intel_alm: direct LUTRAM cell instantiation

By instantiating the LUTRAM cell directly, we avoid a trip through
altsyncram, which speeds up Quartus synthesis time. This also gives
a little more flexibility, as Yosys can build RAMs out of individual
32x1 LUTRAM cells.

While working on this, I discovered that the mem_init0 parameter of
<family>_mlab_cell gets ignored by Quartus.
This commit is contained in:
Dan Ravensloft 2020-04-16 12:24:04 +01:00 committed by Marcelina Kościelnicka
parent 0610424940
commit 5b779f7f4e
9 changed files with 163 additions and 52 deletions

View File

@ -7,13 +7,13 @@ $(eval $(call add_share_file,share/intel_alm/common,techlibs/intel_alm/common/al
$(eval $(call add_share_file,share/intel_alm/common,techlibs/intel_alm/common/arith_alm_map.v))
$(eval $(call add_share_file,share/intel_alm/common,techlibs/intel_alm/common/dff_map.v))
$(eval $(call add_share_file,share/intel_alm/common,techlibs/intel_alm/common/dff_sim.v))
$(eval $(call add_share_file,share/intel_alm/common,techlibs/intel_alm/common/mem_sim.v))
# RAM
bramtypes := m10k m20k
$(foreach bramtype, $(bramtypes), $(eval $(call add_share_file,share/intel_alm/common,techlibs/intel_alm/common/bram_$(bramtype).txt)))
$(foreach bramtype, $(bramtypes), $(eval $(call add_share_file,share/intel_alm/common,techlibs/intel_alm/common/bram_$(bramtype)_map.v)))
$(eval $(call add_share_file,share/intel_alm/common,techlibs/intel_alm/common/lutram_mlab.txt))
$(eval $(call add_share_file,share/intel_alm/common,techlibs/intel_alm/common/lutram_mlab_map.v))
# Miscellaneous
$(eval $(call add_share_file,share/intel_alm/common,techlibs/intel_alm/common/megafunction_bb.v))

View File

@ -28,4 +28,4 @@ altsyncram #(
.clock1(CLK1)
);
endmodule
endmodule

View File

@ -1,20 +1,18 @@
bram __MISTRAL_MLAB
init 0 # TODO: Re-enable when I figure out how LUTRAM init works
abits 5
dbits 16 @D32x16
dbits 18 @D32x18
dbits 20 @D32x20
groups 2
ports 1 1
wrmode 1 0
# read enable
enable 1 0
transp 1 0
clocks 1 2
clkpol 1 1
endbram
match __MISTRAL_MLAB
min efficiency 5
make_outreg
endmatch
bram MISTRAL_MLAB
init 0 # TODO: Re-enable when Yosys remembers the original filename.
abits 5
dbits 1
groups 2
ports 1 1
wrmode 1 0
# write enable
enable 1 0
transp 0 0
clocks 1 0
clkpol 1 1
endbram
match MISTRAL_MLAB
min efficiency 5
make_outreg
endmatch

View File

@ -1,29 +0,0 @@
module __MISTRAL_MLAB(CLK1, CLK2, A1ADDR, A1DATA, A1EN, B1ADDR, B1DATA);
parameter CFG_ABITS = 5;
parameter CFG_DBITS = 20;
input CLK1, CLK2;
input [CFG_ABITS-1:0] A1ADDR, B1ADDR;
input [CFG_DBITS-1:0] A1DATA;
input A1EN;
output [CFG_DBITS-1:0] B1DATA;
altsyncram #(
.operation_mode("dual_port"),
.ram_block_type("mlab"),
.widthad_a(CFG_ABITS),
.width_a(CFG_DBITS),
.widthad_b(CFG_ABITS),
.width_b(CFG_DBITS),
) _TECHMAP_REPLACE_ (
.address_a(A1ADDR),
.data_a(A1DATA),
.wren_a(A1EN),
.address_b(B1ADDR),
.q_b(B1DATA),
.clock0(CLK1),
.clock1(CLK1),
);
endmodule

View File

@ -106,3 +106,26 @@ input aclr1;
output eccstatus;
endmodule
(* blackbox *)
module cyclonev_mlab_cell(portaaddr, portadatain, portbaddr, portbdataout, ena0, clk0, clk1);
parameter logical_ram_name = "";
parameter logical_ram_depth = 32;
parameter logical_ram_width = 20;
parameter mixed_port_feed_through_mode = "new";
parameter first_bit_number = 0;
parameter first_address = 0;
parameter last_address = 31;
parameter address_width = 5;
parameter data_width = 1;
parameter byte_enable_mask_width = 1;
parameter port_b_data_out_clock = "NONE";
parameter [639:0] mem_init0 = 640'b0;
input [address_width-1:0] portaaddr, portbaddr;
input [data_width-1:0] portadatain;
output [data_width-1:0] portbdataout;
input ena0, clk0, clk1;
endmodule

View File

@ -0,0 +1,60 @@
// The MLAB
// --------
// In addition to Logic Array Blocks (LABs) that contain ten Adaptive Logic
// Modules (ALMs, see alm_sim.v), the Cyclone V/10GX also contain
// Memory/Logic Array Blocks (MLABs) that can act as either ten ALMs, or utilise
// the memory the ALM uses to store the look-up table data for general usage,
// producing a 32 address by 20-bit block of memory. MLABs are spread out
// around the chip, so they can be placed near where they are needed, rather than
// being comparatively limited in placement for a deep but narrow memory such as
// the M10K memory block.
//
// MLABs are used mainly for shallow but wide memories, such as CPU register
// files (which have perhaps 32 registers that are comparatively wide (16/32-bit))
// or shift registers (by using the output of the Nth bit as input for the N+1th
// bit).
//
// Oddly, instead of providing a block 32 address by 20-bit cell, Quartus asks
// synthesis tools to build MLABs out of 32 address by 1-bit cells, and tries
// to put these cells in the same MLAB during cell placement. Because of this
// a MISTRAL_MLAB cell represents one of these 32 address by 1-bit cells, and
// 20 of them represent a physical MLAB.
//
// How the MLAB works
// ------------------
// MLABs are poorly documented, so the following information is based mainly
// on the simulation model and my knowledge of how memories like these work.
// Additionally, note that the ports of MISTRAL_MLAB are the ones auto-generated
// by the Yosys `memory_bram` pass, and it doesn't make sense to me to use
// `techmap` just for the sake of renaming the cell ports.
//
// The MLAB can be initialised to any value, but unfortunately Quartus only
// allows memory initialisation from a file. Since Yosys doesn't preserve input
// file information, or write the contents of an `initial` block to a file,
// Yosys can't currently initialise the MLAB in a way Quartus will accept.
//
// The MLAB takes in data from A1DATA at the rising edge of CLK1, and if A1EN
// is high, writes it to the address in A1ADDR. A1EN can therefore be used to
// conditionally write data to the MLAB.
//
// Simultaneously, the MLAB reads data from B1ADDR, and outputs it to B1DATA,
// asynchronous to CLK1 and ignoring A1EN. If a synchronous read is needed
// then the output can be fed to embedded flops. Presently, Yosys assumes
// Quartus will pack external flops into the MLAB, but this is an assumption
// that needs testing.
// The vendor sim model outputs 'x for a very short period (a few
// combinational delta cycles) after each write. This has been omitted from
// the following model because it's very difficult to trigger this in practice
// as clock cycles will be much longer than any potential blip of 'x, so the
// model can be treated as always returning a defined result.
module MISTRAL_MLAB(input [4:0] A1ADDR, input A1DATA, A1EN, CLK1, input [4:0] B1ADDR, output B1DATA);
reg [31:0] mem = 32'b0;
always @(posedge CLK1)
if (A1EN) mem[A1ADDR] <= A1DATA;
assign B1DATA = mem[B1ADDR];
endmodule

View File

@ -1,8 +1,10 @@
`ifdef cyclonev
`define LCELL cyclonev_lcell_comb
`define MLAB cyclonev_mlab_cell
`endif
`ifdef cyclone10gx
`define LCELL cyclone10gx_lcell_comb
`define MLAB cyclone10gx_mlab_cell
`endif
module __MISTRAL_VCC(output Q);
@ -80,3 +82,40 @@ parameter LUT1 = 16'h0000;
`LCELL #(.lut_mask({16'h0, LUT1, 16'h0, LUT0})) _TECHMAP_REPLACE_ (.dataa(A), .datab(B), .datac(C), .datad(D0), .dataf(D1), .cin(CI), .sumout(SO), .cout(CO));
endmodule
module MISTRAL_MLAB(input [4:0] A1ADDR, input A1DATA, A1EN, CLK1, input [4:0] B1ADDR, output B1DATA);
// Here we get to an unfortunate situation. The cell has a mem_init0 parameter,
// which takes in a hexadecimal string that could be used to initialise RAM.
// In the vendor simulation models, this appears to work fine, but Quartus,
// either intentionally or not, forgets about this parameter and initialises the
// RAM to zero.
//
// Because of this, RAM initialisation is presently disabled, but the source
// used to generate mem_init0 is kept (commented out) in case this gets fixed
// or an undocumented way to get Quartus to initialise from mem_init0 is found.
`MLAB #(
.logical_ram_name("MISTRAL_MLAB"),
.logical_ram_depth(32),
.logical_ram_width(1),
.mixed_port_feed_through_mode("Dont Care"),
.first_bit_number(0),
.first_address(0),
.last_address(31),
.address_width(5),
.data_width(1),
.byte_enable_mask_width(1),
.port_b_data_out_clock("NONE"),
// .mem_init0($sformatf("%08x", INIT))
) _TECHMAP_REPLACE_ (
.portaaddr(A1ADDR),
.portadatain(A1DATA),
.portbaddr(B1ADDR),
.portbdataout(B1DATA),
.ena0(A1EN),
.clk0(CLK1)
);
endmodule

View File

@ -164,6 +164,7 @@ struct SynthIntelALMPass : public ScriptPass {
run(stringf("read_verilog -sv -lib +/intel/%s/cells_sim.v", family_opt.c_str()));
run(stringf("read_verilog -specify -lib -D %s +/intel_alm/common/alm_sim.v", family_opt.c_str()));
run(stringf("read_verilog -specify -lib -D %s +/intel_alm/common/dff_sim.v", family_opt.c_str()));
run(stringf("read_verilog -specify -lib -D %s +/intel_alm/common/mem_sim.v", family_opt.c_str()));
// Misc and common cells
run("read_verilog -lib +/intel/common/altpll_bb.v");
@ -190,7 +191,6 @@ struct SynthIntelALMPass : public ScriptPass {
if (!nolutram && check_label("map_lutram", "(skip if -nolutram)")) {
run("memory_bram -rules +/intel_alm/common/lutram_mlab.txt", "(for Cyclone V / Cyclone 10GX)");
run("techmap -map +/intel_alm/common/lutram_mlab_map.v", "(for Cyclone V / Cyclone 10GX)");
}
if (check_label("map_ffram")) {

View File

@ -0,0 +1,20 @@
read_verilog ../common/lutram.v
hierarchy -top lutram_1w1r
proc
memory -nomap
equiv_opt -run :prove -map +/intel_alm/common/alm_sim.v -map +/intel_alm/common/dff_sim.v -map +/intel_alm/common/mem_sim.v synth_intel_alm -family cyclonev -nobram
memory
opt -full
miter -equiv -flatten -make_assert -make_outputs gold gate miter
sat -verify -prove-asserts -seq 5 -set-init-zero -show-inputs -show-outputs miter
design -load postopt
cd lutram_1w1r
select -assert-count 16 t:MISTRAL_MLAB
select -assert-count 1 t:MISTRAL_NOT
select -assert-count 2 t:MISTRAL_ALUT2
select -assert-count 8 t:MISTRAL_ALUT3
select -assert-count 17 t:MISTRAL_FF
select -assert-none t:MISTRAL_NOT t:MISTRAL_ALUT2 t:MISTRAL_ALUT3 t:MISTRAL_FF t:MISTRAL_MLAB %% t:* %D