Share common tests

This commit is contained in:
Miodrag Milanovic 2019-10-18 12:19:59 +02:00
parent ab98f2dccf
commit 5603595e5c
103 changed files with 179 additions and 1317 deletions

View File

@ -1,4 +1,4 @@
read_verilog add_sub.v
read_verilog ../common/add_sub.v
hierarchy -top top
proc
equiv_opt -assert -map +/anlogic/cells_sim.v synth_anlogic # equivalency check

View File

@ -1,4 +1,4 @@
read_verilog counter.v
read_verilog ../common/counter.v
hierarchy -top top
proc
flatten

View File

@ -1,4 +1,4 @@
read_verilog dffs.v
read_verilog ../common/dffs.v
design -save read
hierarchy -top dff

View File

@ -1,4 +1,4 @@
read_verilog fsm.v
read_verilog ../common/fsm.v
hierarchy -top fsm
proc
#flatten

View File

@ -1,4 +1,4 @@
read_verilog latches.v
read_verilog ../common/latches.v
design -save read
hierarchy -top latchp

View File

@ -0,0 +1,11 @@
read_verilog ../common/logic.v
hierarchy -top top
proc
equiv_opt -assert -map +/anlogic/cells_sim.v synth_anlogic # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd top # Constrain all select calls below inside the top module
select -assert-count 1 t:AL_MAP_LUT1
select -assert-count 6 t:AL_MAP_LUT2
select -assert-count 2 t:AL_MAP_LUT4
select -assert-none t:AL_MAP_LUT1 t:AL_MAP_LUT2 t:AL_MAP_LUT4 %% t:* %D

View File

@ -1,4 +1,4 @@
read_verilog mux.v
read_verilog ../common/mux.v
design -save read
hierarchy -top mux2

View File

@ -1,4 +1,4 @@
read_verilog shifter.v
read_verilog ../common/shifter.v
hierarchy -top top
proc
flatten

View File

@ -1,8 +0,0 @@
module tristate (en, i, o);
input en;
input i;
output o;
assign o = en ? i : 1'bz;
endmodule

View File

@ -1,4 +1,4 @@
read_verilog tribuf.v
read_verilog ../common/tribuf.v
hierarchy -top tristate
proc
flatten

View File

@ -1,13 +0,0 @@
module top
(
input [3:0] x,
input [3:0] y,
output [3:0] A,
output [3:0] B
);
assign A = x + y;
assign B = x - y;
endmodule

View File

@ -1,4 +1,4 @@
read_verilog add_sub.v
read_verilog ../common/add_sub.v
hierarchy -top top
proc
equiv_opt -assert -map +/ecp5/cells_sim.v synth_ecp5 # equivalency check

View File

@ -1,4 +1,4 @@
read_verilog adffs.v
read_verilog ../common/adffs.v
design -save read
hierarchy -top adff

View File

@ -1,17 +0,0 @@
module top (
out,
clk,
reset
);
output [7:0] out;
input clk, reset;
reg [7:0] out;
always @(posedge clk, posedge reset)
if (reset) begin
out <= 8'b0 ;
end else
out <= out + 1;
endmodule

View File

@ -1,4 +1,4 @@
read_verilog counter.v
read_verilog ../common/counter.v
hierarchy -top top
proc
flatten

View File

@ -1,15 +0,0 @@
module dff
( input d, clk, output reg q );
always @( posedge clk )
q <= d;
endmodule
module dffe
( input d, clk, en, output reg q );
initial begin
q = 0;
end
always @( posedge clk )
if ( en )
q <= d;
endmodule

View File

@ -1,4 +1,4 @@
read_verilog dffs.v
read_verilog ../common/dffs.v
design -save read
hierarchy -top dff

View File

@ -1,55 +0,0 @@
module fsm (
clock,
reset,
req_0,
req_1,
gnt_0,
gnt_1
);
input clock,reset,req_0,req_1;
output gnt_0,gnt_1;
wire clock,reset,req_0,req_1;
reg gnt_0,gnt_1;
parameter SIZE = 3 ;
parameter IDLE = 3'b001,GNT0 = 3'b010,GNT1 = 3'b100,GNT2 = 3'b101 ;
reg [SIZE-1:0] state;
reg [SIZE-1:0] next_state;
always @ (posedge clock)
begin : FSM
if (reset == 1'b1) begin
state <= #1 IDLE;
gnt_0 <= 0;
gnt_1 <= 0;
end else
case(state)
IDLE : if (req_0 == 1'b1) begin
state <= #1 GNT0;
gnt_0 <= 1;
end else if (req_1 == 1'b1) begin
gnt_1 <= 1;
state <= #1 GNT0;
end else begin
state <= #1 IDLE;
end
GNT0 : if (req_0 == 1'b1) begin
state <= #1 GNT0;
end else begin
gnt_0 <= 0;
state <= #1 IDLE;
end
GNT1 : if (req_1 == 1'b1) begin
state <= #1 GNT2;
gnt_1 <= req_0;
end
GNT2 : if (req_0 == 1'b1) begin
state <= #1 GNT1;
gnt_1 <= req_1;
end
default : state <= #1 IDLE;
endcase
end
endmodule

View File

@ -1,4 +1,4 @@
read_verilog fsm.v
read_verilog ../common/fsm.v
hierarchy -top fsm
proc
flatten

View File

@ -1,24 +0,0 @@
module latchp
( input d, clk, en, output reg q );
always @*
if ( en )
q <= d;
endmodule
module latchn
( input d, clk, en, output reg q );
always @*
if ( !en )
q <= d;
endmodule
module latchsr
( input d, clk, en, clr, pre, output reg q );
always @*
if ( clr )
q <= 1'b0;
else if ( pre )
q <= 1'b1;
else if ( en )
q <= d;
endmodule

View File

@ -1,5 +1,4 @@
read_verilog latches.v
read_verilog ../common/latches.v
design -save read
hierarchy -top latchp

View File

@ -1,4 +1,4 @@
read_verilog logic.v
read_verilog ../common/logic.v
hierarchy -top top
proc
equiv_opt -assert -map +/ecp5/cells_sim.v synth_ecp5 # equivalency check

View File

@ -1,4 +1,4 @@
read_verilog mul.v
read_verilog ../common/mul.v
hierarchy -top top
proc
# Blocked by issue #1358 (Missing ECP5 simulation models)

View File

@ -1,66 +0,0 @@
module mux2 (S,A,B,Y);
input S;
input A,B;
output reg Y;
always @(*)
Y = (S)? B : A;
endmodule
module mux4 ( S, D, Y );
input[1:0] S;
input[3:0] D;
output Y;
reg Y;
wire[1:0] S;
wire[3:0] D;
always @*
begin
case( S )
0 : Y = D[0];
1 : Y = D[1];
2 : Y = D[2];
3 : Y = D[3];
endcase
end
endmodule
module mux8 ( S, D, Y );
input[2:0] S;
input[7:0] D;
output Y;
reg Y;
wire[2:0] S;
wire[7:0] D;
always @*
begin
case( S )
0 : Y = D[0];
1 : Y = D[1];
2 : Y = D[2];
3 : Y = D[3];
4 : Y = D[4];
5 : Y = D[5];
6 : Y = D[6];
7 : Y = D[7];
endcase
end
endmodule
module mux16 (D, S, Y);
input [15:0] D;
input [3:0] S;
output Y;
assign Y = D[S];
endmodule

View File

@ -1,4 +1,4 @@
read_verilog mux.v
read_verilog ../common/mux.v
design -save read
hierarchy -top mux2

View File

@ -1,16 +0,0 @@
module top (
out,
clk,
in
);
output [7:0] out;
input signed clk, in;
reg signed [7:0] out = 0;
always @(posedge clk)
begin
out <= out >> 1;
out[7] <= in;
end
endmodule

View File

@ -1,4 +1,4 @@
read_verilog shifter.v
read_verilog ../common/shifter.v
hierarchy -top top
proc
flatten

View File

@ -1,8 +0,0 @@
module tristate (en, i, o);
input en;
input i;
output o;
assign o = en ? i : 1'bz;
endmodule

View File

@ -1,4 +1,4 @@
read_verilog tribuf.v
read_verilog ../common/tribuf.v
hierarchy -top tristate
proc
flatten

View File

@ -1,13 +0,0 @@
module top
(
input [3:0] x,
input [3:0] y,
output [3:0] A,
output [3:0] B
);
assign A = x + y;
assign B = x - y;
endmodule

View File

@ -1,4 +1,4 @@
read_verilog add_sub.v
read_verilog ../common/add_sub.v
hierarchy -top top
proc
equiv_opt -assert -map +/efinix/cells_sim.v synth_efinix # equivalency check

View File

@ -1,47 +0,0 @@
module adff
( input d, clk, clr, output reg q );
initial begin
q = 0;
end
always @( posedge clk, posedge clr )
if ( clr )
q <= 1'b0;
else
q <= d;
endmodule
module adffn
( input d, clk, clr, output reg q );
initial begin
q = 0;
end
always @( posedge clk, negedge clr )
if ( !clr )
q <= 1'b0;
else
q <= d;
endmodule
module dffs
( input d, clk, pre, clr, output reg q );
initial begin
q = 0;
end
always @( posedge clk )
if ( pre )
q <= 1'b1;
else
q <= d;
endmodule
module ndffnr
( input d, clk, pre, clr, output reg q );
initial begin
q = 0;
end
always @( negedge clk )
if ( !clr )
q <= 1'b0;
else
q <= d;
endmodule

View File

@ -1,4 +1,4 @@
read_verilog adffs.v
read_verilog ../common/adffs.v
design -save read
hierarchy -top adff

View File

@ -1,17 +0,0 @@
module top (
out,
clk,
reset
);
output [7:0] out;
input clk, reset;
reg [7:0] out;
always @(posedge clk, posedge reset)
if (reset) begin
out <= 8'b0 ;
end else
out <= out + 1;
endmodule

View File

@ -1,4 +1,4 @@
read_verilog counter.v
read_verilog ../common/counter.v
hierarchy -top top
proc
flatten

View File

@ -1,15 +0,0 @@
module dff
( input d, clk, output reg q );
always @( posedge clk )
q <= d;
endmodule
module dffe
( input d, clk, en, output reg q );
initial begin
q = 0;
end
always @( posedge clk )
if ( en )
q <= d;
endmodule

View File

@ -1,4 +1,4 @@
read_verilog dffs.v
read_verilog ../common/dffs.v
design -save read
hierarchy -top dff

View File

@ -1,55 +0,0 @@
module fsm (
clock,
reset,
req_0,
req_1,
gnt_0,
gnt_1
);
input clock,reset,req_0,req_1;
output gnt_0,gnt_1;
wire clock,reset,req_0,req_1;
reg gnt_0,gnt_1;
parameter SIZE = 3 ;
parameter IDLE = 3'b001,GNT0 = 3'b010,GNT1 = 3'b100,GNT2 = 3'b101 ;
reg [SIZE-1:0] state;
reg [SIZE-1:0] next_state;
always @ (posedge clock)
begin : FSM
if (reset == 1'b1) begin
state <= #1 IDLE;
gnt_0 <= 0;
gnt_1 <= 0;
end else
case(state)
IDLE : if (req_0 == 1'b1) begin
state <= #1 GNT0;
gnt_0 <= 1;
end else if (req_1 == 1'b1) begin
gnt_1 <= 1;
state <= #1 GNT0;
end else begin
state <= #1 IDLE;
end
GNT0 : if (req_0 == 1'b1) begin
state <= #1 GNT0;
end else begin
gnt_0 <= 0;
state <= #1 IDLE;
end
GNT1 : if (req_1 == 1'b1) begin
state <= #1 GNT2;
gnt_1 <= req_0;
end
GNT2 : if (req_0 == 1'b1) begin
state <= #1 GNT1;
gnt_1 <= req_1;
end
default : state <= #1 IDLE;
endcase
end
endmodule

View File

@ -1,4 +1,4 @@
read_verilog fsm.v
read_verilog ../common/fsm.v
hierarchy -top fsm
proc
flatten

View File

@ -1,24 +0,0 @@
module latchp
( input d, clk, en, output reg q );
always @*
if ( en )
q <= d;
endmodule
module latchn
( input d, clk, en, output reg q );
always @*
if ( !en )
q <= d;
endmodule
module latchsr
( input d, clk, en, clr, pre, output reg q );
always @*
if ( clr )
q <= 1'b0;
else if ( pre )
q <= 1'b1;
else if ( en )
q <= d;
endmodule

View File

@ -1,4 +1,4 @@
read_verilog latches.v
read_verilog ../common/latches.v
design -save read
hierarchy -top latchp

View File

@ -1,18 +0,0 @@
module top
(
input [0:7] in,
output B1,B2,B3,B4,B5,B6,B7,B8,B9,B10
);
assign B1 = in[0] & in[1];
assign B2 = in[0] | in[1];
assign B3 = in[0] ~& in[1];
assign B4 = in[0] ~| in[1];
assign B5 = in[0] ^ in[1];
assign B6 = in[0] ~^ in[1];
assign B7 = ~in[0];
assign B8 = in[0];
assign B9 = in[0:1] && in [2:3];
assign B10 = in[0:1] || in [2:3];
endmodule

View File

@ -1,4 +1,4 @@
read_verilog logic.v
read_verilog ../common/logic.v
hierarchy -top top
proc
equiv_opt -assert -map +/efinix/cells_sim.v synth_efinix # equivalency check

View File

@ -1,65 +0,0 @@
module mux2 (S,A,B,Y);
input S;
input A,B;
output reg Y;
always @(*)
Y = (S)? B : A;
endmodule
module mux4 ( S, D, Y );
input[1:0] S;
input[3:0] D;
output Y;
reg Y;
wire[1:0] S;
wire[3:0] D;
always @*
begin
case( S )
0 : Y = D[0];
1 : Y = D[1];
2 : Y = D[2];
3 : Y = D[3];
endcase
end
endmodule
module mux8 ( S, D, Y );
input[2:0] S;
input[7:0] D;
output Y;
reg Y;
wire[2:0] S;
wire[7:0] D;
always @*
begin
case( S )
0 : Y = D[0];
1 : Y = D[1];
2 : Y = D[2];
3 : Y = D[3];
4 : Y = D[4];
5 : Y = D[5];
6 : Y = D[6];
7 : Y = D[7];
endcase
end
endmodule
module mux16 (D, S, Y);
input [15:0] D;
input [3:0] S;
output Y;
assign Y = D[S];
endmodule

View File

@ -1,4 +1,4 @@
read_verilog mux.v
read_verilog ../common/mux.v
design -save read
hierarchy -top mux2

View File

@ -1,16 +0,0 @@
module top (
out,
clk,
in
);
output [7:0] out;
input signed clk, in;
reg signed [7:0] out = 0;
always @(posedge clk)
begin
out <= out << 1;
out[7] <= in;
end
endmodule

View File

@ -1,4 +1,4 @@
read_verilog shifter.v
read_verilog ../common/shifter.v
hierarchy -top top
proc
flatten

View File

@ -1,4 +1,4 @@
read_verilog tribuf.v
read_verilog ../common/tribuf.v
hierarchy -top tristate
proc
tribuf

View File

@ -1,13 +0,0 @@
module top
(
input [3:0] x,
input [3:0] y,
output [3:0] A,
output [3:0] B
);
assign A = x + y;
assign B = x - y;
endmodule

View File

@ -1,4 +1,4 @@
read_verilog add_sub.v
read_verilog ../common/add_sub.v
hierarchy -top top
equiv_opt -assert -map +/ice40/cells_sim.v synth_ice40 # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)

View File

@ -1,87 +0,0 @@
module adff
( input d, clk, clr, output reg q );
initial begin
q = 0;
end
always @( posedge clk, posedge clr )
if ( clr )
q <= 1'b0;
else
q <= d;
endmodule
module adffn
( input d, clk, clr, output reg q );
initial begin
q = 0;
end
always @( posedge clk, negedge clr )
if ( !clr )
q <= 1'b0;
else
q <= d;
endmodule
module dffs
( input d, clk, pre, clr, output reg q );
initial begin
q = 0;
end
always @( posedge clk, posedge pre )
if ( pre )
q <= 1'b1;
else
q <= d;
endmodule
module ndffnr
( input d, clk, pre, clr, output reg q );
initial begin
q = 0;
end
always @( negedge clk, negedge pre )
if ( !pre )
q <= 1'b1;
else
q <= d;
endmodule
module top (
input clk,
input clr,
input pre,
input a,
output b,b1,b2,b3
);
dffs u_dffs (
.clk (clk ),
.clr (clr),
.pre (pre),
.d (a ),
.q (b )
);
ndffnr u_ndffnr (
.clk (clk ),
.clr (clr),
.pre (pre),
.d (a ),
.q (b1 )
);
adff u_adff (
.clk (clk ),
.clr (clr),
.d (a ),
.q (b2 )
);
adffn u_adffn (
.clk (clk ),
.clr (clr),
.d (a ),
.q (b3 )
);
endmodule

View File

@ -1,11 +1,39 @@
read_verilog adffs.v
read_verilog ../common/adffs.v
design -save read
hierarchy -top adff
proc
flatten
equiv_opt -multiclock -assert -map +/ice40/cells_sim.v synth_ice40 # equivalency check
equiv_opt -async2sync -assert -map +/ice40/cells_sim.v synth_ice40 # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd top # Constrain all select calls below inside the top module
select -assert-count 1 t:SB_DFFNS
select -assert-count 2 t:SB_DFFR
select -assert-count 1 t:SB_DFFS
select -assert-count 2 t:SB_LUT4
select -assert-none t:SB_DFFNS t:SB_DFFR t:SB_DFFS t:SB_LUT4 %% t:* %D
cd adff # Constrain all select calls below inside the top module
select -assert-count 1 t:SB_DFFR
select -assert-none t:SB_DFFR %% t:* %D
design -load read
hierarchy -top adffn
proc
equiv_opt -async2sync -assert -map +/ice40/cells_sim.v synth_ice40 # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd adffn # Constrain all select calls below inside the top module
select -assert-count 1 t:SB_DFFR
select -assert-count 1 t:SB_LUT4
select -assert-none t:SB_DFFR t:SB_LUT4 %% t:* %D
design -load read
hierarchy -top dffs
proc
equiv_opt -async2sync -assert -map +/ice40/cells_sim.v synth_ice40 # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd dffs # Constrain all select calls below inside the top module
select -assert-count 1 t:SB_DFFSS
select -assert-none t:SB_DFFSS %% t:* %D
design -load read
hierarchy -top ndffnr
proc
equiv_opt -async2sync -assert -map +/ice40/cells_sim.v synth_ice40 # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd ndffnr # Constrain all select calls below inside the top module
select -assert-count 1 t:SB_DFFNSR
select -assert-count 1 t:SB_LUT4
select -assert-none t:SB_DFFNSR t:SB_LUT4 %% t:* %D

View File

@ -1,17 +0,0 @@
module top (
out,
clk,
reset
);
output [7:0] out;
input clk, reset;
reg [7:0] out;
always @(posedge clk, posedge reset)
if (reset) begin
out <= 8'b0 ;
end else
out <= out + 1;
endmodule

View File

@ -1,4 +1,4 @@
read_verilog counter.v
read_verilog ../common/counter.v
hierarchy -top top
proc
flatten

View File

@ -1,37 +0,0 @@
module dff
( input d, clk, output reg q );
always @( posedge clk )
q <= d;
endmodule
module dffe
( input d, clk, en, output reg q );
initial begin
q = 0;
end
always @( posedge clk )
if ( en )
q <= d;
endmodule
module top (
input clk,
input en,
input a,
output b,b1,
);
dff u_dff (
.clk (clk ),
.d (a ),
.q (b )
);
dffe u_ndffe (
.clk (clk ),
.en (en),
.d (a ),
.q (b1 )
);
endmodule

View File

@ -1,10 +1,19 @@
read_verilog dffs.v
hierarchy -top top
read_verilog ../common/dffs.v
design -save read
hierarchy -top dff
proc
flatten
equiv_opt -assert -map +/ice40/cells_sim.v synth_ice40 # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd top # Constrain all select calls below inside the top module
cd dff # Constrain all select calls below inside the top module
select -assert-count 1 t:SB_DFF
select -assert-none t:SB_DFF %% t:* %D
design -load read
hierarchy -top dffe
proc
equiv_opt -assert -map +/ice40/cells_sim.v synth_ice40 # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd dffe # Constrain all select calls below inside the top module
select -assert-count 1 t:SB_DFFE
select -assert-none t:SB_DFF t:SB_DFFE %% t:* %D
select -assert-none t:SB_DFFE %% t:* %D

View File

@ -1,73 +0,0 @@
module fsm (
clock,
reset,
req_0,
req_1,
gnt_0,
gnt_1
);
input clock,reset,req_0,req_1;
output gnt_0,gnt_1;
wire clock,reset,req_0,req_1;
reg gnt_0,gnt_1;
parameter SIZE = 3 ;
parameter IDLE = 3'b001,GNT0 = 3'b010,GNT1 = 3'b100,GNT2 = 3'b101 ;
reg [SIZE-1:0] state;
reg [SIZE-1:0] next_state;
always @ (posedge clock)
begin : FSM
if (reset == 1'b1) begin
state <= #1 IDLE;
gnt_0 <= 0;
gnt_1 <= 0;
end else
case(state)
IDLE : if (req_0 == 1'b1) begin
state <= #1 GNT0;
gnt_0 <= 1;
end else if (req_1 == 1'b1) begin
gnt_1 <= 1;
state <= #1 GNT0;
end else begin
state <= #1 IDLE;
end
GNT0 : if (req_0 == 1'b1) begin
state <= #1 GNT0;
end else begin
gnt_0 <= 0;
state <= #1 IDLE;
end
GNT1 : if (req_1 == 1'b1) begin
state <= #1 GNT2;
gnt_1 <= req_0;
end
GNT2 : if (req_0 == 1'b1) begin
state <= #1 GNT1;
gnt_1 <= req_1;
end
default : state <= #1 IDLE;
endcase
end
endmodule
module top (
input clk,
input rst,
input a,
input b,
output g0,
output g1
);
fsm u_fsm ( .clock(clk),
.reset(rst),
.req_0(a),
.req_1(b),
.gnt_0(g0),
.gnt_1(g1));
endmodule

View File

@ -1,10 +1,10 @@
read_verilog fsm.v
hierarchy -top top
read_verilog ../common/fsm.v
hierarchy -top fsm
proc
flatten
equiv_opt -assert -map +/ice40/cells_sim.v synth_ice40 # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd top # Constrain all select calls below inside the top module
cd fsm # Constrain all select calls below inside the top module
select -assert-count 2 t:SB_DFFESR
select -assert-count 2 t:SB_DFFSR

View File

@ -1,58 +0,0 @@
module latchp
( input d, clk, en, output reg q );
always @*
if ( en )
q <= d;
endmodule
module latchn
( input d, clk, en, output reg q );
always @*
if ( !en )
q <= d;
endmodule
module latchsr
( input d, clk, en, clr, pre, output reg q );
always @*
if ( clr )
q <= 1'b0;
else if ( pre )
q <= 1'b1;
else if ( en )
q <= d;
endmodule
module top (
input clk,
input clr,
input pre,
input a,
output b,b1,b2
);
latchp u_latchp (
.en (clk ),
.d (a ),
.q (b )
);
latchn u_latchn (
.en (clk ),
.d (a ),
.q (b1 )
);
latchsr u_latchsr (
.en (clk ),
.clr (clr),
.pre (pre),
.d (a ),
.q (b2 )
);
endmodule

View File

@ -1,12 +1,33 @@
read_verilog latches.v
read_verilog ../common/latches.v
design -save read
hierarchy -top latchp
proc
flatten
# Can't run any sort of equivalence check because latches are blown to LUTs
#equiv_opt -async2sync -assert -map +/ice40/cells_sim.v synth_ice40 # equivalency check
#design -load preopt
synth_ice40
cd top
select -assert-count 4 t:SB_LUT4
cd latchp # Constrain all select calls below inside the top module
select -assert-count 1 t:SB_LUT4
select -assert-none t:SB_LUT4 %% t:* %D
design -load read
hierarchy -top latchn
proc
# Can't run any sort of equivalence check because latches are blown to LUTs
synth_ice40
cd latchn # Constrain all select calls below inside the top module
select -assert-count 1 t:SB_LUT4
select -assert-none t:SB_LUT4 %% t:* %D
design -load read
hierarchy -top latchsr
proc
# Can't run any sort of equivalence check because latches are blown to LUTs
synth_ice40
cd latchsr # Constrain all select calls below inside the top module
select -assert-count 2 t:SB_LUT4
select -assert-none t:SB_LUT4 %% t:* %D

View File

@ -1,18 +0,0 @@
module top
(
input [0:7] in,
output B1,B2,B3,B4,B5,B6,B7,B8,B9,B10
);
assign B1 = in[0] & in[1];
assign B2 = in[0] | in[1];
assign B3 = in[0] ~& in[1];
assign B4 = in[0] ~| in[1];
assign B5 = in[0] ^ in[1];
assign B6 = in[0] ~^ in[1];
assign B7 = ~in[0];
assign B8 = in[0];
assign B9 = in[0:1] && in [2:3];
assign B10 = in[0:1] || in [2:3];
endmodule

View File

@ -1,4 +1,4 @@
read_verilog logic.v
read_verilog ../common/logic.v
hierarchy -top top
equiv_opt -assert -map +/ice40/cells_sim.v synth_ice40 # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)

View File

@ -1,11 +0,0 @@
module top
(
input [5:0] x,
input [5:0] y,
output [11:0] A,
);
assign A = x * y;
endmodule

View File

@ -1,4 +1,4 @@
read_verilog mul.v
read_verilog ../common/mul.v
hierarchy -top top
equiv_opt -assert -map +/ice40/cells_sim.v synth_ice40 -dsp # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)

View File

@ -1,100 +0,0 @@
module mux2 (S,A,B,Y);
input S;
input A,B;
output reg Y;
always @(*)
Y = (S)? B : A;
endmodule
module mux4 ( S, D, Y );
input[1:0] S;
input[3:0] D;
output Y;
reg Y;
wire[1:0] S;
wire[3:0] D;
always @*
begin
case( S )
0 : Y = D[0];
1 : Y = D[1];
2 : Y = D[2];
3 : Y = D[3];
endcase
end
endmodule
module mux8 ( S, D, Y );
input[2:0] S;
input[7:0] D;
output Y;
reg Y;
wire[2:0] S;
wire[7:0] D;
always @*
begin
case( S )
0 : Y = D[0];
1 : Y = D[1];
2 : Y = D[2];
3 : Y = D[3];
4 : Y = D[4];
5 : Y = D[5];
6 : Y = D[6];
7 : Y = D[7];
endcase
end
endmodule
module mux16 (D, S, Y);
input [15:0] D;
input [3:0] S;
output Y;
assign Y = D[S];
endmodule
module top (
input [3:0] S,
input [15:0] D,
output M2,M4,M8,M16
);
mux2 u_mux2 (
.S (S[0]),
.A (D[0]),
.B (D[1]),
.Y (M2)
);
mux4 u_mux4 (
.S (S[1:0]),
.D (D[3:0]),
.Y (M4)
);
mux8 u_mux8 (
.S (S[2:0]),
.D (D[7:0]),
.Y (M8)
);
mux16 u_mux16 (
.S (S[3:0]),
.D (D[15:0]),
.Y (M16)
);
endmodule

View File

@ -1,8 +1,40 @@
read_verilog mux.v
read_verilog ../common/mux.v
design -save read
hierarchy -top mux2
proc
flatten
equiv_opt -assert -map +/ice40/cells_sim.v synth_ice40 # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd top # Constrain all select calls below inside the top module
select -assert-count 19 t:SB_LUT4
cd mux2 # Constrain all select calls below inside the top module
select -assert-count 1 t:SB_LUT4
select -assert-none t:SB_LUT4 %% t:* %D
design -load read
hierarchy -top mux4
proc
equiv_opt -assert -map +/ice40/cells_sim.v synth_ice40 # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd mux4 # Constrain all select calls below inside the top module
select -assert-count 2 t:SB_LUT4
select -assert-none t:SB_LUT4 %% t:* %D
design -load read
hierarchy -top mux8
proc
equiv_opt -assert -map +/ice40/cells_sim.v synth_ice40 # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd mux8 # Constrain all select calls below inside the top module
select -assert-count 5 t:SB_LUT4
select -assert-none t:SB_LUT4 %% t:* %D
design -load read
hierarchy -top mux16
proc
equiv_opt -assert -map +/ice40/cells_sim.v synth_ice40 # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd mux16 # Constrain all select calls below inside the top module
select -assert-count 11 t:SB_LUT4
select -assert-none t:SB_LUT4 %% t:* %D

View File

@ -1,22 +0,0 @@
module top (
out,
clk,
in
);
output [7:0] out;
input signed clk, in;
reg signed [7:0] out = 0;
always @(posedge clk)
begin
`ifndef BUG
out <= out >> 1;
out[7] <= in;
`else
out <= out << 1;
out[7] <= in;
`endif
end
endmodule

View File

@ -1,4 +1,4 @@
read_verilog shifter.v
read_verilog ../common/shifter.v
hierarchy -top top
proc
flatten

View File

@ -1,23 +0,0 @@
module tristate (en, i, o);
input en;
input i;
output o;
assign o = en ? i : 1'bz;
endmodule
module top (
input en,
input a,
output b
);
tristate u_tri (
.en (en ),
.i (a ),
.o (b )
);
endmodule

View File

@ -1,9 +1,11 @@
read_verilog tribuf.v
hierarchy -top top
read_verilog ../common/tribuf.v
hierarchy -top tristate
proc
tribuf
flatten
synth
equiv_opt -assert -map +/ice40/cells_sim.v -map +/simcells.v synth_ice40 # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd top # Constrain all select calls below inside the top module
cd tristate # Constrain all select calls below inside the top module
select -assert-count 1 t:$_TBUF_
select -assert-none t:$_TBUF_ %% t:* %D

View File

@ -1,13 +0,0 @@
module top
(
input [3:0] x,
input [3:0] y,
output [3:0] A,
output [3:0] B
);
assign A = x + y;
assign B = x - y;
endmodule

View File

@ -1,4 +1,4 @@
read_verilog add_sub.v
read_verilog ../common/add_sub.v
hierarchy -top top
proc
equiv_opt -assert -map +/xilinx/cells_sim.v synth_xilinx # equivalency check

View File

@ -1,47 +0,0 @@
module adff
( input d, clk, clr, output reg q );
initial begin
q = 0;
end
always @( posedge clk, posedge clr )
if ( clr )
q <= 1'b0;
else
q <= d;
endmodule
module adffn
( input d, clk, clr, output reg q );
initial begin
q = 0;
end
always @( posedge clk, negedge clr )
if ( !clr )
q <= 1'b0;
else
q <= d;
endmodule
module dffs
( input d, clk, pre, clr, output reg q );
initial begin
q = 0;
end
always @( posedge clk )
if ( pre )
q <= 1'b1;
else
q <= d;
endmodule
module ndffnr
( input d, clk, pre, clr, output reg q );
initial begin
q = 0;
end
always @( negedge clk )
if ( !clr )
q <= 1'b0;
else
q <= d;
endmodule

View File

@ -1,4 +1,4 @@
read_verilog adffs.v
read_verilog ../common/adffs.v
design -save read
hierarchy -top adff

View File

@ -1,17 +0,0 @@
module top (
out,
clk,
reset
);
output [7:0] out;
input clk, reset;
reg [7:0] out;
always @(posedge clk, posedge reset)
if (reset) begin
out <= 8'b0 ;
end else
out <= out + 1;
endmodule

View File

@ -1,4 +1,4 @@
read_verilog counter.v
read_verilog ../common/counter.v
hierarchy -top top
proc
flatten

View File

@ -1,15 +0,0 @@
module dff
( input d, clk, output reg q );
always @( posedge clk )
q <= d;
endmodule
module dffe
( input d, clk, en, output reg q );
initial begin
q = 0;
end
always @( posedge clk )
if ( en )
q <= d;
endmodule

View File

@ -1,4 +1,4 @@
read_verilog dffs.v
read_verilog ../common/dffs.v
design -save read
hierarchy -top dff

View File

@ -1,55 +0,0 @@
module fsm (
clock,
reset,
req_0,
req_1,
gnt_0,
gnt_1
);
input clock,reset,req_0,req_1;
output gnt_0,gnt_1;
wire clock,reset,req_0,req_1;
reg gnt_0,gnt_1;
parameter SIZE = 3 ;
parameter IDLE = 3'b001,GNT0 = 3'b010,GNT1 = 3'b100,GNT2 = 3'b101 ;
reg [SIZE-1:0] state;
reg [SIZE-1:0] next_state;
always @ (posedge clock)
begin : FSM
if (reset == 1'b1) begin
state <= #1 IDLE;
gnt_0 <= 0;
gnt_1 <= 0;
end else
case(state)
IDLE : if (req_0 == 1'b1) begin
state <= #1 GNT0;
gnt_0 <= 1;
end else if (req_1 == 1'b1) begin
gnt_1 <= 1;
state <= #1 GNT0;
end else begin
state <= #1 IDLE;
end
GNT0 : if (req_0 == 1'b1) begin
state <= #1 GNT0;
end else begin
gnt_0 <= 0;
state <= #1 IDLE;
end
GNT1 : if (req_1 == 1'b1) begin
state <= #1 GNT2;
gnt_1 <= req_0;
end
GNT2 : if (req_0 == 1'b1) begin
state <= #1 GNT1;
gnt_1 <= req_1;
end
default : state <= #1 IDLE;
endcase
end
endmodule

View File

@ -1,4 +1,4 @@
read_verilog fsm.v
read_verilog ../common/fsm.v
hierarchy -top fsm
proc
flatten

View File

@ -1,24 +0,0 @@
module latchp
( input d, clk, en, output reg q );
always @*
if ( en )
q <= d;
endmodule
module latchn
( input d, clk, en, output reg q );
always @*
if ( !en )
q <= d;
endmodule
module latchsr
( input d, clk, en, clr, pre, output reg q );
always @*
if ( clr )
q <= 1'b0;
else if ( pre )
q <= 1'b1;
else if ( en )
q <= d;
endmodule

View File

@ -1,4 +1,4 @@
read_verilog latches.v
read_verilog ../common/latches.v
design -save read
hierarchy -top latchp

View File

@ -1,18 +0,0 @@
module top
(
input [0:7] in,
output B1,B2,B3,B4,B5,B6,B7,B8,B9,B10
);
assign B1 = in[0] & in[1];
assign B2 = in[0] | in[1];
assign B3 = in[0] ~& in[1];
assign B4 = in[0] ~| in[1];
assign B5 = in[0] ^ in[1];
assign B6 = in[0] ~^ in[1];
assign B7 = ~in[0];
assign B8 = in[0];
assign B9 = in[0:1] && in [2:3];
assign B10 = in[0:1] || in [2:3];
endmodule

View File

@ -1,4 +1,4 @@
read_verilog logic.v
read_verilog ../common/logic.v
hierarchy -top top
proc
equiv_opt -assert -map +/xilinx/cells_sim.v synth_xilinx # equivalency check

View File

@ -1,11 +0,0 @@
module top
(
input [5:0] x,
input [5:0] y,
output [11:0] A,
);
assign A = x * y;
endmodule

View File

@ -1,4 +1,4 @@
read_verilog mul.v
read_verilog ../common/mul.v
hierarchy -top top
proc
equiv_opt -assert -map +/xilinx/cells_sim.v synth_xilinx # equivalency check

View File

@ -1,65 +0,0 @@
module mux2 (S,A,B,Y);
input S;
input A,B;
output reg Y;
always @(*)
Y = (S)? B : A;
endmodule
module mux4 ( S, D, Y );
input[1:0] S;
input[3:0] D;
output Y;
reg Y;
wire[1:0] S;
wire[3:0] D;
always @*
begin
case( S )
0 : Y = D[0];
1 : Y = D[1];
2 : Y = D[2];
3 : Y = D[3];
endcase
end
endmodule
module mux8 ( S, D, Y );
input[2:0] S;
input[7:0] D;
output Y;
reg Y;
wire[2:0] S;
wire[7:0] D;
always @*
begin
case( S )
0 : Y = D[0];
1 : Y = D[1];
2 : Y = D[2];
3 : Y = D[3];
4 : Y = D[4];
5 : Y = D[5];
6 : Y = D[6];
7 : Y = D[7];
endcase
end
endmodule
module mux16 (D, S, Y);
input [15:0] D;
input [3:0] S;
output Y;
assign Y = D[S];
endmodule

View File

@ -1,4 +1,4 @@
read_verilog mux.v
read_verilog ../common/mux.v
design -save read
hierarchy -top mux2

View File

@ -1,16 +0,0 @@
module top (
out,
clk,
in
);
output [7:0] out;
input signed clk, in;
reg signed [7:0] out = 0;
always @(posedge clk)
begin
out <= out >> 1;
out[7] <= in;
end
endmodule

Some files were not shown because too many files have changed in this diff Show More