Added "qwp" command

This commit is contained in:
Clifford Wolf 2015-09-20 18:28:46 +02:00
parent c469f22144
commit 539c5eeb0f
2 changed files with 586 additions and 0 deletions

View File

@ -22,4 +22,5 @@ OBJS += passes/cmds/cover.o
OBJS += passes/cmds/trace.o
OBJS += passes/cmds/plugin.o
OBJS += passes/cmds/check.o
OBJS += passes/cmds/qwp.o

585
passes/cmds/qwp.cc Normal file
View File

@ -0,0 +1,585 @@
/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/yosys.h"
#include "kernel/sigtools.h"
#undef LOG_MATRICES
#undef PYPLOT_EDGES
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
static uint32_t xorshift32_state;
static double xorshift32()
{
xorshift32_state ^= xorshift32_state << 13;
xorshift32_state ^= xorshift32_state >> 17;
xorshift32_state ^= xorshift32_state << 5;
return (xorshift32_state % 1000000) / 1e6;
}
struct QwpConfig
{
bool ltr;
bool alpha;
double grid;
QwpConfig() {
ltr = false;
alpha = false;
grid = 1.0 / 16;
}
};
struct QwpWorker
{
const QwpConfig &config;
Module *module;
char direction;
struct Node {
Cell *cell;
bool tied, alt_tied;
// pos = position in current direction
// alt_pos = position in the other direction
double pos, alt_pos;
Node() {
cell = nullptr;
tied = false;
pos = xorshift32();
alt_tied = false;
alt_pos = xorshift32();
}
void tie(double v) {
tied = true;
pos = v;
}
void alt_tie(double v) {
alt_tied = true;
alt_pos = v;
}
void swap_alt() {
std::swap(tied, alt_tied);
std::swap(pos, alt_pos);
}
void proj_left(double midpos) {
cell = nullptr;
tie(pos > midpos ? midpos : pos);
}
void proj_right(double midpos) {
cell = nullptr;
tie(pos < midpos ? midpos : pos);
}
};
vector<Node> nodes;
dict<pair<int, int>, double> edges;
dict<Cell*, int> cell_to_node;
QwpWorker(const QwpConfig &config, Module *module, char direction = 'x') : config(config), module(module), direction(direction)
{
log_assert(direction == 'x' || direction == 'y');
}
void load_module()
{
log_assert(direction == 'x');
SigMap sigmap(module);
dict<SigBit, pool<int>> bits_to_nodes;
if (config.ltr || config.alpha)
{
dict<Wire*, double> alpha_inputs, alpha_outputs;
if (config.alpha)
{
dict<string, Wire*> alpha_order;
for (auto wire : module->wires()) {
if (wire->port_input || wire->port_output)
alpha_order[wire->name.str()] = wire;
}
alpha_order.sort();
for (auto &it : alpha_order) {
if (it.second->port_input) {
int idx = GetSize(alpha_inputs);
alpha_inputs[it.second] = idx + 0.5;
}
if (it.second->port_output) {
int idx = GetSize(alpha_outputs);
alpha_outputs[it.second] = idx + 0.5;
}
}
}
for (auto wire : module->wires())
{
if (!wire->port_input && !wire->port_output)
continue;
int idx = GetSize(nodes);
nodes.push_back(Node());
if (config.ltr) {
if (wire->port_input)
nodes[idx].tie(0.0);
else
nodes[idx].tie(1.0);
}
if (config.alpha) {
if (wire->port_input)
nodes[idx].alt_tie(alpha_inputs.at(wire) / GetSize(alpha_inputs));
else
nodes[idx].alt_tie(alpha_outputs.at(wire) / GetSize(alpha_outputs));
}
for (auto bit : sigmap(wire))
bits_to_nodes[bit].insert(idx);
}
}
for (auto cell : module->selected_cells())
{
log_assert(cell_to_node.count(cell) == 0);
int idx = GetSize(nodes);
nodes.push_back(Node());
cell_to_node[cell] = GetSize(nodes);
nodes[idx].cell = cell;
for (auto &conn : cell->connections())
for (auto bit : sigmap(conn.second))
bits_to_nodes[bit].insert(idx);
}
for (auto &it : bits_to_nodes)
{
if (GetSize(it.second) > 100)
continue;
for (int idx1 : it.second)
for (int idx2 : it.second)
if (idx1 < idx2)
edges[pair<int, int>(idx1, idx2)] += 1.0 / GetSize(it.second);
}
}
void solve()
{
int observation_matrix_m = GetSize(edges) + GetSize(nodes);
int observation_matrix_n = GetSize(nodes);
// Column-major order
vector<double> observation_matrix(observation_matrix_m * observation_matrix_n);
vector<double> observation_rhs_vector(observation_matrix_m);
int i = 0;
for (auto &edge : edges) {
int idx1 = edge.first.first;
int idx2 = edge.first.second;
double weight = edge.second * (1.0 + xorshift32() * 1e-3);
observation_matrix[i + observation_matrix_m*idx1] = weight;
observation_matrix[i + observation_matrix_m*idx2] = -weight;
i++;
}
int j = 0;
for (auto &node : nodes) {
double weight = 1e-6;
if (node.tied) weight = 1e3;
weight *= (1.0 + xorshift32() * 1e-3);
observation_matrix[i + observation_matrix_m*j] = weight;
observation_rhs_vector[i] = node.pos * weight;
i++, j++;
}
#ifdef LOG_MATRICES
log("----\n");
for (int i = 0; i < observation_matrix_m; i++) {
for (int j = 0; j < observation_matrix_n; j++)
log(" %10.2e", observation_matrix[i + observation_matrix_m*j]);
log(" |%9.2e\n", observation_rhs_vector[i]);
}
#endif
// A := observation_matrix
// y := observation_rhs_vector
//
// AA = A' * A
// Ay = A' * y
//
// M := [AA Ay]
// Row major order
vector<double> M(observation_matrix_n * (observation_matrix_n+1));
int N = observation_matrix_n;
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++) {
double sum = 0;
for (int k = 0; k < observation_matrix_m; k++)
sum += observation_matrix[k + observation_matrix_m*i] * observation_matrix[k + observation_matrix_m*j];
M[(N+1)*i + j] = sum;
}
for (int i = 0; i < N; i++) {
double sum = 0;
for (int k = 0; k < observation_matrix_m; k++)
sum += observation_matrix[k + observation_matrix_m*i] * observation_rhs_vector[k];
M[(N+1)*i + N] = sum;
}
#ifdef LOG_MATRICES
log("\n");
for (int i = 0; i < N; i++) {
for (int j = 0; j < N+1; j++)
log(" %10.2e", M[(N+1)*i + j]);
log("\n");
}
#endif
// Solve "AA*x = Ay"
// (least squares fit for "A*x = y")
//
// Using gaussian elimination (no pivoting) to get M := [Id x]
// eliminate to upper triangular matrix
for (int i = 0; i < N; i++)
{
// normalize row
for (int j = i+1; j < N+1; j++)
M[(N+1)*i + j] /= M[(N+1)*i + i];
M[(N+1)*i + i] = 1.0;
// elimination
for (int j = i+1; j < N; j++) {
double d = M[(N+1)*j + i];
for (int k = 0; k < N+1; k++)
if (k > i)
M[(N+1)*j + k] -= d*M[(N+1)*i + k];
else
M[(N+1)*j + k] = 0.0;
}
}
// back substitution
for (int i = N-1; i >= 0; i--)
for (int j = i+1; j < N; j++)
{
M[(N+1)*i + N] -= M[(N+1)*i + j] * M[(N+1)*j + N];
M[(N+1)*i + j] = 0.0;
}
#ifdef LOG_MATRICES
log("\n");
for (int i = 0; i < N; i++) {
for (int j = 0; j < N+1; j++)
log(" %10.2e", M[(N+1)*i + j]);
log("\n");
}
#endif
// update node positions
for (int i = 0; i < N; i++)
if (!nodes[i].tied)
nodes[i].pos = M[(N+1)*i + N];
}
void log_cell_coordinates(int indent, bool log_all_nodes = false)
{
for (auto &node : nodes)
{
if (node.cell == nullptr && !log_all_nodes)
continue;
for (int i = 0; i < indent; i++)
log(" ");
if (direction == 'x')
log("X=%.2f, Y=%.2f", node.pos, node.alt_pos);
else
log("X=%.2f, Y=%.2f", node.alt_pos, node.pos);
if (node.tied)
log(" [%c-tied]", direction);
if (node.alt_tied)
log(" [%c-tied]", direction == 'x' ? 'y' : 'x');
if (node.cell != nullptr)
log(" %s (%s)", log_id(node.cell), log_id(node.cell->type));
else
log(" (none)");
log("\n");
}
}
void run_worker(int indent, double midpos, double radius, double alt_midpos, double alt_radius)
{
int count_cells = 0;
for (auto &node : nodes)
if (node.cell != nullptr)
count_cells++;
for (int i = 0; i < indent; i++)
log(" ");
if (direction == 'x')
log("x-qwp on X=%.2f:%.2f, Y=%.2f:%.2f with %d cells, %d nodes, and %d edges.\n",
midpos - radius, midpos + radius, alt_midpos - alt_radius, alt_midpos + alt_radius,
count_cells, GetSize(nodes), GetSize(edges));
else
log("y-qwp on X=%.2f:%.2f, Y=%.2f:%.2f with %d cells, %d nodes, and %d edges.\n",
alt_midpos - alt_radius, alt_midpos + alt_radius, midpos - radius, midpos + radius,
count_cells, GetSize(nodes), GetSize(edges));
solve();
for (auto &node : nodes) {
log_assert(node.pos + 0.1 >= midpos - radius);
log_assert(node.pos - 0.1 <= midpos + radius);
log_assert(node.alt_pos + 0.1 >= alt_midpos - alt_radius);
log_assert(node.alt_pos - 0.1 <= alt_midpos + alt_radius);
}
if (2*radius <= config.grid && 2*alt_radius <= config.grid) {
log_cell_coordinates(indent + 1);
return;
}
// detect median position
vector<pair<double, int>> sorted_pos;
for (int i = 0; i < GetSize(nodes); i++)
if (nodes[i].cell != nullptr)
sorted_pos.push_back(pair<double, int>(nodes[i].pos, i));
if (GetSize(sorted_pos) < 2) {
log_cell_coordinates(indent + 1);
return;
}
std::sort(sorted_pos.begin(), sorted_pos.end());
// create child workers
char child_direction = direction == 'x' ? 'y' : 'x';
QwpWorker left_worker(config, module, child_direction);
QwpWorker right_worker(config, module, child_direction);
// duplicate nodes into child workers
dict<int, int> left_nodes, right_nodes;
for (int k = 0; k < GetSize(sorted_pos); k++)
{
int i = sorted_pos[k].second;
if (k < GetSize(sorted_pos) / 2) {
left_nodes[i] = GetSize(left_worker.nodes);
left_worker.nodes.push_back(nodes[i]);
if (left_worker.nodes.back().pos > midpos)
left_worker.nodes.back().pos = midpos;
left_worker.nodes.back().swap_alt();
} else {
right_nodes[i] = GetSize(right_worker.nodes);
right_worker.nodes.push_back(nodes[i]);
if (right_worker.nodes.back().pos < midpos)
right_worker.nodes.back().pos = midpos;
right_worker.nodes.back().swap_alt();
}
}
// duplicate edges into child workers, project nodes as needed
for (auto &edge : edges)
{
int idx1 = edge.first.first;
int idx2 = edge.first.second;
double weight = edge.second;
if (nodes[idx1].cell == nullptr && nodes[idx2].cell == nullptr)
continue;
int left_idx1 = left_nodes.count(idx1) ? left_nodes.at(idx1) : -1;
int left_idx2 = left_nodes.count(idx2) ? left_nodes.at(idx2) : -1;
int right_idx1 = right_nodes.count(idx1) ? right_nodes.at(idx1) : -1;
int right_idx2 = right_nodes.count(idx2) ? right_nodes.at(idx2) : -1;
if (nodes[idx1].cell && left_idx1 >= 0 && left_idx2 < 0) {
left_idx2 = left_nodes[idx2] = GetSize(left_worker.nodes);
left_worker.nodes.push_back(nodes[idx2]);
left_worker.nodes.back().proj_left(midpos);
left_worker.nodes.back().swap_alt();
} else
if (nodes[idx2].cell && left_idx2 >= 0 && left_idx1 < 0) {
left_idx1 = left_nodes[idx1] = GetSize(left_worker.nodes);
left_worker.nodes.push_back(nodes[idx1]);
left_worker.nodes.back().proj_left(midpos);
left_worker.nodes.back().swap_alt();
}
if (nodes[idx1].cell && right_idx1 >= 0 && right_idx2 < 0) {
right_idx2 = right_nodes[idx2] = GetSize(right_worker.nodes);
right_worker.nodes.push_back(nodes[idx2]);
right_worker.nodes.back().proj_right(midpos);
right_worker.nodes.back().swap_alt();
} else
if (nodes[idx2].cell && right_idx2 >= 0 && right_idx1 < 0) {
right_idx1 = right_nodes[idx1] = GetSize(right_worker.nodes);
right_worker.nodes.push_back(nodes[idx1]);
right_worker.nodes.back().proj_right(midpos);
right_worker.nodes.back().swap_alt();
}
if (left_idx1 >= 0 && left_idx2 >= 0)
left_worker.edges[pair<int, int>(left_idx1, left_idx2)] += weight;
if (right_idx1 >= 0 && right_idx2 >= 0)
right_worker.edges[pair<int, int>(right_idx1, right_idx2)] += weight;
}
// run child workers
left_worker.run_worker(indent+1, alt_midpos, alt_radius, midpos - radius/2, radius/2);
right_worker.run_worker(indent+1, alt_midpos, alt_radius, midpos + radius/2, radius/2);
// re-integrate results
for (auto &it : left_nodes)
if (left_worker.nodes[it.second].cell != nullptr) {
nodes[it.first].pos = left_worker.nodes[it.second].alt_pos;
nodes[it.first].alt_pos = left_worker.nodes[it.second].pos;
}
for (auto &it : right_nodes)
if (right_worker.nodes[it.second].cell != nullptr) {
nodes[it.first].pos = right_worker.nodes[it.second].alt_pos;
nodes[it.first].alt_pos = right_worker.nodes[it.second].pos;
}
}
void run()
{
log("Running qwp on module %s..\n", log_id(module));
load_module();
run_worker(1, 0.5, 0.5, 0.5, 0.5);
for (auto &node : nodes)
if (node.cell != nullptr)
node.cell->attributes["\\qwp_position"] = stringf("%f %f", node.pos, node.alt_pos);
}
};
struct QwpPass : public Pass {
QwpPass() : Pass("qwp", "quadratic wirelength placer") { }
virtual void help()
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" qwp [options] [selection]\n");
log("\n");
log("This command runs quadratic wirelength placement on the selected modules and\n");
log("annotates the cells in the design with 'qwp_position' attributes.\n");
log("\n");
log(" -ltr\n");
log(" Add left-to-right constraints: constrain all inputs on the left border\n");
log(" outputs to the right border.\n");
log("\n");
log(" -alpha\n");
log(" Add constraints for inputs/outputs to be placed in alphanumerical\n");
log(" order along the y-axis (top-to-bottom).\n");
log("\n");
log(" -grid N\n");
log(" Number of grid divisions in x- and y-direction. (default=16)\n");
log("\n");
log("Note: This implementation of a quadratic wirelength placer uses unoptimized\n");
log("dense matrix operations. It is only a toy-placer for small circuits.\n");
log("\n");
}
virtual void execute(std::vector<std::string> args, RTLIL::Design *design)
{
QwpConfig config;
xorshift32_state = 123456789;
log_header("Executing QWP pass (quadratic wirelength placer).\n");
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) {
if (args[argidx] == "-ltr") {
config.ltr = true;
continue;
}
if (args[argidx] == "-alpha") {
config.alpha = true;
continue;
}
if (args[argidx] == "-grid" && argidx+1 < args.size()) {
config.grid = 1.0 / atoi(args[++argidx].c_str());
continue;
}
break;
}
extra_args(args, argidx, design);
for (auto module : design->selected_modules())
{
QwpWorker worker(config, module);
worker.run();
#ifdef PYPLOT_EDGES
log("\n");
log("plt.figure(figsize=(10, 10));\n");
for (auto &edge : worker.edges) {
log("plt.plot([%.2f, %.2f], [%.2f, %.2f], \"r-\");\n",
worker.nodes[edge.first.first].pos,
worker.nodes[edge.first.second].pos,
worker.nodes[edge.first.first].alt_pos,
worker.nodes[edge.first.second].alt_pos);
}
for (auto &node : worker.nodes) {
const char *style = node.cell != nullptr ? "ko" : "ks";
log("plt.plot([%.2f], [%.2f], \"%s\");\n", node.pos, node.alt_pos, style);
}
#endif
}
}
} QwpPass;
PRIVATE_NAMESPACE_END