Merge pull request #2195 from YosysHQ/mwk/manual-gates

Add a few more gate types to the manual.
This commit is contained in:
clairexen 2020-07-02 17:43:10 +02:00 committed by GitHub
commit 5d740ec4b4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 201 additions and 50 deletions

View File

@ -221,6 +221,26 @@ calculated signal and a constant zero with an {\tt \$and} gate).
\subsection{Registers} \subsection{Registers}
SR-type latches are represented by {\tt \$sr} cells. These cells have input ports
\B{SET} and \B{CLR} and an output port \B{Q}. They have the following parameters:
\begin{itemize}
\item \B{WIDTH} \\
The width of inputs \B{SET} and \B{CLR} and output \B{Q}.
\item \B{SET\_POLARITY} \\
The set input bits are active-high if this parameter has the value {\tt 1'b1} and active-low
if this parameter is {\tt 1'b0}.
\item \B{CLR\_POLARITY} \\
The reset input bits are active-high if this parameter has the value {\tt 1'b1} and active-low
if this parameter is {\tt 1'b0}.
\end{itemize}
Both set and reset inputs have separate bits for every output bit.
When both the set and reset inputs of an {\tt \$sr} cell are active for a given bit
index, the reset input takes precedence.
D-type flip-flops are represented by {\tt \$dff} cells. These cells have a clock port \B{CLK}, D-type flip-flops are represented by {\tt \$dff} cells. These cells have a clock port \B{CLK},
an input port \B{D} and an output port \B{Q}. The following parameters are available for {\tt \$dff} an input port \B{D} and an output port \B{Q}. The following parameters are available for {\tt \$dff}
cells: cells:
@ -269,21 +289,8 @@ Note that the {\tt \$adff} and {\tt \$sdff} cells can only be used when the rese
D-type flip-flops with asynchronous set and reset are represented by {\tt \$dffsr} cells. D-type flip-flops with asynchronous set and reset are represented by {\tt \$dffsr} cells.
As the {\tt \$dff} cells they have \B{CLK}, \B{D} and \B{Q} ports. In addition they also have As the {\tt \$dff} cells they have \B{CLK}, \B{D} and \B{Q} ports. In addition they also have
a single-bit \B{SET} input port for the set pin, a single-bit \B{CLR} input port for the reset pin, multi-bit \B{SET} and \B{CLR} input ports and the corresponding polarity parameters, like
and the following two parameters: {\tt \$sr} cells.
\begin{itemize}
\item \B{SET\_POLARITY} \\
The set input is active-high if this parameter has the value {\tt 1'b1} and active-low
if this parameter is {\tt 1'b0}.
\item \B{CLR\_POLARITY} \\
The reset input is active-high if this parameter has the value {\tt 1'b1} and active-low
if this parameter is {\tt 1'b0}.
\end{itemize}
When both the set and reset inputs of a {\tt \$dffsr} cell are active, the reset input takes
precedence.
D-type flip-flops with enable are represented by {\tt \$dffe}, {\tt \$adffe}, {\tt \$dffsre}, D-type flip-flops with enable are represented by {\tt \$dffe}, {\tt \$adffe}, {\tt \$dffsre},
{\tt \$sdffe}, and {\tt \$sdffce} cells, which are enhanced variants of {\tt \$dff}, {\tt \$adff}, {\tt \$dffsr}, {\tt \$sdffe}, and {\tt \$sdffce} cells, which are enhanced variants of {\tt \$dff}, {\tt \$adff}, {\tt \$dffsr},
@ -297,10 +304,36 @@ The enable input is active-high if this parameter has the value {\tt 1'b1} and a
if this parameter is {\tt 1'b0}. if this parameter is {\tt 1'b0}.
\end{itemize} \end{itemize}
\begin{fixme} D-type latches are represented by {\tt \$dlatch} cells. These cells have an enable port \B{EN},
Add information about {\tt \$sr} cells (set-reset flip-flops), {\tt \$dlatch} cells (d-type latches), an input port \B{D}, and an output port \B{Q}. The following parameters are available for {\tt \$dlatch} cells:
{\tt \$adlatch} and {\tt \$dlatchsr} cells (d-type latches with set/reset).
\end{fixme} \begin{itemize}
\item \B{WIDTH} \\
The width of input \B{D} and output \B{Q}.
\item \B{EN\_POLARITY} \\
The enable input is active-high if this parameter has the value {\tt 1'b1} and active-low
if this parameter is {\tt 1'b0}.
\end{itemize}
The latch is transparent when the \B{EN} input is active.
D-type latches with reset are represented by {\tt \$adlatch} cells. In addition to {\tt \$dlatch}
ports and parameters, they also have a single-bit \B{ARST} input port for the reset pin and the following additional parameters:
\begin{itemize}
\item \B{ARST\_POLARITY} \\
The asynchronous reset is active-high if this parameter has the value {\tt 1'b1} and active-low
if this parameter is {\tt 1'b0}.
\item \B{ARST\_VALUE} \\
The state of \B{Q} will be set to this value when the reset is active.
\end{itemize}
D-type latches with set and reset are represented by {\tt \$dlatchsr} cells.
In addition to {\tt \$dlatch} ports and parameters, they also have multi-bit
\B{SET} and \B{CLR} input ports and the corresponding polarity parameters, like
{\tt \$sr} cells.
\subsection{Memories} \subsection{Memories}
\label{sec:memcells} \label{sec:memcells}
@ -476,6 +509,23 @@ The {\tt memory\_map} pass can be used to implement {\tt \$mem} cells as basic l
Add a brief description of the {\tt \$fsm} cell type. Add a brief description of the {\tt \$fsm} cell type.
\end{fixme} \end{fixme}
\subsection{Specify rules}
\begin{fixme}
Add information about {\tt \$specify2}, {\tt \$specify3}, and {\tt \$specrule} cells.
\end{fixme}
\subsection{Formal verification cells}
\begin{fixme}
Add information about {\tt \$assert}, {\tt \$assume}, {\tt \$live}, {\tt \$fair}, {\tt \$cover}, {\tt \$equiv},
{\tt \$initstate}, {\tt \$anyconst}, {\tt \$anyseq}, {\tt \$allconst}, {\tt \$allseq} cells.
\end{fixme}
\begin{fixme}
Add information about {\tt \$ff} and {\tt \$\_FF\_} cells.
\end{fixme}
\section{Gates} \section{Gates}
\label{sec:celllib_gates} \label{sec:celllib_gates}
@ -490,6 +540,7 @@ source tree.
\begin{tabular}[t]{ll} \begin{tabular}[t]{ll}
Verilog & Cell Type \\ Verilog & Cell Type \\
\hline \hline
\lstinline[language=Verilog]; Y = A; & {\tt \$\_BUF\_} \\
\lstinline[language=Verilog]; Y = ~A; & {\tt \$\_NOT\_} \\ \lstinline[language=Verilog]; Y = ~A; & {\tt \$\_NOT\_} \\
\lstinline[language=Verilog]; Y = A & B; & {\tt \$\_AND\_} \\ \lstinline[language=Verilog]; Y = A & B; & {\tt \$\_AND\_} \\
\lstinline[language=Verilog]; Y = ~(A & B); & {\tt \$\_NAND\_} \\ \lstinline[language=Verilog]; Y = ~(A & B); & {\tt \$\_NAND\_} \\
@ -499,11 +550,21 @@ Verilog & Cell Type \\
\lstinline[language=Verilog]; Y = A | ~B; & {\tt \$\_ORNOT\_} \\ \lstinline[language=Verilog]; Y = A | ~B; & {\tt \$\_ORNOT\_} \\
\lstinline[language=Verilog]; Y = A ^ B; & {\tt \$\_XOR\_} \\ \lstinline[language=Verilog]; Y = A ^ B; & {\tt \$\_XOR\_} \\
\lstinline[language=Verilog]; Y = ~(A ^ B); & {\tt \$\_XNOR\_} \\ \lstinline[language=Verilog]; Y = ~(A ^ B); & {\tt \$\_XNOR\_} \\
\lstinline[language=Verilog]; Y = ~((A & B) | C); & {\tt \$\_AOI3\_} \\
\lstinline[language=Verilog]; Y = ~((A | B) & C); & {\tt \$\_OAI3\_} \\
\lstinline[language=Verilog]; Y = ~((A & B) | (C & D)); & {\tt \$\_AOI4\_} \\
\lstinline[language=Verilog]; Y = ~((A | B) & (C | D)); & {\tt \$\_OAI4\_} \\
\lstinline[language=Verilog]; Y = S ? B : A; & {\tt \$\_MUX\_} \\ \lstinline[language=Verilog]; Y = S ? B : A; & {\tt \$\_MUX\_} \\
\lstinline[language=Verilog]; Y = EN ? A : 'bz; & {\tt \$\_TBUF\_} \\ \lstinline[language=Verilog]; Y = ~(S ? B : A); & {\tt \$\_NMUX\_} \\
(see below) & {\tt \$\_MUX4\_} \\
(see below) & {\tt \$\_MUX8\_} \\
(see below) & {\tt \$\_MUX16\_} \\
\lstinline[language=Verilog]; Y = EN ? A : 1'bz; & {\tt \$\_TBUF\_} \\
\hline \hline
\lstinline[language=Verilog]; always @(negedge C) Q <= D; & {\tt \$\_DFF\_N\_} \\ \lstinline[language=Verilog]; always @(negedge C) Q <= D; & {\tt \$\_DFF\_N\_} \\
\lstinline[language=Verilog]; always @(posedge C) Q <= D; & {\tt \$\_DFF\_P\_} \\ \lstinline[language=Verilog]; always @(posedge C) Q <= D; & {\tt \$\_DFF\_P\_} \\
\lstinline[language=Verilog]; always @* if (!E) Q <= D; & {\tt \$\_DLATCH\_N\_} \\
\lstinline[language=Verilog]; always @* if (E) Q <= D; & {\tt \$\_DLATCH\_P\_} \\
\end{tabular} \end{tabular}
\caption{Cell types for gate level logic networks (main list)} \caption{Cell types for gate level logic networks (main list)}
\label{tab:CellLib_gates} \label{tab:CellLib_gates}
@ -610,14 +671,88 @@ $ClkEdge$ & $SetLvl$ & $RstLvl$ & $EnLvl$ & Cell Type \\
\label{tab:CellLib_gates_dffsre} \label{tab:CellLib_gates_dffsre}
\end{table} \end{table}
Tables~\ref{tab:CellLib_gates}, \ref{tab:CellLib_gates_dffe}, \ref{tab:CellLib_gates_adff}, \ref{tab:CellLib_gates_adffe}, \ref{tab:CellLib_gates_dffsr} and \ref{tab:CellLib_gates_dffsre} list all cell types used for gate level logic. The cell types \begin{table}[t]
{\tt \$\_NOT\_}, {\tt \$\_AND\_}, {\tt \$\_NAND\_}, {\tt \$\_ANDNOT\_}, {\tt \$\_OR\_}, {\tt \$\_NOR\_}, \hfil
{\tt \$\_ORNOT\_}, {\tt \$\_XOR\_}, {\tt \$\_XNOR\_} and {\tt \$\_MUX\_} are used to model combinatorial logic. \begin{tabular}[t]{llll}
$EnLvl$ & $RstLvl$ & $RstVal$ & Cell Type \\
\hline
\lstinline[language=Verilog];0; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];0; & {\tt \$\_DLATCH\_NN0\_} \\
\lstinline[language=Verilog];0; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];1; & {\tt \$\_DLATCH\_NN1\_} \\
\lstinline[language=Verilog];0; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];0; & {\tt \$\_DLATCH\_NP0\_} \\
\lstinline[language=Verilog];0; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];1; & {\tt \$\_DLATCH\_NP1\_} \\
\lstinline[language=Verilog];1; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];0; & {\tt \$\_DLATCH\_PN0\_} \\
\lstinline[language=Verilog];1; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];1; & {\tt \$\_DLATCH\_PN1\_} \\
\lstinline[language=Verilog];1; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];0; & {\tt \$\_DLATCH\_PP0\_} \\
\lstinline[language=Verilog];1; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];1; & {\tt \$\_DLATCH\_PP1\_} \\
\end{tabular}
\caption{Cell types for gate level logic networks (latches with reset)}
\label{tab:CellLib_gates_adlatch}
\end{table}
\begin{table}[t]
\hfil
\begin{tabular}[t]{llll}
$EnLvl$ & $SetLvl$ & $RstLvl$ & Cell Type \\
\hline
\lstinline[language=Verilog];0; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];0; & {\tt \$\_DLATCHSR\_NNN\_} \\
\lstinline[language=Verilog];0; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];1; & {\tt \$\_DLATCHSR\_NNP\_} \\
\lstinline[language=Verilog];0; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];0; & {\tt \$\_DLATCHSR\_NPN\_} \\
\lstinline[language=Verilog];0; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];1; & {\tt \$\_DLATCHSR\_NPP\_} \\
\lstinline[language=Verilog];1; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];0; & {\tt \$\_DLATCHSR\_PNN\_} \\
\lstinline[language=Verilog];1; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];1; & {\tt \$\_DLATCHSR\_PNP\_} \\
\lstinline[language=Verilog];1; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];0; & {\tt \$\_DLATCHSR\_PPN\_} \\
\lstinline[language=Verilog];1; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];1; & {\tt \$\_DLATCHSR\_PPP\_} \\
\end{tabular}
\caption{Cell types for gate level logic networks (latches with set and reset)}
\label{tab:CellLib_gates_dlatchsr}
\end{table}
\begin{table}[t]
\hfil
\begin{tabular}[t]{llll}
$SetLvl$ & $RstLvl$ & Cell Type \\
\hline
\lstinline[language=Verilog];0; & \lstinline[language=Verilog];0; & {\tt \$\_SR\_NN\_} \\
\lstinline[language=Verilog];0; & \lstinline[language=Verilog];1; & {\tt \$\_SR\_NP\_} \\
\lstinline[language=Verilog];1; & \lstinline[language=Verilog];0; & {\tt \$\_SR\_PN\_} \\
\lstinline[language=Verilog];1; & \lstinline[language=Verilog];1; & {\tt \$\_SR\_PP\_} \\
\end{tabular}
\caption{Cell types for gate level logic networks (SR latches)}
\label{tab:CellLib_gates_sr}
\end{table}
Tables~\ref{tab:CellLib_gates}, \ref{tab:CellLib_gates_dffe}, \ref{tab:CellLib_gates_adff}, \ref{tab:CellLib_gates_adffe}, \ref{tab:CellLib_gates_dffsr}, \ref{tab:CellLib_gates_dffsre}, \ref{tab:CellLib_gates_adlatch}, \ref{tab:CellLib_gates_dlatchsr} and \ref{tab:CellLib_gates_sr} list all cell types used for gate level logic. The cell types
{\tt \$\_BUF\_}, {\tt \$\_NOT\_}, {\tt \$\_AND\_}, {\tt \$\_NAND\_}, {\tt \$\_ANDNOT\_},
{\tt \$\_OR\_}, {\tt \$\_NOR\_}, {\tt \$\_ORNOT\_}, {\tt \$\_XOR\_}, {\tt \$\_XNOR\_},
{\tt \$\_AOI3\_}, {\tt \$\_OAI3\_}, {\tt \$\_AOI4\_}, {\tt \$\_OAI4\_},
{\tt \$\_MUX\_}, {\tt \$\_MUX4\_}, {\tt \$\_MUX8\_}, {\tt \$\_MUX16\_} and {\tt \$\_NMUX\_} are used to model combinatorial logic.
The cell type {\tt \$\_TBUF\_} is used to model tristate logic. The cell type {\tt \$\_TBUF\_} is used to model tristate logic.
The {\tt \$\_MUX4\_}, {\tt \$\_MUX8\_} and {\tt \$\_MUX16\_} cells are used to model wide muxes, and correspond to the following Verilog code:
\begin{lstlisting}[language=Verilog]
// $_MUX4_
assign Y = T ? (S ? D : C) :
(S ? B : A);
// $_MUX8_
assign Y = U ? T ? (S ? H : G) :
(S ? F : E) :
T ? (S ? D : C) :
(S ? B : A);
// $_MUX16_
assign Y = V ? U ? T ? (S ? P : O) :
(S ? N : M) :
T ? (S ? L : K) :
(S ? J : I) :
U ? T ? (S ? H : G) :
(S ? F : E) :
T ? (S ? D : C) :
(S ? B : A);
\end{lstlisting}
The cell types {\tt \$\_DFF\_N\_} and {\tt \$\_DFF\_P\_} represent d-type flip-flops. The cell types {\tt \$\_DFF\_N\_} and {\tt \$\_DFF\_P\_} represent d-type flip-flops.
The cell types {\tt \$\_DFFE\_NN\_}, {\tt \$\_DFFE\_NP\_}, {\tt \$\_DFFE\_PN\_} and {\tt \$\_DFFE\_PP\_} The cell types {\tt \$\_DFFE\_[NP][NP]\_}
implement d-type flip-flops with enable. The values in the table for these cell types relate to the implement d-type flip-flops with enable. The values in the table for these cell types relate to the
following Verilog code template. following Verilog code template.
@ -627,8 +762,7 @@ following Verilog code template.
Q <= D; Q <= D;
\end{lstlisting} \end{lstlisting}
The cell types {\tt \$\_DFF\_NN0\_}, {\tt \$\_DFF\_NN1\_}, {\tt \$\_DFF\_NP0\_}, {\tt \$\_DFF\_NP1\_}, The cell types {\tt \$\_DFF\_[NP][NP][01]\_} implement
{\tt \$\_DFF\_PN0\_}, {\tt \$\_DFF\_PN1\_}, {\tt \$\_DFF\_PP0\_} and {\tt \$\_DFF\_PP1\_} implement
d-type flip-flops with asynchronous reset. The values in the table for these cell types relate to the d-type flip-flops with asynchronous reset. The values in the table for these cell types relate to the
following Verilog code template, where \lstinline[mathescape,language=Verilog];$RstEdge$; is \lstinline[language=Verilog];posedge; following Verilog code template, where \lstinline[mathescape,language=Verilog];$RstEdge$; is \lstinline[language=Verilog];posedge;
if \lstinline[mathescape,language=Verilog];$RstLvl$; if \lstinline[language=Verilog];1;, and \lstinline[language=Verilog];negedge; if \lstinline[mathescape,language=Verilog];$RstLvl$; if \lstinline[language=Verilog];1;, and \lstinline[language=Verilog];negedge;
@ -642,8 +776,7 @@ otherwise.
Q <= D; Q <= D;
\end{lstlisting} \end{lstlisting}
The cell types {\tt \$\_SDFF\_NN0\_}, {\tt \$\_SDFF\_NN1\_}, {\tt \$\_SDFF\_NP0\_}, {\tt \$\_SDFF\_NP1\_}, The cell types {\tt \$\_SDFF\_[NP][NP][01]\_} implement
{\tt \$\_SDFF\_PN0\_}, {\tt \$\_SDFF\_PN1\_}, {\tt \$\_SDFF\_PP0\_} and {\tt \$\_SDFF\_PP1\_} implement
d-type flip-flops with synchronous reset. The values in the table for these cell types relate to the d-type flip-flops with synchronous reset. The values in the table for these cell types relate to the
following Verilog code template: following Verilog code template:
@ -732,20 +865,51 @@ otherwise.
Q <= D; Q <= D;
\end{lstlisting} \end{lstlisting}
The cell types {\tt \$\_DLATCH\_N\_} and {\tt \$\_DLATCH\_P\_} represent d-type latches.
The cell types {\tt \$\_DLATCH\_[NP][NP][01]\_} implement
d-type latches with reset. The values in the table for these cell types relate to the
following Verilog code template:
\begin{lstlisting}[mathescape,language=Verilog]
always @*
if (R == $RstLvl$)
Q <= $RstVal$;
else if (E == $EnLvl$)
Q <= D;
\end{lstlisting}
The cell types {\tt \$\_DLATCHSR\_[NP][NP][NP]\_} implement
d-type latches with set and reset. The values in the table for these cell types relate to the
following Verilog code template:
\begin{lstlisting}[mathescape,language=Verilog]
always @*
if (R == $RstLvl$)
Q <= 0;
else if (S == $SetLvl$)
Q <= 1;
else if (E == $EnLvl$)
Q <= D;
\end{lstlisting}
The cell types {\tt \$\_SR\_[NP][NP]\_} implement
sr-type latches. The values in the table for these cell types relate to the
following Verilog code template:
\begin{lstlisting}[mathescape,language=Verilog]
always @*
if (R == $RstLvl$)
Q <= 0;
else if (S == $SetLvl$)
Q <= 1;
\end{lstlisting}
In most cases gate level logic networks are created from RTL networks using the {\tt techmap} pass. The flip-flop cells In most cases gate level logic networks are created from RTL networks using the {\tt techmap} pass. The flip-flop cells
from the gate level logic network can be mapped to physical flip-flop cells from a Liberty file using the {\tt dfflibmap} from the gate level logic network can be mapped to physical flip-flop cells from a Liberty file using the {\tt dfflibmap}
pass. The combinatorial logic cells can be mapped to physical cells from a Liberty file via ABC \citeweblink{ABC} pass. The combinatorial logic cells can be mapped to physical cells from a Liberty file via ABC \citeweblink{ABC}
using the {\tt abc} pass. using the {\tt abc} pass.
\begin{fixme}
Add information about {\tt \$assert}, {\tt \$assume}, {\tt \$live}, {\tt \$fair}, {\tt \$cover}, {\tt \$equiv},
{\tt \$initstate}, {\tt \$anyconst}, {\tt \$anyseq}, {\tt \$allconst}, {\tt \$allseq} cells.
\end{fixme}
\begin{fixme}
Add information about {\tt \$specify2}, {\tt \$specify3}, and {\tt \$specrule} cells.
\end{fixme}
\begin{fixme} \begin{fixme}
Add information about {\tt \$slice} and {\tt \$concat} cells. Add information about {\tt \$slice} and {\tt \$concat} cells.
\end{fixme} \end{fixme}
@ -757,16 +921,3 @@ Add information about {\tt \$lut} and {\tt \$sop} cells.
\begin{fixme} \begin{fixme}
Add information about {\tt \$alu}, {\tt \$macc}, {\tt \$fa}, and {\tt \$lcu} cells. Add information about {\tt \$alu}, {\tt \$macc}, {\tt \$fa}, and {\tt \$lcu} cells.
\end{fixme} \end{fixme}
\begin{fixme}
Add information about {\tt \$ff} and {\tt \$\_FF\_} cells.
\end{fixme}
\begin{fixme}
Add information about {\tt \$\_DLATCH\_?\_}, and {\tt \$\_DLATCHSR\_???\_} cells.
\end{fixme}
\begin{fixme}
Add information about {\tt \$\_AOI3\_}, {\tt \$\_OAI3\_}, {\tt \$\_AOI4\_}, {\tt \$\_OAI4\_}, and {\tt \$\_NMUX\_} cells.
\end{fixme}