mirror of https://github.com/YosysHQ/yosys.git
intel_alm: direct LUTRAM cell instantiation
By instantiating the LUTRAM cell directly, we avoid a trip through altsyncram, which speeds up Quartus synthesis time. This also gives a little more flexibility, as Yosys can build RAMs out of individual 32x1 LUTRAM cells. While working on this, I discovered that the mem_init0 parameter of <family>_mlab_cell gets ignored by Quartus.
This commit is contained in:
parent
0610424940
commit
5b779f7f4e
|
@ -7,13 +7,13 @@ $(eval $(call add_share_file,share/intel_alm/common,techlibs/intel_alm/common/al
|
|||
$(eval $(call add_share_file,share/intel_alm/common,techlibs/intel_alm/common/arith_alm_map.v))
|
||||
$(eval $(call add_share_file,share/intel_alm/common,techlibs/intel_alm/common/dff_map.v))
|
||||
$(eval $(call add_share_file,share/intel_alm/common,techlibs/intel_alm/common/dff_sim.v))
|
||||
$(eval $(call add_share_file,share/intel_alm/common,techlibs/intel_alm/common/mem_sim.v))
|
||||
|
||||
# RAM
|
||||
bramtypes := m10k m20k
|
||||
$(foreach bramtype, $(bramtypes), $(eval $(call add_share_file,share/intel_alm/common,techlibs/intel_alm/common/bram_$(bramtype).txt)))
|
||||
$(foreach bramtype, $(bramtypes), $(eval $(call add_share_file,share/intel_alm/common,techlibs/intel_alm/common/bram_$(bramtype)_map.v)))
|
||||
$(eval $(call add_share_file,share/intel_alm/common,techlibs/intel_alm/common/lutram_mlab.txt))
|
||||
$(eval $(call add_share_file,share/intel_alm/common,techlibs/intel_alm/common/lutram_mlab_map.v))
|
||||
|
||||
# Miscellaneous
|
||||
$(eval $(call add_share_file,share/intel_alm/common,techlibs/intel_alm/common/megafunction_bb.v))
|
||||
|
|
|
@ -28,4 +28,4 @@ altsyncram #(
|
|||
.clock1(CLK1)
|
||||
);
|
||||
|
||||
endmodule
|
||||
endmodule
|
||||
|
|
|
@ -1,20 +1,18 @@
|
|||
bram __MISTRAL_MLAB
|
||||
init 0 # TODO: Re-enable when I figure out how LUTRAM init works
|
||||
abits 5
|
||||
dbits 16 @D32x16
|
||||
dbits 18 @D32x18
|
||||
dbits 20 @D32x20
|
||||
groups 2
|
||||
ports 1 1
|
||||
wrmode 1 0
|
||||
# read enable
|
||||
enable 1 0
|
||||
transp 1 0
|
||||
clocks 1 2
|
||||
clkpol 1 1
|
||||
endbram
|
||||
|
||||
match __MISTRAL_MLAB
|
||||
min efficiency 5
|
||||
make_outreg
|
||||
endmatch
|
||||
bram MISTRAL_MLAB
|
||||
init 0 # TODO: Re-enable when Yosys remembers the original filename.
|
||||
abits 5
|
||||
dbits 1
|
||||
groups 2
|
||||
ports 1 1
|
||||
wrmode 1 0
|
||||
# write enable
|
||||
enable 1 0
|
||||
transp 0 0
|
||||
clocks 1 0
|
||||
clkpol 1 1
|
||||
endbram
|
||||
|
||||
match MISTRAL_MLAB
|
||||
min efficiency 5
|
||||
make_outreg
|
||||
endmatch
|
|
@ -1,29 +0,0 @@
|
|||
module __MISTRAL_MLAB(CLK1, CLK2, A1ADDR, A1DATA, A1EN, B1ADDR, B1DATA);
|
||||
|
||||
parameter CFG_ABITS = 5;
|
||||
parameter CFG_DBITS = 20;
|
||||
|
||||
input CLK1, CLK2;
|
||||
input [CFG_ABITS-1:0] A1ADDR, B1ADDR;
|
||||
input [CFG_DBITS-1:0] A1DATA;
|
||||
input A1EN;
|
||||
output [CFG_DBITS-1:0] B1DATA;
|
||||
|
||||
altsyncram #(
|
||||
.operation_mode("dual_port"),
|
||||
.ram_block_type("mlab"),
|
||||
.widthad_a(CFG_ABITS),
|
||||
.width_a(CFG_DBITS),
|
||||
.widthad_b(CFG_ABITS),
|
||||
.width_b(CFG_DBITS),
|
||||
) _TECHMAP_REPLACE_ (
|
||||
.address_a(A1ADDR),
|
||||
.data_a(A1DATA),
|
||||
.wren_a(A1EN),
|
||||
.address_b(B1ADDR),
|
||||
.q_b(B1DATA),
|
||||
.clock0(CLK1),
|
||||
.clock1(CLK1),
|
||||
);
|
||||
|
||||
endmodule
|
|
@ -106,3 +106,26 @@ input aclr1;
|
|||
output eccstatus;
|
||||
|
||||
endmodule
|
||||
|
||||
(* blackbox *)
|
||||
module cyclonev_mlab_cell(portaaddr, portadatain, portbaddr, portbdataout, ena0, clk0, clk1);
|
||||
|
||||
parameter logical_ram_name = "";
|
||||
parameter logical_ram_depth = 32;
|
||||
parameter logical_ram_width = 20;
|
||||
parameter mixed_port_feed_through_mode = "new";
|
||||
parameter first_bit_number = 0;
|
||||
parameter first_address = 0;
|
||||
parameter last_address = 31;
|
||||
parameter address_width = 5;
|
||||
parameter data_width = 1;
|
||||
parameter byte_enable_mask_width = 1;
|
||||
parameter port_b_data_out_clock = "NONE";
|
||||
parameter [639:0] mem_init0 = 640'b0;
|
||||
|
||||
input [address_width-1:0] portaaddr, portbaddr;
|
||||
input [data_width-1:0] portadatain;
|
||||
output [data_width-1:0] portbdataout;
|
||||
input ena0, clk0, clk1;
|
||||
|
||||
endmodule
|
||||
|
|
|
@ -0,0 +1,60 @@
|
|||
// The MLAB
|
||||
// --------
|
||||
// In addition to Logic Array Blocks (LABs) that contain ten Adaptive Logic
|
||||
// Modules (ALMs, see alm_sim.v), the Cyclone V/10GX also contain
|
||||
// Memory/Logic Array Blocks (MLABs) that can act as either ten ALMs, or utilise
|
||||
// the memory the ALM uses to store the look-up table data for general usage,
|
||||
// producing a 32 address by 20-bit block of memory. MLABs are spread out
|
||||
// around the chip, so they can be placed near where they are needed, rather than
|
||||
// being comparatively limited in placement for a deep but narrow memory such as
|
||||
// the M10K memory block.
|
||||
//
|
||||
// MLABs are used mainly for shallow but wide memories, such as CPU register
|
||||
// files (which have perhaps 32 registers that are comparatively wide (16/32-bit))
|
||||
// or shift registers (by using the output of the Nth bit as input for the N+1th
|
||||
// bit).
|
||||
//
|
||||
// Oddly, instead of providing a block 32 address by 20-bit cell, Quartus asks
|
||||
// synthesis tools to build MLABs out of 32 address by 1-bit cells, and tries
|
||||
// to put these cells in the same MLAB during cell placement. Because of this
|
||||
// a MISTRAL_MLAB cell represents one of these 32 address by 1-bit cells, and
|
||||
// 20 of them represent a physical MLAB.
|
||||
//
|
||||
// How the MLAB works
|
||||
// ------------------
|
||||
// MLABs are poorly documented, so the following information is based mainly
|
||||
// on the simulation model and my knowledge of how memories like these work.
|
||||
// Additionally, note that the ports of MISTRAL_MLAB are the ones auto-generated
|
||||
// by the Yosys `memory_bram` pass, and it doesn't make sense to me to use
|
||||
// `techmap` just for the sake of renaming the cell ports.
|
||||
//
|
||||
// The MLAB can be initialised to any value, but unfortunately Quartus only
|
||||
// allows memory initialisation from a file. Since Yosys doesn't preserve input
|
||||
// file information, or write the contents of an `initial` block to a file,
|
||||
// Yosys can't currently initialise the MLAB in a way Quartus will accept.
|
||||
//
|
||||
// The MLAB takes in data from A1DATA at the rising edge of CLK1, and if A1EN
|
||||
// is high, writes it to the address in A1ADDR. A1EN can therefore be used to
|
||||
// conditionally write data to the MLAB.
|
||||
//
|
||||
// Simultaneously, the MLAB reads data from B1ADDR, and outputs it to B1DATA,
|
||||
// asynchronous to CLK1 and ignoring A1EN. If a synchronous read is needed
|
||||
// then the output can be fed to embedded flops. Presently, Yosys assumes
|
||||
// Quartus will pack external flops into the MLAB, but this is an assumption
|
||||
// that needs testing.
|
||||
|
||||
// The vendor sim model outputs 'x for a very short period (a few
|
||||
// combinational delta cycles) after each write. This has been omitted from
|
||||
// the following model because it's very difficult to trigger this in practice
|
||||
// as clock cycles will be much longer than any potential blip of 'x, so the
|
||||
// model can be treated as always returning a defined result.
|
||||
module MISTRAL_MLAB(input [4:0] A1ADDR, input A1DATA, A1EN, CLK1, input [4:0] B1ADDR, output B1DATA);
|
||||
|
||||
reg [31:0] mem = 32'b0;
|
||||
|
||||
always @(posedge CLK1)
|
||||
if (A1EN) mem[A1ADDR] <= A1DATA;
|
||||
|
||||
assign B1DATA = mem[B1ADDR];
|
||||
|
||||
endmodule
|
|
@ -1,8 +1,10 @@
|
|||
`ifdef cyclonev
|
||||
`define LCELL cyclonev_lcell_comb
|
||||
`define MLAB cyclonev_mlab_cell
|
||||
`endif
|
||||
`ifdef cyclone10gx
|
||||
`define LCELL cyclone10gx_lcell_comb
|
||||
`define MLAB cyclone10gx_mlab_cell
|
||||
`endif
|
||||
|
||||
module __MISTRAL_VCC(output Q);
|
||||
|
@ -80,3 +82,40 @@ parameter LUT1 = 16'h0000;
|
|||
`LCELL #(.lut_mask({16'h0, LUT1, 16'h0, LUT0})) _TECHMAP_REPLACE_ (.dataa(A), .datab(B), .datac(C), .datad(D0), .dataf(D1), .cin(CI), .sumout(SO), .cout(CO));
|
||||
|
||||
endmodule
|
||||
|
||||
|
||||
module MISTRAL_MLAB(input [4:0] A1ADDR, input A1DATA, A1EN, CLK1, input [4:0] B1ADDR, output B1DATA);
|
||||
|
||||
// Here we get to an unfortunate situation. The cell has a mem_init0 parameter,
|
||||
// which takes in a hexadecimal string that could be used to initialise RAM.
|
||||
// In the vendor simulation models, this appears to work fine, but Quartus,
|
||||
// either intentionally or not, forgets about this parameter and initialises the
|
||||
// RAM to zero.
|
||||
//
|
||||
// Because of this, RAM initialisation is presently disabled, but the source
|
||||
// used to generate mem_init0 is kept (commented out) in case this gets fixed
|
||||
// or an undocumented way to get Quartus to initialise from mem_init0 is found.
|
||||
|
||||
`MLAB #(
|
||||
.logical_ram_name("MISTRAL_MLAB"),
|
||||
.logical_ram_depth(32),
|
||||
.logical_ram_width(1),
|
||||
.mixed_port_feed_through_mode("Dont Care"),
|
||||
.first_bit_number(0),
|
||||
.first_address(0),
|
||||
.last_address(31),
|
||||
.address_width(5),
|
||||
.data_width(1),
|
||||
.byte_enable_mask_width(1),
|
||||
.port_b_data_out_clock("NONE"),
|
||||
// .mem_init0($sformatf("%08x", INIT))
|
||||
) _TECHMAP_REPLACE_ (
|
||||
.portaaddr(A1ADDR),
|
||||
.portadatain(A1DATA),
|
||||
.portbaddr(B1ADDR),
|
||||
.portbdataout(B1DATA),
|
||||
.ena0(A1EN),
|
||||
.clk0(CLK1)
|
||||
);
|
||||
|
||||
endmodule
|
||||
|
|
|
@ -164,6 +164,7 @@ struct SynthIntelALMPass : public ScriptPass {
|
|||
run(stringf("read_verilog -sv -lib +/intel/%s/cells_sim.v", family_opt.c_str()));
|
||||
run(stringf("read_verilog -specify -lib -D %s +/intel_alm/common/alm_sim.v", family_opt.c_str()));
|
||||
run(stringf("read_verilog -specify -lib -D %s +/intel_alm/common/dff_sim.v", family_opt.c_str()));
|
||||
run(stringf("read_verilog -specify -lib -D %s +/intel_alm/common/mem_sim.v", family_opt.c_str()));
|
||||
|
||||
// Misc and common cells
|
||||
run("read_verilog -lib +/intel/common/altpll_bb.v");
|
||||
|
@ -190,7 +191,6 @@ struct SynthIntelALMPass : public ScriptPass {
|
|||
|
||||
if (!nolutram && check_label("map_lutram", "(skip if -nolutram)")) {
|
||||
run("memory_bram -rules +/intel_alm/common/lutram_mlab.txt", "(for Cyclone V / Cyclone 10GX)");
|
||||
run("techmap -map +/intel_alm/common/lutram_mlab_map.v", "(for Cyclone V / Cyclone 10GX)");
|
||||
}
|
||||
|
||||
if (check_label("map_ffram")) {
|
||||
|
|
|
@ -0,0 +1,20 @@
|
|||
read_verilog ../common/lutram.v
|
||||
hierarchy -top lutram_1w1r
|
||||
proc
|
||||
memory -nomap
|
||||
equiv_opt -run :prove -map +/intel_alm/common/alm_sim.v -map +/intel_alm/common/dff_sim.v -map +/intel_alm/common/mem_sim.v synth_intel_alm -family cyclonev -nobram
|
||||
memory
|
||||
opt -full
|
||||
|
||||
miter -equiv -flatten -make_assert -make_outputs gold gate miter
|
||||
sat -verify -prove-asserts -seq 5 -set-init-zero -show-inputs -show-outputs miter
|
||||
|
||||
design -load postopt
|
||||
cd lutram_1w1r
|
||||
select -assert-count 16 t:MISTRAL_MLAB
|
||||
select -assert-count 1 t:MISTRAL_NOT
|
||||
select -assert-count 2 t:MISTRAL_ALUT2
|
||||
select -assert-count 8 t:MISTRAL_ALUT3
|
||||
select -assert-count 17 t:MISTRAL_FF
|
||||
select -assert-none t:MISTRAL_NOT t:MISTRAL_ALUT2 t:MISTRAL_ALUT3 t:MISTRAL_FF t:MISTRAL_MLAB %% t:* %D
|
||||
|
Loading…
Reference in New Issue