assert-none t:BUFG t:SRLC32E %% t:* %D
|
|
@ -1,47 +0,0 @@
|
|||
// Pre-add/subtract select with Dynamic control
|
||||
// dynpreaddmultadd.v
|
||||
//Default parameters were changed because of slow test.
|
||||
//module dynpreaddmultadd # (parameter SIZEIN = 16)
|
||||
module dynpreaddmultadd # (parameter SIZEIN = 8)
|
||||
(
|
||||
input clk, ce, rst, subadd,
|
||||
input signed [SIZEIN-1:0] a, b, c, d,
|
||||
output signed [2*SIZEIN:0] dynpreaddmultadd_out
|
||||
);
|
||||
|
||||
// Declare registers for intermediate values
|
||||
reg signed [SIZEIN-1:0] a_reg, b_reg, c_reg;
|
||||
reg signed [SIZEIN:0] add_reg;
|
||||
reg signed [2*SIZEIN:0] d_reg, m_reg, p_reg;
|
||||
|
||||
always @(posedge clk)
|
||||
begin
|
||||
if (rst)
|
||||
begin
|
||||
a_reg <= 0;
|
||||
b_reg <= 0;
|
||||
c_reg <= 0;
|
||||
d_reg <= 0;
|
||||
add_reg <= 0;
|
||||
m_reg <= 0;
|
||||
p_reg <= 0;
|
||||
end
|
||||
else if (ce)
|
||||
begin
|
||||
a_reg <= a;
|
||||
b_reg <= b;
|
||||
c_reg <= c;
|
||||
d_reg <= d;
|
||||
if (subadd)
|
||||
add_reg <= a_reg - b_reg;
|
||||
else
|
||||
add_reg <= a_reg + b_reg;
|
||||
m_reg <= add_reg * c_reg;
|
||||
p_reg <= m_reg + d_reg;
|
||||
end
|
||||
end
|
||||
|
||||
// Output accumulation result
|
||||
assign dynpreaddmultadd_out = p_reg;
|
||||
|
||||
endmodule // dynpreaddmultadd
|
|
@ -1,31 +0,0 @@
|
|||
read_verilog dynpreaddmultadd.v
|
||||
hierarchy -top dynpreaddmultadd
|
||||
proc
|
||||
memory -nomap
|
||||
equiv_opt -run :prove -map +/xilinx/cells_sim.v synth_xilinx
|
||||
memory
|
||||
opt -full
|
||||
|
||||
# TODO
|
||||
#equiv_opt -run prove: -assert null
|
||||
miter -equiv -flatten -make_assert -make_outputs gold gate miter
|
||||
#sat -verify -prove-asserts -tempinduct -show-inputs -show-outputs miter
|
||||
|
||||
design -load postopt
|
||||
cd dynpreaddmultadd
|
||||
|
||||
#Vivado synthesizes 1 DSP48E1.
|
||||
select -assert-count 1 t:BUFG
|
||||
select -assert-count 75 t:FDRE
|
||||
select -assert-count 8 t:LUT1
|
||||
select -assert-count 131 t:LUT2
|
||||
select -assert-count 19 t:LUT3
|
||||
select -assert-count 26 t:LUT4
|
||||
select -assert-count 12 t:LUT5
|
||||
select -assert-count 142 t:LUT6
|
||||
select -assert-count 48 t:MUXCY
|
||||
select -assert-count 50 t:MUXF7
|
||||
select -assert-count 15 t:MUXF8
|
||||
select -assert-count 52 t:XORCY
|
||||
|
||||
select -assert-none t:BUFG t:FDRE t:LUT1 t:LUT2 t:LUT3 t:LUT4 t:LUT5 t:LUT6 t:MUXCY t:MUXF7 t:MUXF8 t:XORCY %% t:* %D
|
|
@ -1,42 +0,0 @@
|
|||
// State Machine with single sequential block
|
||||
//fsm_1.v
|
||||
module fsm_1(clk,reset,flag,sm_out);
|
||||
input clk,reset,flag;
|
||||
output reg sm_out;
|
||||
|
||||
parameter s1 = 3'b000;
|
||||
parameter s2 = 3'b001;
|
||||
parameter s3 = 3'b010;
|
||||
parameter s4 = 3'b011;
|
||||
parameter s5 = 3'b111;
|
||||
|
||||
reg [2:0] state;
|
||||
|
||||
always@(posedge clk)
|
||||
begin
|
||||
if(reset)
|
||||
begin
|
||||
state <= s1;
|
||||
sm_out <= 1'b1;
|
||||
end
|
||||
else
|
||||
begin
|
||||
case(state)
|
||||
s1: if(flag)
|
||||
begin
|
||||
state <= s2;
|
||||
sm_out <= 1'b1;
|
||||
end
|
||||
else
|
||||
begin
|
||||
state <= s3;
|
||||
sm_out <= 1'b0;
|
||||
end
|
||||
s2: begin state <= s4; sm_out <= 1'b0; end
|
||||
s3: begin state <= s4; sm_out <= 1'b0; end
|
||||
s4: begin state <= s5; sm_out <= 1'b1; end
|
||||
s5: begin state <= s1; sm_out <= 1'b1; end
|
||||
endcase
|
||||
end
|
||||
end
|
||||
endmodule
|
|
@ -1,16 +0,0 @@
|
|||
read_verilog fsm_1.v
|
||||
hierarchy -top fsm_1
|
||||
proc
|
||||
flatten
|
||||
equiv_opt -assert -map +/xilinx/cells_sim.v synth_xilinx # equivalency check
|
||||
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
|
||||
cd fsm_1 # Constrain all select calls below inside the top module
|
||||
#Vivado synthesizes 2 LUT5, 2 LUT4, 1 LUT3, 4 FDRE.
|
||||
stat
|
||||
select -assert-count 1 t:BUFG
|
||||
select -assert-count 4 t:FDRE
|
||||
select -assert-count 2 t:LUT4
|
||||
select -assert-count 2 t:LUT5
|
||||
select -assert-count 1 t:LUT6
|
||||
|
||||
select -assert-none t:BUFG t:FDRE t:LUT4 t:LUT5 t:LUT6 %% t:* %D
|
|
@ -1,17 +0,0 @@
|
|||
// Latch with Positive Gate and Asynchronous Reset
|
||||
// File: latches.v
|
||||
module latches (
|
||||
input G,
|
||||
input D,
|
||||
input CLR,
|
||||
output reg Q
|
||||
);
|
||||
always @ *
|
||||
begin
|
||||
if(CLR)
|
||||
Q = 0;
|
||||
else if(G)
|
||||
Q = D;
|
||||
end
|
||||
|
||||
endmodule
|
|
@ -1,10 +0,0 @@
|
|||
read_verilog latches.v
|
||||
proc
|
||||
hierarchy -top latches
|
||||
flatten
|
||||
synth_xilinx
|
||||
#Vivado synthesizes 1 BUFG, 8 LDCE.
|
||||
select -assert-count 2 t:LUT2
|
||||
select -assert-count 1 t:$_DLATCH_P_
|
||||
#ERROR: Assertion failed: selection is not empty: t:LUT2 t:$_DLATCH_P_ %% t:* %D
|
||||
#select -assert-none t:LUT2 t:$_DLATCH_P_ %% t:* %D
|
|
@ -1,47 +0,0 @@
|
|||
// Signed 40-bit streaming accumulator with 16-bit inputs
|
||||
// File: macc.v
|
||||
//
|
||||
module macc # (
|
||||
//Default parameters were changed because of slow test
|
||||
// parameter SIZEIN = 16, SIZEOUT = 40
|
||||
// parameter SIZEIN = 12, SIZEOUT = 30
|
||||
parameter SIZEIN = 8, SIZEOUT = 20
|
||||
)
|
||||
(
|
||||
input clk, ce, sload,
|
||||
input signed [SIZEIN-1:0] a, b,
|
||||
output signed [SIZEOUT-1:0] accum_out
|
||||
);
|
||||
|
||||
// Declare registers for intermediate values
|
||||
reg signed [SIZEIN-1:0] a_reg, b_reg;
|
||||
reg sload_reg;
|
||||
reg signed [2*SIZEIN:0] mult_reg;
|
||||
reg signed [SIZEOUT-1:0] adder_out, old_result;
|
||||
|
||||
always @(adder_out or sload_reg)
|
||||
begin
|
||||
if (sload_reg)
|
||||
old_result <= 0;
|
||||
else
|
||||
// 'sload' is now active (=low) and opens the accumulation loop.
|
||||
// The accumulator takes the next multiplier output in
|
||||
// the same cycle.
|
||||
old_result <= adder_out;
|
||||
end
|
||||
|
||||
always @(posedge clk)
|
||||
if (ce)
|
||||
begin
|
||||
a_reg <= a;
|
||||
b_reg <= b;
|
||||
mult_reg <= a_reg * b_reg;
|
||||
sload_reg <= sload;
|
||||
// Store accumulation result into a register
|
||||
adder_out <= old_result + mult_reg;
|
||||
end
|
||||
|
||||
// Output accumulation result
|
||||
assign accum_out = adder_out;
|
||||
|
||||
endmodule // macc
|
|
@ -1,23 +0,0 @@
|
|||
read_verilog macc.v
|
||||
hierarchy -top macc
|
||||
proc
|
||||
flatten
|
||||
equiv_opt -assert -map +/xilinx/cells_sim.v synth_xilinx # equivalency check
|
||||
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
|
||||
|
||||
cd macc
|
||||
#Vivado synthesizes 1 DSP48E1, 1 FDRE. (When SIZEIN = 12, SIZEOUT = 30)
|
||||
stat
|
||||
select -assert-count 1 t:BUFG
|
||||
select -assert-count 53 t:FDRE
|
||||
select -assert-count 64 t:LUT2
|
||||
select -assert-count 10 t:LUT3
|
||||
select -assert-count 22 t:LUT4
|
||||
select -assert-count 14 t:LUT5
|
||||
select -assert-count 123 t:LUT6
|
||||
select -assert-count 34 t:MUXCY
|
||||
select -assert-count 41 t:MUXF7
|
||||
select -assert-count 14 t:MUXF8
|
||||
select -assert-count 36 t:XORCY
|
||||
|
||||
select -assert-none t:BUFG t:FDRE t:LUT2 t:LUT3 t:LUT4 t:LUT5 t:LUT6 t:MUXCY t:MUXF7 t:MUXF8 t:XORCY %% t:* %D
|
|
@ -1,33 +0,0 @@
|
|||
// Unsigned 16x24-bit Multiplier
|
||||
// 1 latency stage on operands
|
||||
// 3 latency stage after the multiplication
|
||||
// File: multipliers2.v
|
||||
//
|
||||
module mult_unsigned (clk, A, B, RES);
|
||||
//Default parameters were changed because of slow test
|
||||
//parameter WIDTHA = 16;
|
||||
//parameter WIDTHB = 24;
|
||||
parameter WIDTHA = 8;
|
||||
parameter WIDTHB = 12;
|
||||
input clk;
|
||||
input [WIDTHA-1:0] A;
|
||||
input [WIDTHB-1:0] B;
|
||||
output [WIDTHA+WIDTHB-1:0] RES;
|
||||
|
||||
reg [WIDTHA-1:0] rA;
|
||||
reg [WIDTHB-1:0] rB;
|
||||
reg [WIDTHA+WIDTHB-1:0] M [3:0];
|
||||
|
||||
integer i;
|
||||
always @(posedge clk)
|
||||
begin
|
||||
rA <= A;
|
||||
rB <= B;
|
||||
M[0] <= rA * rB;
|
||||
for (i = 0; i < 3; i = i+1)
|
||||
M[i+1] <= M[i];
|
||||
end
|
||||
|
||||
assign RES = M[3];
|
||||
|
||||
endmodule
|
|
@ -1,29 +0,0 @@
|
|||
read_verilog mult_unsigned.v
|
||||
hierarchy -top mult_unsigned
|
||||
proc
|
||||
memory -nomap
|
||||
equiv_opt -run :prove -map +/xilinx/cells_sim.v synth_xilinx
|
||||
memory
|
||||
opt -full
|
||||
|
||||
# TODO
|
||||
#equiv_opt -run prove: -assert null
|
||||
miter -equiv -flatten -make_assert -make_outputs gold gate miter
|
||||
#sat -verify -prove-asserts -tempinduct -show-inputs -show-outputs miter
|
||||
|
||||
design -load postopt
|
||||
cd mult_unsigned
|
||||
|
||||
#Vivado synthesizes 1 DSP48E1, 40 FDRE.
|
||||
select -assert-count 1 t:BUFG
|
||||
select -assert-count 20 t:FDRE
|
||||
select -assert-count 33 t:LUT2
|
||||
select -assert-count 1 t:LUT3
|
||||
select -assert-count 11 t:LUT4
|
||||
select -assert-count 4 t:LUT5
|
||||
select -assert-count 139 t:LUT6
|
||||
select -assert-count 19 t:MUXCY
|
||||
select -assert-count 35 t:MUXF7
|
||||
select -assert-count 20 t:SRL16E
|
||||
select -assert-count 20 t:XORCY
|
||||
select -assert-none t:BUFG t:FDRE t:LUT2 t:LUT3 t:LUT4 t:LUT5 t:LUT6 t:MUXCY t:MUXF7 t:SRL16E t:XORCY %% t:* %D
|
|
@ -1,43 +0,0 @@
|
|||
//
|
||||
// Pre-adder support in subtract mode for DSP block
|
||||
// File: presubmult.v
|
||||
|
||||
module presubmult # (//Default parameters were changed because of slow test
|
||||
// parameter SIZEIN = 16
|
||||
parameter SIZEIN = 8
|
||||
)
|
||||
(
|
||||
input clk, ce, rst,
|
||||
input signed [SIZEIN-1:0] a, b, c,
|
||||
output signed [2*SIZEIN:0] presubmult_out
|
||||
);
|
||||
|
||||
// Declare registers for intermediate values
|
||||
reg signed [SIZEIN-1:0] a_reg, b_reg, c_reg;
|
||||
reg signed [SIZEIN:0] add_reg;
|
||||
reg signed [2*SIZEIN:0] m_reg, p_reg;
|
||||
|
||||
always @(posedge clk)
|
||||
if (rst)
|
||||
begin
|
||||
a_reg <= 0;
|
||||
b_reg <= 0;
|
||||
c_reg <= 0;
|
||||
add_reg <= 0;
|
||||
m_reg <= 0;
|
||||
p_reg <= 0;
|
||||
end
|
||||
else if (ce)
|
||||
begin
|
||||
a_reg <= a;
|
||||
b_reg <= b;
|
||||
c_reg <= c;
|
||||
add_reg <= a - b;
|
||||
m_reg <= add_reg * c_reg;
|
||||
p_reg <= m_reg;
|
||||
end
|
||||
|
||||
// Output accumulation result
|
||||
assign presubmult_out = p_reg;
|
||||
|
||||
endmodule // presubmult
|
|
@ -1,23 +0,0 @@
|
|||
read_verilog presubmult.v
|
||||
hierarchy -top presubmult
|
||||
proc
|
||||
flatten
|
||||
equiv_opt -assert -map +/xilinx/cells_sim.v synth_xilinx # equivalency check
|
||||
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
|
||||
|
||||
cd presubmult
|
||||
#Vivado synthesizes 1 DSP48E1. (When SIZEIN = 8)
|
||||
stat
|
||||
select -assert-count 1 t:BUFG
|
||||
select -assert-count 51 t:FDRE
|
||||
select -assert-count 75 t:LUT2
|
||||
select -assert-count 10 t:LUT3
|
||||
select -assert-count 24 t:LUT4
|
||||
select -assert-count 15 t:LUT5
|
||||
select -assert-count 136 t:LUT6
|
||||
select -assert-count 24 t:MUXCY
|
||||
select -assert-count 46 t:MUXF7
|
||||
select -assert-count 14 t:MUXF8
|
||||
select -assert-count 26 t:XORCY
|
||||
|
||||
select -assert-none t:BUFG t:FDRE t:LUT2 t:LUT3 t:LUT4 t:LUT5 t:LUT6 t:MUXCY t:MUXF7 t:MUXF8 t:XORCY %% t:* %D
|
|
@ -1,25 +0,0 @@
|
|||
// Simple Dual-Port Block RAM with One Clock
|
||||
// File: simple_dual_one_clock.v
|
||||
|
||||
module simple_dual_one_clock (clk,ena,enb,wea,addra,addrb,dia,dob);
|
||||
|
||||
input clk,ena,enb,wea;
|
||||
input [9:0] addra,addrb;
|
||||
input [15:0] dia;
|
||||
output [15:0] dob;
|
||||
reg [15:0] ram [1023:0];
|
||||
reg [15:0] doa,dob;
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (ena) begin
|
||||
if (wea)
|
||||
ram[addra] <= dia;
|
||||
end
|
||||
end
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (enb)
|
||||
dob <= ram[addrb];
|
||||
end
|
||||
|
||||
endmodule
|
|
@ -1,20 +0,0 @@
|
|||
read_verilog ram_simple_dual_one_clock.v
|
||||
hierarchy -top simple_dual_one_clock
|
||||
proc
|
||||
memory -nomap
|
||||
equiv_opt -run :prove -map +/xilinx/cells_sim.v synth_xilinx
|
||||
memory
|
||||
opt -full
|
||||
|
||||
# TODO
|
||||
#equiv_opt -run prove: -assert null
|
||||
miter -equiv -flatten -make_assert -make_outputs gold gate miter
|
||||
#sat -verify -prove-asserts -tempinduct -show-inputs -show-outputs miter
|
||||
design -load postopt
|
||||
cd simple_dual_one_clock
|
||||
#Vivado synthesizes 1 RAMB18E1.
|
||||
select -assert-count 1 t:BUFG
|
||||
select -assert-count 1 t:LUT2
|
||||
select -assert-count 1 t:RAMB18E1
|
||||
|
||||
select -assert-none t:BUFG t:LUT2 t:RAMB18E1 %% t:* %D
|
|
@ -1,30 +0,0 @@
|
|||
// Simple Dual-Port Block RAM with Two Clocks
|
||||
// File: simple_dual_two_clocks.v
|
||||
|
||||
module simple_dual_two_clocks (clka,clkb,ena,enb,wea,addra,addrb,dia,dob);
|
||||
|
||||
input clka,clkb,ena,enb,wea;
|
||||
input [9:0] addra,addrb;
|
||||
input [15:0] dia;
|
||||
output [15:0] dob;
|
||||
reg [15:0] ram [1023:0];
|
||||
reg [15:0] dob;
|
||||
|
||||
always @(posedge clka)
|
||||
begin
|
||||
if (ena)
|
||||
begin
|
||||
if (wea)
|
||||
ram[addra] <= dia;
|
||||
end
|
||||
end
|
||||
|
||||
always @(posedge clkb)
|
||||
begin
|
||||
if (enb)
|
||||
begin
|
||||
dob <= ram[addrb];
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
|
@ -1,20 +0,0 @@
|
|||
read_verilog ram_simple_dual_two_clocks.v
|
||||
hierarchy -top simple_dual_two_clocks
|
||||
proc
|
||||
memory -nomap
|
||||
equiv_opt -run :prove -map +/xilinx/cells_sim.v synth_xilinx
|
||||
memory
|
||||
opt -full
|
||||
|
||||
# TODO
|
||||
#equiv_opt -run prove: -assert null
|
||||
miter -equiv -flatten -make_assert -make_outputs gold gate miter
|
||||
#sat -verify -prove-asserts -tempinduct -show-inputs -show-outputs miter
|
||||
design -load postopt
|
||||
cd simple_dual_two_clocks
|
||||
#Vivado synthesizes 1 RAMB18E1.
|
||||
select -assert-count 2 t:BUFG
|
||||
select -assert-count 1 t:LUT2
|
||||
select -assert-count 1 t:RAMB18E1
|
||||
|
||||
select -assert-none t:BUFG t:LUT2 t:RAMB18E1 %% t:* %D
|
|
@ -1,24 +0,0 @@
|
|||
// Dual-Port RAM with Asynchronous Read (Distributed RAM)
|
||||
// File: rams_dist.v
|
||||
|
||||
module rams_dist (clk, we, a, dpra, di, spo, dpo);
|
||||
|
||||
input clk;
|
||||
input we;
|
||||
input [5:0] a;
|
||||
input [5:0] dpra;
|
||||
input [15:0] di;
|
||||
output [15:0] spo;
|
||||
output [15:0] dpo;
|
||||
reg [15:0] ram [63:0];
|
||||
|
||||
always @(posedge clk)
|
||||
begin
|
||||
if (we)
|
||||
ram[a] <= di;
|
||||
end
|
||||
|
||||
assign spo = ram[a];
|
||||
assign dpo = ram[dpra];
|
||||
|
||||
endmodule
|
|
@ -1,21 +0,0 @@
|
|||
read_verilog rams_dist.v
|
||||
hierarchy -top rams_dist
|
||||
proc
|
||||
memory -nomap
|
||||
equiv_opt -run :prove -map +/xilinx/cells_sim.v synth_xilinx
|
||||
memory
|
||||
opt -full
|
||||
|
||||
# TODO
|
||||
#equiv_opt -run prove: -assert null
|
||||
miter -equiv -flatten -make_assert -make_outputs gold gate miter
|
||||
#sat -verify -prove-asserts -tempinduct -show-inputs -show-outputs miter
|
||||
|
||||
design -load postopt
|
||||
cd rams_dist
|
||||
stat
|
||||
#Vivado synthesizes 32 RAM64X1D.
|
||||
select -assert-count 1 t:BUFG
|
||||
select -assert-count 32 t:RAM64X1D
|
||||
|
||||
select -assert-none t:BUFG t:RAM64X1D %% t:* %D
|
|
@ -1,64 +0,0 @@
|
|||
00001110110000011001111011000110
|
||||
00101011001011010101001000100011
|
||||
01110100010100011000011100001111
|
||||
01000001010000100101001110010100
|
||||
00001001101001111111101000101011
|
||||
00101101001011111110101010100111
|
||||
11101111000100111000111101101101
|
||||
10001111010010011001000011101111
|
||||
00000001100011100011110010011111
|
||||
11011111001110101011111001001010
|
||||
11100111010100111110110011001010
|
||||
11000100001001101100111100101001
|
||||
10001011100101011111111111100001
|
||||
11110101110110010000010110111010
|
||||
01001011000000111001010110101110
|
||||
11100001111111001010111010011110
|
||||
01101111011010010100001101110001
|
||||
01010100011011111000011000100100
|
||||
11110000111101101111001100001011
|
||||
10101101001111010100100100011100
|
||||
01011100001010111111101110101110
|
||||
01011101000100100111010010110101
|
||||
11110111000100000101011101101101
|
||||
11100111110001111010101100001101
|
||||
01110100000011101111111000011111
|
||||
00010011110101111000111001011101
|
||||
01101110001111100011010101101111
|
||||
10111100000000010011101011011011
|
||||
11000001001101001101111100010000
|
||||
00011111110010110110011111010101
|
||||
01100100100000011100100101110000
|
||||
10001000000100111011001010001111
|
||||
11001000100011101001010001100001
|
||||
10000000100111010011100111100011
|
||||
11011111010010100010101010000111
|
||||
10000000110111101000111110111011
|
||||
10110011010111101111000110011001
|
||||
00010111100001001010110111011100
|
||||
10011100101110101111011010110011
|
||||
01010011101101010001110110011010
|
||||
01111011011100010101000101000001
|
||||
10001000000110010110111001101010
|
||||
11101000001101010000111001010110
|
||||
11100011111100000111110101110101
|
||||
01001010000000001111111101101111
|
||||
00100011000011001000000010001111
|
||||
10011000111010110001001011100100
|
||||
11111111111011110101000101000111
|
||||
11000011000101000011100110100000
|
||||
01101101001011111010100011101001
|
||||
10000111101100101001110011010111
|
||||
11010110100100101110110010100100
|
||||
01001111111001101101011111001011
|
||||
11011001001101110110000100110111
|
||||
10110110110111100101110011100110
|
||||
10011100111001000010111111010110
|
||||
00000000001011011111001010110010
|
||||
10100110011010000010001000011011
|
||||
11001010111111001001110001110101
|
||||
00100001100010000111000101001000
|
||||
00111100101111110001101101111010
|
||||
11000010001010000000010100100001
|
||||
11000001000110001101000101001110
|
||||
10010011010100010001100100100111
|
|
@ -1,24 +0,0 @@
|
|||
// Initializing Block RAM from external data file
|
||||
// Binary data
|
||||
// File: rams_init_file.v
|
||||
|
||||
module rams_init_file (clk, we, addr, din, dout);
|
||||
input clk;
|
||||
input we;
|
||||
input [5:0] addr;
|
||||
input [31:0] din;
|
||||
output [31:0] dout;
|
||||
|
||||
reg [31:0] ram [0:63];
|
||||
reg [31:0] dout;
|
||||
|
||||
initial begin
|
||||
$readmemb("rams_init_file.data",ram);
|
||||
end
|
||||
|
||||
always @(posedge clk)
|
||||
begin
|
||||
if (we)
|
||||
ram[addr] <= din;
|
||||
dout <= ram[addr];
|
||||
end endmodule
|
|
@ -1,22 +0,0 @@
|
|||
read_verilog rams_init_file.v
|
||||
hierarchy -top rams_init_file
|
||||
proc
|
||||
memory -nomap
|
||||
equiv_opt -run :prove -map +/xilinx/cells_sim.v synth_xilinx
|
||||
memory
|
||||
opt -full
|
||||
|
||||
# TODO
|
||||
#equiv_opt -run prove: -assert null
|
||||
miter -equiv -flatten -make_assert -make_outputs gold gate miter
|
||||
#sat -verify -prove-asserts -tempinduct -show-inputs -show-outputs miter
|
||||
|
||||
design -load postopt
|
||||
cd rams_init_file
|
||||
stat
|
||||
#Vivado synthesizes 1 RAMB18E1.
|
||||
select -assert-count 1 t:BUFG
|
||||
select -assert-count 32 t:FDRE
|
||||
select -assert-count 32 t:RAM64X1D
|
||||
|
||||
select -assert-none t:BUFG t:FDRE t:RAM64X1D %% t:* %D
|
|
@ -1,42 +0,0 @@
|
|||
// Block RAM with Optional Output Registers
|
||||
// File: rams_pipeline
|
||||
|
||||
module rams_pipeline (clk1, clk2, we, en1, en2, addr1, addr2, di, res1, res2);
|
||||
input clk1;
|
||||
input clk2;
|
||||
input we, en1, en2;
|
||||
input [9:0] addr1;
|
||||
input [9:0] addr2;
|
||||
input [15:0] di;
|
||||
output [15:0] res1;
|
||||
output [15:0] res2;
|
||||
reg [15:0] res1;
|
||||
reg [15:0] res2;
|
||||
reg [15:0] RAM [1023:0];
|
||||
reg [15:0] do1;
|
||||
reg [15:0] do2;
|
||||
|
||||
always @(posedge clk1)
|
||||
begin
|
||||
if (we == 1'b1)
|
||||
RAM[addr1] <= di;
|
||||
do1 <= RAM[addr1];
|
||||
end
|
||||
|
||||
always @(posedge clk2)
|
||||
begin
|
||||
do2 <= RAM[addr2];
|
||||
end
|
||||
|
||||
always @(posedge clk1)
|
||||
begin
|
||||
if (en1 == 1'b1)
|
||||
res1 <= do1;
|
||||
end
|
||||
|
||||
always @(posedge clk2)
|
||||
begin
|
||||
if (en2 == 1'b1)
|
||||
res2 <= do2;
|
||||
end
|
||||
endmodule
|
|
@ -1,22 +0,0 @@
|
|||
read_verilog rams_pipeline.v
|
||||
hierarchy -top rams_pipeline
|
||||
proc
|
||||
memory -nomap
|
||||
equiv_opt -run :prove -map +/xilinx/cells_sim.v synth_xilinx
|
||||
memory
|
||||
opt -full
|
||||
|
||||
# TODO
|
||||
#equiv_opt -run prove: -assert null
|
||||
miter -equiv -flatten -make_assert -make_outputs gold gate miter
|
||||
#sat -verify -prove-asserts -tempinduct -show-inputs -show-outputs miter
|
||||
|
||||
design -load postopt
|
||||
cd rams_pipeline
|
||||
stat
|
||||
#Vivado synthesizes 1 RAMB18E1.
|
||||
select -assert-count 2 t:BUFG
|
||||
select -assert-count 32 t:FDRE
|
||||
select -assert-count 2 t:RAMB18E1
|
||||
|
||||
select -assert-none t:BUFG t:FDRE t:RAMB18E1 %% t:* %D
|
|
@ -1,26 +0,0 @@
|
|||
// Single-Port Block RAM No-Change Mode
|
||||
// File: rams_sp_nc.v
|
||||
|
||||
module rams_sp_nc (clk, we, en, addr, di, dout);
|
||||
|
||||
input clk;
|
||||
input we;
|
||||
input en;
|
||||
input [9:0] addr;
|
||||
input [15:0] di;
|
||||
output [15:0] dout;
|
||||
|
||||
reg [15:0] RAM [1023:0];
|
||||
reg [15:0] dout;
|
||||
|
||||
always @(posedge clk)
|
||||
begin
|
||||
if (en)
|
||||
begin
|
||||
if (we)
|
||||
RAM[addr] <= di;
|
||||
else
|
||||
dout <= RAM[addr];
|
||||
end
|
||||
end
|
||||
endmodule
|
|
@ -1,22 +0,0 @@
|
|||
read_verilog rams_sp_nc.v
|
||||
hierarchy -top rams_sp_nc
|
||||
proc
|
||||
memory -nomap
|
||||
equiv_opt -run :prove -map +/xilinx/cells_sim.v synth_xilinx
|
||||
memory
|
||||
opt -full
|
||||
|
||||
# TODO
|
||||
#equiv_opt -run prove: -assert null
|
||||
miter -equiv -flatten -make_assert -make_outputs gold gate miter
|
||||
#sat -verify -prove-asserts -tempinduct -show-inputs -show-outputs miter
|
||||
|
||||
design -load postopt
|
||||
cd rams_sp_nc
|
||||
stat
|
||||
#Vivado synthesizes 1 RAMB18E1.
|
||||
select -assert-count 1 t:BUFG
|
||||
select -assert-count 2 t:LUT2
|
||||
select -assert-count 1 t:RAMB18E1
|
||||
|
||||
select -assert-none t:BUFG t:LUT2 t:RAMB18E1 %% t:* %D
|
|
@ -1,26 +0,0 @@
|
|||
// Single-Port Block RAM Read-First Mode
|
||||
// rams_sp_rf.v
|
||||
module rams_sp_rf (clk, en, we, addr, di, dout);
|
||||
|
||||
input clk;
|
||||
input we;
|
||||
input en;
|
||||
input [9:0] addr;
|
||||
input [15:0] di;
|
||||
output [15:0] dout;
|
||||
|
||||
reg [15:0] RAM [1023:0];
|
||||
reg [15:0] dout;
|
||||
|
||||
always @(posedge clk)
|
||||
begin
|
||||
if (en)
|
||||
begin
|
||||
if (we)
|
||||
RAM[addr]<=di;
|
||||
dout <= RAM[addr];
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
|
@ -1,22 +0,0 @@
|
|||
read_verilog rams_sp_rf.v
|
||||
hierarchy -top rams_sp_rf
|
||||
proc
|
||||
memory -nomap
|
||||
equiv_opt -run :prove -map +/xilinx/cells_sim.v synth_xilinx
|
||||
memory
|
||||
opt -full
|
||||
|
||||
# TODO
|
||||
#equiv_opt -run prove: -assert null
|
||||
miter -equiv -flatten -make_assert -make_outputs gold gate miter
|
||||
#sat -verify -prove-asserts -tempinduct -show-inputs -show-outputs miter
|
||||
|
||||
design -load postopt
|
||||
cd rams_sp_rf
|
||||
stat
|
||||
#Vivado synthesizes 1 RAMB18E1.
|
||||
select -assert-count 1 t:BUFG
|
||||
select -assert-count 1 t:LUT2
|
||||
select -assert-count 1 t:RAMB18E1
|
||||
|
||||
select -assert-none t:BUFG t:LUT2 t:RAMB18E1 %% t:* %D
|
|
@ -1,29 +0,0 @@
|
|||
// Block RAM with Resettable Data Output
|
||||
// File: rams_sp_rf_rst.v
|
||||
|
||||
module rams_sp_rf_rst (clk, en, we, rst, addr, di, dout);
|
||||
input clk;
|
||||
input en;
|
||||
input we;
|
||||
input rst;
|
||||
input [9:0] addr;
|
||||
input [15:0] di;
|
||||
output [15:0] dout;
|
||||
|
||||
reg [15:0] ram [1023:0];
|
||||
reg [15:0] dout;
|
||||
|
||||
always @(posedge clk)
|
||||
begin
|
||||
if (en) //optional enable
|
||||
begin
|
||||
if (we) //write enable
|
||||
ram[addr] <= di;
|
||||
if (rst) //optional reset
|
||||
dout <= 0;
|
||||
else
|
||||
dout <= ram[addr];
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
|
@ -1,28 +0,0 @@
|
|||
read_verilog rams_sp_rf_rst.v
|
||||
hierarchy -top rams_sp_rf_rst
|
||||
proc
|
||||
memory -nomap
|
||||
equiv_opt -run :prove -map +/xilinx/cells_sim.v synth_xilinx
|
||||
memory
|
||||
opt -full
|
||||
|
||||
# TODO
|
||||
#equiv_opt -run prove: -assert null
|
||||
miter -equiv -flatten -make_assert -make_outputs gold gate miter
|
||||
#sat -verify -prove-asserts -tempinduct -show-inputs -show-outputs miter
|
||||
|
||||
design -load postopt
|
||||
cd rams_sp_rf_rst
|
||||
stat
|
||||
#Vivado synthesizes 1 RAMB18E1.
|
||||
|
||||
select -assert-count 1 t:BUFG
|
||||
select -assert-count 16 t:FDRE
|
||||
select -assert-count 5 t:LUT2
|
||||
select -assert-count 4 t:LUT3
|
||||
select -assert-count 13 t:LUT4
|
||||
select -assert-count 23 t:LUT5
|
||||
select -assert-count 32 t:LUT6
|
||||
select -assert-count 128 t:RAM128X1D
|
||||
|
||||
select -assert-none t:BUFG t:FDRE t:LUT2 t:LUT3 t:LUT4 t:LUT5 t:LUT6 t:RAM128X1D %% t:* %D
|
|
@ -1,46 +0,0 @@
|
|||
// Initializing Block RAM (Single-Port Block RAM)
|
||||
// File: rams_sp_rom
|
||||
module rams_sp_rom (clk, we, addr, di, dout);
|
||||
input clk;
|
||||
input we;
|
||||
input [5:0] addr;
|
||||
input [19:0] di;
|
||||
output [19:0] dout;
|
||||
|
||||
reg [19:0] ram [63:0];
|
||||
reg [19:0] dout;
|
||||
|
||||
initial
|
||||
begin
|
||||
ram[63] = 20'h0200A; ram[62] = 20'h00300; ram[61] = 20'h08101;
|
||||
ram[60] = 20'h04000; ram[59] = 20'h08601; ram[58] = 20'h0233A;
|
||||
ram[57] = 20'h00300; ram[56] = 20'h08602; ram[55] = 20'h02310;
|
||||
ram[54] = 20'h0203B; ram[53] = 20'h08300; ram[52] = 20'h04002;
|
||||
ram[51] = 20'h08201; ram[50] = 20'h00500; ram[49] = 20'h04001;
|
||||
ram[48] = 20'h02500; ram[47] = 20'h00340; ram[46] = 20'h00241;
|
||||
ram[45] = 20'h04002; ram[44] = 20'h08300; ram[43] = 20'h08201;
|
||||
ram[42] = 20'h00500; ram[41] = 20'h08101; ram[40] = 20'h00602;
|
||||
ram[39] = 20'h04003; ram[38] = 20'h0241E; ram[37] = 20'h00301;
|
||||
ram[36] = 20'h00102; ram[35] = 20'h02122; ram[34] = 20'h02021;
|
||||
ram[33] = 20'h00301; ram[32] = 20'h00102; ram[31] = 20'h02222;
|
||||
ram[30] = 20'h04001; ram[29] = 20'h00342; ram[28] = 20'h0232B;
|
||||
ram[27] = 20'h00900; ram[26] = 20'h00302; ram[25] = 20'h00102;
|
||||
ram[24] = 20'h04002; ram[23] = 20'h00900; ram[22] = 20'h08201;
|
||||
ram[21] = 20'h02023; ram[20] = 20'h00303; ram[19] = 20'h02433;
|
||||
ram[18] = 20'h00301; ram[17] = 20'h04004; ram[16] = 20'h00301;
|
||||
ram[15] = 20'h00102; ram[14] = 20'h02137; ram[13] = 20'h02036;
|
||||
ram[12] = 20'h00301; ram[11] = 20'h00102; ram[10] = 20'h02237;
|
||||
ram[9] = 20'h04004; ram[8] = 20'h00304; ram[7] = 20'h04040;
|
||||
ram[6] = 20'h02500; ram[5] = 20'h02500; ram[4] = 20'h02500;
|
||||
ram[3] = 20'h0030D; ram[2] = 20'h02341; ram[1] = 20'h08201;
|
||||
ram[0] = 20'h0400D;
|
||||
end
|
||||
|
||||
always @(posedge clk)
|
||||
begin
|
||||
if (we)
|
||||
ram[addr] <= di;
|
||||
dout <= ram[addr];
|
||||
end
|
||||
|
||||
endmodule
|
|
@ -1,22 +0,0 @@
|
|||
read_verilog rams_sp_rom.v
|
||||
hierarchy -top rams_sp_rom
|
||||
proc
|
||||
memory -nomap
|
||||
equiv_opt -run :prove -map +/xilinx/cells_sim.v synth_xilinx
|
||||
memory
|
||||
opt -full
|
||||
|
||||
# TODO
|
||||
#equiv_opt -run prove: -assert null
|
||||
miter -equiv -flatten -make_assert -make_outputs gold gate miter
|
||||
#sat -verify -prove-asserts -tempinduct -show-inputs -show-outputs miter
|
||||
|
||||
design -load postopt
|
||||
cd rams_sp_rom
|
||||
stat
|
||||
#Vivado synthesizes 1 RAMB18E1.
|
||||
select -assert-count 1 t:BUFG
|
||||
select -assert-count 20 t:RAM64X1D
|
||||
select -assert-count 20 t:FDRE
|
||||
|
||||
select -assert-none t:BUFG t:RAM64X1D t:FDRE %% t:* %D
|
|
@ -1,53 +0,0 @@
|
|||
// ROMs Using Block RAM Resources.
|
||||
// File: rams_sp_rom_1.v
|
||||
//
|
||||
module rams_sp_rom_1 (clk, en, addr, dout);
|
||||
input clk;
|
||||
input en;
|
||||
input [5:0] addr;
|
||||
output [19:0] dout;
|
||||
|
||||
(*rom_style = "block" *) reg [19:0] data;
|
||||
|
||||
always @(posedge clk)
|
||||
begin
|
||||
if (en)
|
||||
case(addr)
|
||||
6'b000000: data <= 20'h0200A; 6'b100000: data <= 20'h02222;
|
||||
6'b000001: data <= 20'h00300; 6'b100001: data <= 20'h04001;
|
||||
6'b000010: data <= 20'h08101; 6'b100010: data <= 20'h00342;
|
||||
6'b000011: data <= 20'h04000; 6'b100011: data <= 20'h0232B;
|
||||
6'b000100: data <= 20'h08601; 6'b100100: data <= 20'h00900;
|
||||
6'b000101: data <= 20'h0233A; 6'b100101: data <= 20'h00302;
|
||||
6'b000110: data <= 20'h00300; 6'b100110: data <= 20'h00102;
|
||||
6'b000111: data <= 20'h08602; 6'b100111: data <= 20'h04002;
|
||||
6'b001000: data <= 20'h02310; 6'b101000: data <= 20'h00900;
|
||||
6'b001001: data <= 20'h0203B; 6'b101001: data <= 20'h08201;
|
||||
6'b001010: data <= 20'h08300; 6'b101010: data <= 20'h02023;
|
||||
6'b001011: data <= 20'h04002; 6'b101011: data <= 20'h00303;
|
||||
6'b001100: data <= 20'h08201; 6'b101100: data <= 20'h02433;
|
||||
6'b001101: data <= 20'h00500; 6'b101101: data <= 20'h00301;
|
||||
6'b001110: data <= 20'h04001; 6'b101110: data <= 20'h04004;
|
||||
6'b001111: data <= 20'h02500; 6'b101111: data <= 20'h00301;
|
||||
6'b010000: data <= 20'h00340; 6'b110000: data <= 20'h00102;
|
||||
6'b010001: data <= 20'h00241; 6'b110001: data <= 20'h02137;
|
||||
6'b010010: data <= 20'h04002; 6'b110010: data <= 20'h02036;
|
||||
6'b010011: data <= 20'h08300; 6'b110011: data <= 20'h00301;
|
||||
6'b010100: data <= 20'h08201; 6'b110100: data <= 20'h00102;
|
||||
6'b010101: data <= 20'h00500; 6'b110101: data <= 20'h02237;
|
||||
6'b010110: data <= 20'h08101; 6'b110110: data <= 20'h04004;
|
||||
6'b010111: data <= 20'h00602; 6'b110111: data <= 20'h00304;
|
||||
6'b011000: data <= 20'h04003; 6'b111000: data <= 20'h04040;
|
||||
6'b011001: data <= 20'h0241E; 6'b111001: data <= 20'h02500;
|
||||
6'b011010: data <= 20'h00301; 6'b111010: data <= 20'h02500;
|
||||
6'b011011: data <= 20'h00102; 6'b111011: data <= 20'h02500;
|
||||
6'b011100: data <= 20'h02122; 6'b111100: data <= 20'h0030D;
|
||||
6'b011101: data <= 20'h02021; 6'b111101: data <= 20'h02341;
|
||||
6'b011110: data <= 20'h00301; 6'b111110: data <= 20'h08201;
|
||||
6'b011111: data <= 20'h00102; 6'b111111: data <= 20'h0400D;
|
||||
endcase
|
||||
end
|
||||
|
||||
assign dout = data;
|
||||
|
||||
endmodule
|
|
@ -1,22 +0,0 @@
|
|||
read_verilog rams_sp_rom_1.v
|
||||
hierarchy -top rams_sp_rom_1
|
||||
proc
|
||||
memory -nomap
|
||||
equiv_opt -run :prove -map +/xilinx/cells_sim.v synth_xilinx
|
||||
memory
|
||||
opt -full
|
||||
|
||||
# TODO
|
||||
#equiv_opt -run prove: -assert null
|
||||
miter -equiv -flatten -make_assert -make_outputs gold gate miter
|
||||
#sat -verify -prove-asserts -tempinduct -show-inputs -show-outputs miter
|
||||
|
||||
design -load postopt
|
||||
cd rams_sp_rom_1
|
||||
stat
|
||||
#Vivado synthesizes 1 RAMB18E1.
|
||||
select -assert-count 1 t:BUFG
|
||||
select -assert-count 14 t:LUT6
|
||||
select -assert-count 14 t:FDRE
|
||||
|
||||
select -assert-none t:BUFG t:LUT6 t:FDRE %% t:* %D
|
|
@ -1,26 +0,0 @@
|
|||
// Single-Port Block RAM Write-First Mode (recommended template)
|
||||
// File: rams_sp_wf.v
|
||||
module rams_sp_wf (clk, we, en, addr, di, dout);
|
||||
input clk;
|
||||
input we;
|
||||
input en;
|
||||
input [9:0] addr;
|
||||
input [15:0] di;
|
||||
output [15:0] dout;
|
||||
reg [15:0] RAM [1023:0];
|
||||
reg [15:0] dout;
|
||||
|
||||
always @(posedge clk)
|
||||
begin
|
||||
if (en)
|
||||
begin
|
||||
if (we)
|
||||
begin
|
||||
RAM[addr] <= di;
|
||||
dout <= di;
|
||||
end
|
||||
else
|
||||
dout <= RAM[addr];
|
||||
end
|
||||
end
|
||||
endmodule
|
|
@ -1,26 +0,0 @@
|
|||
read_verilog rams_sp_wf.v
|
||||
hierarchy -top rams_sp_wf
|
||||
proc
|
||||
memory -nomap
|
||||
equiv_opt -run :prove -map +/xilinx/cells_sim.v synth_xilinx
|
||||
memory
|
||||
opt -full
|
||||
|
||||
# TODO
|
||||
#equiv_opt -run prove: -assert null
|
||||
miter -equiv -flatten -make_assert -make_outputs gold gate miter
|
||||
#sat -verify -prove-asserts -tempinduct -show-inputs -show-outputs miter
|
||||
|
||||
design -load postopt
|
||||
cd rams_sp_wf
|
||||
stat
|
||||
#Vivado synthesizes 1 RAMB18E1.
|
||||
|
||||
select -assert-count 1 t:BUFG
|
||||
select -assert-count 16 t:FDRE
|
||||
select -assert-count 44 t:LUT5
|
||||
select -assert-count 38 t:LUT6
|
||||
select -assert-count 10 t:MUXF7
|
||||
select -assert-count 128 t:RAM128X1D
|
||||
|
||||
select -assert-none t:BUFG t:LUT2 t:FDRE t:LUT5 t:LUT6 t:MUXF7 t:RAM128X1D %% t:* %D
|
|
@ -1,33 +0,0 @@
|
|||
// Dual-Port Block RAM with Two Write Ports
|
||||
// File: rams_tdp_rf_rf.v
|
||||
|
||||
module rams_tdp_rf_rf (clka,clkb,ena,enb,wea,web,addra,addrb,dia,dib,doa,dob);
|
||||
|
||||
input clka,clkb,ena,enb,wea,web;
|
||||
input [9:0] addra,addrb;
|
||||
input [15:0] dia,dib;
|
||||
output [15:0] doa,dob;
|
||||
reg [15:0] ram [1023:0];
|
||||
reg [15:0] doa,dob;
|
||||
|
||||
always @(posedge clka)
|
||||
begin
|
||||
if (ena)
|
||||
begin
|
||||
if (wea)
|
||||
ram[addra] <= dia;
|
||||
doa <= ram[addra];
|
||||
end
|
||||
end
|
||||
|
||||
always @(posedge clkb)
|
||||
begin
|
||||
if (enb)
|
||||
begin
|
||||
if (web)
|
||||
ram[addrb] <= dib;
|
||||
dob <= ram[addrb];
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
|
@ -1,21 +0,0 @@
|
|||
read_verilog rams_tdp_rf_rf.v
|
||||
hierarchy -top rams_tdp_rf_rf
|
||||
proc
|
||||
memory -nomap
|
||||
equiv_opt -run :prove -map +/xilinx/cells_sim.v synth_xilinx
|
||||
memory
|
||||
opt -full
|
||||
|
||||
# TODO
|
||||
#equiv_opt -run prove: -assert null
|
||||
miter -equiv -flatten -make_assert -make_outputs gold gate miter
|
||||
#sat -verify -prove-asserts -tempinduct -show-inputs -show-outputs miter
|
||||
|
||||
design -load postopt
|
||||
cd rams_tdp_rf_rf
|
||||
stat
|
||||
#Vivado synthesizes 1 RAMB18E1.
|
||||
select -assert-count 1 t:$mem
|
||||
select -assert-count 2 t:LUT2
|
||||
|
||||
select -assert-none t:$mem t:LUT2 %% t:* %D
|
|
@ -1,25 +0,0 @@
|
|||
// 8-bit Register with
|
||||
// Rising-edge Clock
|
||||
// Active-high Synchronous Clear
|
||||
// Active-high Clock Enable
|
||||
// File: registers_1.v
|
||||
|
||||
module registers_1(d_in,ce,clk,clr,dout);
|
||||
input [7:0] d_in;
|
||||
input ce;
|
||||
input clk;
|
||||
input clr;
|
||||
output [7:0] dout;
|
||||
reg [7:0] d_reg;
|
||||
|
||||
always @ (posedge clk)
|
||||
begin
|
||||
if(clr)
|
||||
d_reg <= 8'b0;
|
||||
else if(ce)
|
||||
d_reg <= d_in;
|
||||
end
|
||||
|
||||
assign dout = d_reg;
|
||||
endmodule
|
||||
|
|
@ -1,12 +0,0 @@
|
|||
read_verilog registers_1.v
|
||||
hierarchy -top registers_1
|
||||
proc
|
||||
flatten
|
||||
equiv_opt -assert -map +/xilinx/cells_sim.v synth_xilinx # equivalency check
|
||||
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
|
||||
cd registers_1 # Constrain all select calls below inside the top module
|
||||
#Vivado synthesizes 1 BUFG, 8 FDRE.
|
||||
select -assert-count 1 t:BUFG
|
||||
select -assert-count 8 t:FDRE
|
||||
select -assert-count 9 t:LUT2
|
||||
select -assert-none t:BUFG t:FDRE t:LUT2 %% t:* %D
|
|
@ -1,20 +0,0 @@
|
|||
#!/usr/bin/env bash
|
||||
set -e
|
||||
{
|
||||
echo "all::"
|
||||
for x in *.ys; do
|
||||
echo "all:: run-$x"
|
||||
echo "run-$x:"
|
||||
echo " @echo 'Running $x..'"
|
||||
echo " @../../yosys -ql ${x%.ys}.log $x"
|
||||
done
|
||||
for s in *.sh; do
|
||||
if [ "$s" != "run-test.sh" ]; then
|
||||
echo "all:: run-$s"
|
||||
echo "run-$s:"
|
||||
echo " @echo 'Running $s..'"
|
||||
echo " @bash $s"
|
||||
fi
|
||||
done
|
||||
} > run-test.mk
|
||||
exec ${MAKE:-make} -f run-test.mk
|
|
@ -1,19 +0,0 @@
|
|||
//sfir_shifter.v
|
||||
(* dont_touch = "yes" *)
|
||||
module sfir_shifter #(parameter dsize = 16, nbtap = 4)
|
||||
(input clk,input [dsize-1:0] datain, output [dsize-1:0] dataout);
|
||||
|
||||
(* srl_style = "srl_register" *) reg [dsize-1:0] tmp [0:2*nbtap-1];
|
||||
integer i;
|
||||
|
||||
always @(posedge clk)
|
||||
begin
|
||||
tmp[0] <= datain;
|
||||
for (i=0; i<=2*nbtap-2; i=i+1)
|
||||
tmp[i+1] <= tmp[i];
|
||||
end
|
||||
|
||||
assign dataout = tmp[2*nbtap-1];
|
||||
|
||||
endmodule
|
||||
// sfir_shifter
|
|
@ -1,16 +0,0 @@
|
|||
read_verilog sfir_shifter.v
|
||||
hierarchy -top sfir_shifter
|
||||
proc
|
||||
flatten
|
||||
#ERROR: Found 32 unproven $equiv cells in 'equiv_status -assert'.
|
||||
#equiv_opt -assert -map +/xilinx/cells_sim.v synth_xilinx # equivalency check
|
||||
equiv_opt -map +/xilinx/cells_sim.v synth_xilinx # equivalency check
|
||||
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
|
||||
|
||||
cd sfir_shifter
|
||||
#Vivado synthesizes 32 FDRE, 16 SRL16E.
|
||||
stat
|
||||
select -assert-count 1 t:BUFG
|
||||
select -assert-count 16 t:SRL16E
|
||||
|
||||
select -assert-none t:BUFG t:SRL16E %% t:* %D
|
|
@ -1,22 +0,0 @@
|
|||
// 8-bit Shift Register
|
||||
// Rising edge clock
|
||||
// Active high clock enable
|
||||
// Concatenation-based template
|
||||
// File: shift_registers_0.v
|
||||
|
||||
module shift_registers_0 (clk, clken, SI, SO);
|
||||
parameter WIDTH = 32;
|
||||
input clk, clken, SI;
|
||||
output SO;
|
||||
|
||||
reg [WIDTH-1:0] shreg;
|
||||
|
||||
always @(posedge clk)
|
||||
begin
|
||||
if (clken)
|
||||
shreg = {shreg[WIDTH-2:0], SI};
|
||||
end
|
||||
|
||||
assign SO = shreg[WIDTH-1];
|
||||
|
||||
endmodule
|
|
@ -1,14 +0,0 @@
|
|||
read_verilog shift_registers_0.v
|
||||
hierarchy -top shift_registers_0
|
||||
proc
|
||||
flatten
|
||||
#ERROR: Found 2 unproven $equiv cells in 'equiv_status -assert'.
|
||||
#equiv_opt -assert -map +/xilinx/cells_sim.v synth_xilinx # equivalency check
|
||||
equiv_opt -map +/xilinx/cells_sim.v synth_xilinx # equivalency check
|
||||
|
||||
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
|
||||
cd shift_registers_0 # Constrain all select calls below inside the top module
|
||||
#Vivado synthesizes 1 BUFG, 2 FDRE, 3 SRLC32E.
|
||||
select -assert-count 1 t:BUFG
|
||||
select -assert-count 1 t:SRLC32E
|
||||
select -assert-none t:BUFG t:SRLC32E %% t:* %D
|
|
@ -1,24 +0,0 @@
|
|||
// 32-bit Shift Register
|
||||
// Rising edge clock
|
||||
// Active high clock enable
|
||||
// For-loop based template
|
||||
// File: shift_registers_1.v
|
||||
|
||||
module shift_registers_1 (clk, clken, SI, SO);
|
||||
parameter WIDTH = 32;
|
||||
input clk, clken, SI;
|
||||
output SO;
|
||||
reg [WIDTH-1:0] shreg;
|
||||
|
||||
integer i;
|
||||
always @(posedge clk)
|
||||
begin
|
||||
if (clken)
|
||||
begin
|
||||
for (i = 0; i < WIDTH-1; i = i+1)
|
||||
shreg[i+1] <= shreg[i];
|
||||
shreg[0] <= SI;
|
||||
end
|
||||
end
|
||||
assign SO = shreg[WIDTH-1];
|
||||
endmodule
|
|
@ -1,14 +0,0 @@
|
|||
read_verilog shift_registers_1.v
|
||||
hierarchy -top shift_registers_1
|
||||
proc
|
||||
flatten
|
||||
#ERROR: Found 2 unproven $equiv cells in 'equiv_status -assert'.
|
||||
#equiv_opt -assert -map +/xilinx/cells_sim.v synth_xilinx # equivalency check
|
||||
equiv_opt -map +/xilinx/cells_sim.v synth_xilinx # equivalency check
|
||||
|
||||
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
|
||||
cd shift_registers_1 # Constrain all select calls below inside the top module
|
||||
#Vivado synthesizes 1 BUFG, 2 FDRE, 3 SRLC32E.
|
||||
select -assert-count 1 t:BUFG
|
||||
select -assert-count 1 t:SRLC32E
|
||||
select -assert-none t:BUFG t:SRLC32E %% t:* %D
|
|
@ -1,52 +0,0 @@
|
|||
// This module performs subtraction of two inputs, squaring on the diff
|
||||
// and then accumulation
|
||||
// This can be implemented in 1 DSP Block (Ultrascale architecture)
|
||||
// File : squarediffmacc.v
|
||||
module squarediffmacc # (
|
||||
//Default parameters were changed because of slow test
|
||||
//parameter SIZEIN = 16,
|
||||
//SIZEOUT = 40
|
||||
parameter SIZEIN = 8,
|
||||
SIZEOUT = 20
|
||||
)
|
||||
(
|
||||
input clk,
|
||||
input ce,
|
||||
input sload,
|
||||
input signed [SIZEIN-1:0] a,
|
||||
input signed [SIZEIN-1:0] b,
|
||||
output signed [SIZEOUT+1:0] accum_out
|
||||
);
|
||||
|
||||
// Declare registers for intermediate values
|
||||
reg signed [SIZEIN-1:0] a_reg, b_reg;
|
||||
reg signed [SIZEIN:0] diff_reg;
|
||||
reg sload_reg;
|
||||
reg signed [2*SIZEIN+1:0] m_reg;
|
||||
reg signed [SIZEOUT-1:0] adder_out, old_result;
|
||||
|
||||
always @(sload_reg or adder_out)
|
||||
if (sload_reg)
|
||||
old_result <= 0;
|
||||
else
|
||||
// 'sload' is now and opens the accumulation loop.
|
||||
// The accumulator takes the next multiplier output
|
||||
// in the same cycle.
|
||||
old_result <= adder_out;
|
||||
|
||||
always @(posedge clk)
|
||||
if (ce)
|
||||
begin
|
||||
a_reg <= a;
|
||||
b_reg <= b;
|
||||
diff_reg <= a_reg - b_reg;
|
||||
m_reg <= diff_reg * diff_reg;
|
||||
sload_reg <= sload;
|
||||
// Store accumulation result into a register
|
||||
adder_out <= old_result + m_reg;
|
||||
end
|
||||
|
||||
// Output accumulation result
|
||||
assign accum_out = adder_out;
|
||||
|
||||
endmodule // squarediffmacc
|
|
@ -1,23 +0,0 @@
|
|||
read_verilog squarediffmacc.v
|
||||
hierarchy -top squarediffmacc
|
||||
proc
|
||||
flatten
|
||||
equiv_opt -assert -map +/xilinx/cells_sim.v synth_xilinx # equivalency check
|
||||
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
|
||||
|
||||
cd squarediffmacc
|
||||
#Vivado synthesizes 1 DSP48E1, 33 FDRE, 16 LUT.
|
||||
stat
|
||||
select -assert-count 1 t:BUFG
|
||||
select -assert-count 64 t:FDRE
|
||||
select -assert-count 78 t:LUT2
|
||||
select -assert-count 7 t:LUT3
|
||||
select -assert-count 11 t:LUT4
|
||||
select -assert-count 8 t:LUT5
|
||||
select -assert-count 125 t:LUT6
|
||||
select -assert-count 44 t:MUXCY
|
||||
select -assert-count 50 t:MUXF7
|
||||
select -assert-count 17 t:MUXF8
|
||||
select -assert-count 47 t:XORCY
|
||||
|
||||
select -assert-none t:BUFG t:FDRE t:LUT2 t:LUT3 t:LUT4 t:LUT5 t:LUT6 t:MUXCY t:MUXF7 t:MUXF8 t:XORCY %% t:* %D
|
|
@ -1,42 +0,0 @@
|
|||
// Squarer support for DSP block (DSP48E2) with
|
||||
// pre-adder configured
|
||||
// as subtractor
|
||||
// File: squarediffmult.v
|
||||
|
||||
module squarediffmult # (parameter SIZEIN = 16)
|
||||
(
|
||||
input clk, ce, rst,
|
||||
input signed [SIZEIN-1:0] a, b,
|
||||
output signed [2*SIZEIN+1:0] square_out
|
||||
);
|
||||
|
||||
// Declare registers for intermediate values
|
||||
reg signed [SIZEIN-1:0] a_reg, b_reg;
|
||||
reg signed [SIZEIN:0] diff_reg;
|
||||
reg signed [2*SIZEIN+1:0] m_reg, p_reg;
|
||||
|
||||
always @(posedge clk)
|
||||
begin
|
||||
if (rst)
|
||||
begin
|
||||
a_reg <= 0;
|
||||
b_reg <= 0;
|
||||
diff_reg <= 0;
|
||||
m_reg <= 0;
|
||||
p_reg <= 0;
|
||||
end
|
||||
else
|
||||
if (ce)
|
||||
begin
|
||||
a_reg <= a;
|
||||
b_reg <= b;
|
||||
diff_reg <= a_reg - b_reg;
|
||||
m_reg <= diff_reg * diff_reg;
|
||||
p_reg <= m_reg;
|
||||
end
|
||||
end
|
||||
|
||||
// Output result
|
||||
assign square_out = p_reg;
|
||||
|
||||
endmodule // squarediffmult
|
|
@ -1,30 +0,0 @@
|
|||
read_verilog squarediffmult.v
|
||||
hierarchy -top squarediffmult
|
||||
proc
|
||||
memory -nomap
|
||||
equiv_opt -run :prove -map +/xilinx/cells_sim.v synth_xilinx
|
||||
memory
|
||||
opt -full
|
||||
|
||||
# TODO
|
||||
#equiv_opt -run prove: -assert null
|
||||
miter -equiv -flatten -make_assert -make_outputs gold gate miter
|
||||
#sat -verify -prove-asserts -tempinduct -show-inputs -show-outputs miter
|
||||
|
||||
design -load postopt
|
||||
cd squarediffmult
|
||||
stat
|
||||
#Vivado synthesizes 16 FDRE, 1 DSP48E1.
|
||||
select -assert-count 1 t:BUFG
|
||||
select -assert-count 117 t:FDRE
|
||||
select -assert-count 223 t:LUT2
|
||||
select -assert-count 50 t:LUT3
|
||||
select -assert-count 38 t:LUT4
|
||||
select -assert-count 56 t:LUT5
|
||||
select -assert-count 372 t:LUT6
|
||||
select -assert-count 49 t:MUXCY
|
||||
select -assert-count 99 t:MUXF7
|
||||
select -assert-count 26 t:MUXF8
|
||||
select -assert-count 51 t:XORCY
|
||||
|
||||
select -assert-none t:BUFG t:FDRE t:LUT2 t:LUT3 t:LUT4 t:LUT5 t:LUT6 t:MUXCY t:MUXF7 t:MUXF8 t:XORCY %% t:* %D
|
|
@ -1,18 +0,0 @@
|
|||
// Multiplexer using case statement
|
||||
module mux4 (sel, a, b, c, d, outmux);
|
||||
input [1:0] sel;
|
||||
input [1:0] a, b, c, d;
|
||||
output [1:0] outmux;
|
||||
reg [1:0] outmux;
|
||||
|
||||
always @ *
|
||||
begin
|
||||
case(sel)
|
||||
2'b00 : outmux = a;
|
||||
2'b01 : outmux = b;
|
||||
2'b10 : outmux = c;
|
||||
2'b11 : outmux = d;
|
||||
endcase
|
||||
end
|
||||
endmodule
|
||||
|
|
@ -1,13 +0,0 @@
|
|||
read_verilog top_mux.v
|
||||
hierarchy -top mux4
|
||||
proc
|
||||
flatten
|
||||
equiv_opt -assert -map +/xilinx/cells_sim.v synth_xilinx # equivalency check
|
||||
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
|
||||
|
||||
cd mux4
|
||||
#Vivado synthesizes 2 LUT.
|
||||
stat
|
||||
select -assert-count 2 t:LUT6
|
||||
|
||||
select -assert-none t:LUT6 %% t:* %D
|
|
@ -1,17 +0,0 @@
|
|||
// Tristate Description Using Combinatorial Always Block
|
||||
// File: tristates_1.v
|
||||
//
|
||||
module tristates_1 (T, I, O);
|
||||
input T, I;
|
||||
output O;
|
||||
reg O;
|
||||
|
||||
always @(T or I)
|
||||
begin
|
||||
if (~T)
|
||||
O = I;
|
||||
else
|
||||
O = 1'bZ;
|
||||
end
|
||||
|
||||
endmodule
|
|
@ -1,13 +0,0 @@
|
|||
read_verilog tristates_1.v
|
||||
hierarchy -top tristates_1
|
||||
proc
|
||||
tribuf
|
||||
flatten
|
||||
synth
|
||||
equiv_opt -assert -map +/xilinx/cells_sim.v -map +/simcells.v synth_xilinx # equivalency check
|
||||
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
|
||||
cd tristates_1 # Constrain all select calls below inside the top module
|
||||
#Vivado synthesizes 3 IBUF, 1 OBUFT.
|
||||
select -assert-count 1 t:LUT1
|
||||
select -assert-count 1 t:$_TBUF_
|
||||
select -assert-none t:LUT1 t:$_TBUF_ %% t:* %D
|
|
@ -1,10 +0,0 @@
|
|||
// Tristate Description Using Concurrent Assignment
|
||||
// File: tristates_2.v
|
||||
//
|
||||
module tristates_2 (T, I, O);
|
||||
input T, I;
|
||||
output O;
|
||||
|
||||
assign O = (~T) ? I: 1'bZ;
|
||||
|
||||
endmodule
|
|
@ -1,13 +0,0 @@
|
|||
read_verilog tristates_2.v
|
||||
hierarchy -top tristates_2
|
||||
proc
|
||||
tribuf
|
||||
flatten
|
||||
synth
|
||||
equiv_opt -assert -map +/xilinx/cells_sim.v -map +/simcells.v synth_xilinx # equivalency check
|
||||
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
|
||||
cd tristates_2 # Constrain all select calls below inside the top module
|
||||
#Vivado synthesizes 3 IBUF, 1 OBUFT.
|
||||
select -assert-count 1 t:LUT1
|
||||
select -assert-count 1 t:$_TBUF_
|
||||
select -assert-none t:LUT1 t:$_TBUF_ %% t:* %D
|
|
@ -1,78 +0,0 @@
|
|||
// Xilinx UltraRAM Single Port No Change Mode. This code implements
|
||||
// a parameterizable UltraRAM block in No Change mode. The behavior of this RAM is
|
||||
// when data is written, the output of RAM is unchanged. Only when write is
|
||||
// inactive data corresponding to the address is presented on the output port.
|
||||
//
|
||||
module xilinx_ultraram_single_port_no_change #(
|
||||
//Default parameters were changed because of slow test
|
||||
//parameter AWIDTH = 12, // Address Width
|
||||
//parameter DWIDTH = 72, // Data Width
|
||||
//parameter NBPIPE = 3 // Number of pipeline Registers
|
||||
parameter AWIDTH = 8, // Address Width
|
||||
parameter DWIDTH = 8, // Data Width
|
||||
parameter NBPIPE = 3 // Number of pipeline Registers
|
||||
) (
|
||||
input clk, // Clock
|
||||
input rst, // Reset
|
||||
input we, // Write Enable
|
||||
input regce, // Output Register Enable
|
||||
input mem_en, // Memory Enable
|
||||
input [DWIDTH-1:0] din, // Data Input
|
||||
input [AWIDTH-1:0] addr, // Address Input
|
||||
output reg [DWIDTH-1:0] dout // Data Output
|
||||
);
|
||||
|
||||
(* ram_style = "ultra" *)
|
||||
reg [DWIDTH-1:0] mem[(1<<AWIDTH)-1:0]; // Memory Declaration
|
||||
reg [DWIDTH-1:0] memreg;
|
||||
reg [DWIDTH-1:0] mem_pipe_reg[NBPIPE-1:0]; // Pipelines for memory
|
||||
reg mem_en_pipe_reg[NBPIPE:0]; // Pipelines for memory enable
|
||||
|
||||
integer i;
|
||||
|
||||
// RAM : Read has one latency, Write has one latency as well.
|
||||
always @ (posedge clk)
|
||||
begin
|
||||
if(mem_en)
|
||||
begin
|
||||
if(we)
|
||||
mem[addr] <= din;
|
||||
else
|
||||
memreg <= mem[addr];
|
||||
end
|
||||
end
|
||||
// The enable of the RAM goes through a pipeline to produce a
|
||||
// series of pipelined enable signals required to control the data
|
||||
// pipeline.
|
||||
always @ (posedge clk)
|
||||
begin
|
||||
mem_en_pipe_reg[0] <= mem_en;
|
||||
for (i=0; i<NBPIPE; i=i+1)
|
||||
mem_en_pipe_reg[i+1] <= mem_en_pipe_reg[i];
|
||||
end
|
||||
|
||||
// RAM output data goes through a pipeline.
|
||||
always @ (posedge clk)
|
||||
begin
|
||||
if (mem_en_pipe_reg[0])
|
||||
mem_pipe_reg[0] <= memreg;
|
||||
end
|
||||
|
||||
always @ (posedge clk)
|
||||
begin
|
||||
for (i = 0; i < NBPIPE-1; i = i+1)
|
||||
if (mem_en_pipe_reg[i+1])
|
||||
mem_pipe_reg[i+1] <= mem_pipe_reg[i];
|
||||
end
|
||||
|
||||
// Final output register gives user the option to add a reset and
|
||||
// an additional enable signal just for the data ouptut
|
||||
always @ (posedge clk)
|
||||
begin
|
||||
if (rst)
|
||||
dout <= 0;
|
||||
else if (mem_en_pipe_reg[NBPIPE] && regce)
|
||||
dout <= mem_pipe_reg[NBPIPE-1];
|
||||
end
|
||||
endmodule
|
||||
|
|
@ -1,25 +0,0 @@
|
|||
read_verilog xilinx_ultraram_single_port_no_change.v
|
||||
hierarchy -top xilinx_ultraram_single_port_no_change
|
||||
proc
|
||||
memory -nomap
|
||||
equiv_opt -run :prove -map +/xilinx/cells_sim.v synth_xilinx
|
||||
memory
|
||||
opt -full
|
||||
|
||||
# TODO
|
||||
#equiv_opt -run prove: -assert null
|
||||
miter -equiv -flatten -make_assert -make_outputs gold gate miter
|
||||
#sat -verify -prove-asserts -tempinduct -show-inputs -show-outputs miter
|
||||
|
||||
design -load postopt
|
||||
cd xilinx_ultraram_single_port_no_change
|
||||
stat
|
||||
#Vivado synthesizes 1 RAMB36E1, 28 FDRE.
|
||||
select -assert-count 1 t:BUFG
|
||||
select -assert-count 53 t:FDRE
|
||||
select -assert-count 1 t:LUT1
|
||||
select -assert-count 9 t:LUT2
|
||||
select -assert-count 11 t:LUT3
|
||||
select -assert-count 16 t:RAM128X1D
|
||||
|
||||
select -assert-none t:BUFG t:FDRE t:LUT1 t:LUT2 t:LUT3 t:RAM128X1D %% t:* %D
|
|
@ -1,78 +0,0 @@
|
|||
// Xilinx UltraRAM Single Port Read First Mode. This code implements
|
||||
// a parameterizable UltraRAM block in read first mode. The behavior of this RAM is
|
||||
// when data is written, the old memory contents at the write address are
|
||||
// presented on the output port.
|
||||
//
|
||||
module xilinx_ultraram_single_port_read_first #(
|
||||
|
||||
//Default parameters were changed because of slow test
|
||||
//parameter AWIDTH = 12, // Address Width
|
||||
//parameter DWIDTH = 72, // Data Width
|
||||
//parameter NBPIPE = 3 // Number of pipeline Registers
|
||||
parameter AWIDTH = 8, // Address Width
|
||||
parameter DWIDTH = 8, // Data Width
|
||||
parameter NBPIPE = 3 // Number of pipeline Registers
|
||||
) (
|
||||
input clk, // Clock
|
||||
input rst, // Reset
|
||||
input we, // Write Enable
|
||||
input regce, // Output Register Enable
|
||||
input mem_en, // Memory Enable
|
||||
input [DWIDTH-1:0] din, // Data Input
|
||||
input [AWIDTH-1:0] addr, // Address Input
|
||||
output reg [DWIDTH-1:0] dout // Data Output
|
||||
);
|
||||
|
||||
(* ram_style = "ultra" *)
|
||||
reg [DWIDTH-1:0] mem[(1<<AWIDTH)-1:0]; // Memory Declaration
|
||||
reg [DWIDTH-1:0] memreg;
|
||||
reg [DWIDTH-1:0] mem_pipe_reg[NBPIPE-1:0]; // Pipelines for memory
|
||||
reg mem_en_pipe_reg[NBPIPE:0]; // Pipelines for memory enable
|
||||
|
||||
integer i;
|
||||
|
||||
// RAM : Both READ and WRITE have a latency of one
|
||||
always @ (posedge clk)
|
||||
begin
|
||||
if(mem_en)
|
||||
begin
|
||||
if(we)
|
||||
mem[addr] <= din;
|
||||
memreg <= mem[addr];
|
||||
end
|
||||
end
|
||||
|
||||
// The enable of the RAM goes through a pipeline to produce a
|
||||
// series of pipelined enable signals required to control the data
|
||||
// pipeline.
|
||||
always @ (posedge clk)
|
||||
begin
|
||||
mem_en_pipe_reg[0] <= mem_en;
|
||||
for (i=0; i<NBPIPE; i=i+1)
|
||||
mem_en_pipe_reg[i+1] <= mem_en_pipe_reg[i];
|
||||
end
|
||||
|
||||
// RAM output data goes through a pipeline.
|
||||
always @ (posedge clk)
|
||||
begin
|
||||
if (mem_en_pipe_reg[0])
|
||||
mem_pipe_reg[0] <= memreg;
|
||||
end
|
||||
|
||||
always @ (posedge clk)
|
||||
begin
|
||||
for (i = 0; i < NBPIPE-1; i = i+1)
|
||||
if (mem_en_pipe_reg[i+1])
|
||||
mem_pipe_reg[i+1] <= mem_pipe_reg[i];
|
||||
end
|
||||
|
||||
// Final output register gives user the option to add a reset and
|
||||
// an additional enable signal just for the data ouptut
|
||||
always @ (posedge clk)
|
||||
begin
|
||||
if (rst)
|
||||
dout <= 0;
|
||||
else if (mem_en_pipe_reg[NBPIPE] && regce)
|
||||
dout <= mem_pipe_reg[NBPIPE-1];
|
||||
end
|
||||
endmodule
|
|
@ -1,24 +0,0 @@
|
|||
read_verilog xilinx_ultraram_single_port_read_first.v
|
||||
hierarchy -top xilinx_ultraram_single_port_read_first
|
||||
proc
|
||||
memory -nomap
|
||||
equiv_opt -run :prove -map +/xilinx/cells_sim.v synth_xilinx
|
||||
memory
|
||||
opt -full
|
||||
|
||||
# TODO
|
||||
#equiv_opt -run prove: -assert null
|
||||
miter -equiv -flatten -make_assert -make_outputs gold gate miter
|
||||
#sat -verify -prove-asserts -tempinduct -show-inputs -show-outputs miter
|
||||
|
||||
design -load postopt
|
||||
cd xilinx_ultraram_single_port_read_first
|
||||
#Vivado synthesizes 1 RAMB18E1, 28 FDRE.
|
||||
select -assert-count 1 t:BUFG
|
||||
select -assert-count 53 t:FDRE
|
||||
select -assert-count 1 t:LUT1
|
||||
select -assert-count 8 t:LUT2
|
||||
select -assert-count 11 t:LUT3
|
||||
select -assert-count 16 t:RAM128X1D
|
||||
|
||||
select -assert-none t:BUFG t:FDRE t:LUT1 t:LUT2 t:LUT3 t:RAM128X1D %% t:* %D
|
|
@ -1,82 +0,0 @@
|
|||
// Xilinx UltraRAM Single Port Write First Mode. This code implements
|
||||
// a parameterizable UltraRAM block in write first mode. The behavior of this RAM is
|
||||
// when data is written, the new memory contents at the write address are
|
||||
// presented on the output port.
|
||||
//
|
||||
module xilinx_ultraram_single_port_write_first #(
|
||||
|
||||
//Default parameters were changed because of slow test
|
||||
//parameter AWIDTH = 12, // Address Width
|
||||
//parameter DWIDTH = 72, // Data Width
|
||||
//parameter NBPIPE = 3 // Number of pipeline Registers
|
||||
parameter AWIDTH = 8, // Address Width
|
||||
parameter DWIDTH = 8, // Data Width
|
||||
parameter NBPIPE = 3 // Number of pipeline Registers
|
||||
) (
|
||||
input clk, // Clock
|
||||
input rst, // Reset
|
||||
input we, // Write Enable
|
||||
input regce, // Output Register Enable
|
||||
input mem_en, // Memory Enable
|
||||
input [DWIDTH-1:0] din, // Data Input
|
||||
input [AWIDTH-1:0] addr, // Address Input
|
||||
output reg [DWIDTH-1:0] dout // Data Output
|
||||
);
|
||||
|
||||
(* ram_style = "ultra" *)
|
||||
reg [DWIDTH-1:0] mem[(1<<AWIDTH)-1:0]; // Memory Declaration
|
||||
reg [DWIDTH-1:0] memreg;
|
||||
reg [DWIDTH-1:0] mem_pipe_reg[NBPIPE-1:0]; // Pipelines for memory
|
||||
reg mem_en_pipe_reg[NBPIPE:0]; // Pipelines for memory enable
|
||||
|
||||
integer i;
|
||||
|
||||
// RAM : Both READ and WRITE have a latency of one
|
||||
always @ (posedge clk)
|
||||
begin
|
||||
if(mem_en)
|
||||
begin
|
||||
if(we)
|
||||
begin
|
||||
mem[addr] <= din;
|
||||
memreg <= din;
|
||||
end
|
||||
else
|
||||
memreg <= mem[addr];
|
||||
end
|
||||
end
|
||||
|
||||
// The enable of the RAM goes through a pipeline to produce a
|
||||
// series of pipelined enable signals required to control the data
|
||||
// pipeline.
|
||||
always @ (posedge clk)
|
||||
begin
|
||||
mem_en_pipe_reg[0] <= mem_en;
|
||||
for (i=0; i<NBPIPE; i=i+1)
|
||||
mem_en_pipe_reg[i+1] <= mem_en_pipe_reg[i];
|
||||
end
|
||||
|
||||
// RAM output data goes through a pipeline.
|
||||
always @ (posedge clk)
|
||||
begin
|
||||
if (mem_en_pipe_reg[0])
|
||||
mem_pipe_reg[0] <= memreg;
|
||||
end
|
||||
|
||||
always @ (posedge clk)
|
||||
begin
|
||||
for (i = 0; i < NBPIPE-1; i = i+1)
|
||||
if (mem_en_pipe_reg[i+1])
|
||||
mem_pipe_reg[i+1] <= mem_pipe_reg[i];
|
||||
end
|
||||
|
||||
// Final output register gives user the option to add a reset and
|
||||
// an additional enable signal just for the data ouptut
|
||||
always @ (posedge clk)
|
||||
begin
|
||||
if (rst)
|
||||
dout <= 0;
|
||||
else if (mem_en_pipe_reg[NBPIPE] && regce)
|
||||
dout <= mem_pipe_reg[NBPIPE-1];
|
||||
end
|
||||
endmodule
|
|
@ -1,24 +0,0 @@
|
|||
read_verilog xilinx_ultraram_single_port_write_first.v
|
||||
hierarchy -top xilinx_ultraram_single_port_write_first
|
||||
proc
|
||||
memory -nomap
|
||||
equiv_opt -run :prove -map +/xilinx/cells_sim.v synth_xilinx
|
||||
memory
|
||||
opt -full
|
||||
|
||||
# TODO
|
||||
#equiv_opt -run prove: -assert null
|
||||
miter -equiv -flatten -make_assert -make_outputs gold gate miter
|
||||
#sat -verify -prove-asserts -tempinduct -show-inputs -show-outputs miter
|
||||
|
||||
design -load postopt
|
||||
cd xilinx_ultraram_single_port_write_first
|
||||
#Vivado synthesizes 1 RAMB18E1, 28 FDRE.
|
||||
select -assert-count 1 t:BUFG
|
||||
select -assert-count 44 t:FDRE
|
||||
select -assert-count 8 t:LUT5
|
||||
select -assert-count 8 t:LUT2
|
||||
select -assert-count 3 t:LUT3
|
||||
select -assert-count 16 t:RAM128X1D
|
||||
|
||||
select -assert-none t:BUFG t:FDRE t:LUT5 t:LUT2 t:LUT3 t:RAM128X1D %% t:* %D
|
Loading…
Reference in New Issue