Added cell_stats example

This commit is contained in:
Benedikt Tutzer 2019-04-03 11:24:50 +02:00
parent d287596be3
commit 539a7f3fbc
4 changed files with 54 additions and 478 deletions

View File

@ -1,472 +0,0 @@
from libyosys import *
from scipy.sparse import coo_matrix
from numpy import savetxt
from enum import Enum
class NodeType(Enum):
GRAPH_CELL = 0
GRAPH_PI = 1
GRAPH_PO = 2
GRAPH_CONST = 3
GRAPH_WIRE = 4
class NetlistElement:
def __init__(self, design, module, name):
self.design = design
self.module = module
self.name = name
class Bit(NetlistElement):
def __init__(self, bit, design, module, node, port, pos):
super().__init__(design, module, IdString("\\__BIT__"))
self.bit = bit
self.node = node
self.port = port
self.pos = pos
class Port(NetlistElement):
def __init__(self, name):
super().__init__(None, None, name)
self.input = False
self.output = False
self.bits = []
class Node(NetlistElement):
def __init__(self, design, module, name, nodeType):
super().__init__(design, module, name)
self.nodeType = nodeType
self.ports = []
def __lt__(self, other):
if isinstance(other, self.__class):
if self.type == other.type:
return self.name.str() < other.name.str()
return self.type < other.type
return False
class PyCell(Node):
def __init__(self, design, module, name, cell):
super().__init__(design, module, name, NodeType.GRAPH_CELL)
self.cell = cell
class PyWire(Node):
def __init__(self, design, module, name):
super().__init__(design, module, name, NodeType.GRAPH_WIRE)
class NetlistGraph:
def __init__(self, design, module = None):
self.design = design
if module != None:
self.module = module
else:
self.module = list(design.modules_.values())[0]
self.cells = []
self.wires = []
self.nodes = []
self.node_bits = []
self.wire_bits = []
self.node_index = {}
self.node_bit_index = {}
self.wire_bit_index = {}
self.incoming = None
self.outgoing = None
self.create()
def create(self):
log_header(self.design, "Creating abstract graph representation of "
+ "module " + self.module.name.str() + "\n")
log_push()
sigmap = SigMap(self.module)
log(" Creating const node\n")
const_node = Node(self.design, self.module, IdString("\\__CONST__"), NodeType.GRAPH_CONST)
const_port = Port(IdString("\\__CONST__"))
const_port.input = False
const_port.output = True
cb = SigBit(State.Sx)
const_bit = Bit(cb, self.design, self.module, const_node, const_port, 0)
const_node.ports.append(const_port)
const_port.bits.append(const_bit)
self.nodes.append(const_node)
self.wires.append(const_node)
log(" Creating cell nodes\n")
for cell in self.module.selected_cells():
c = PyCell(self.design, self.module, cell.name, cell)
for first, second in cell.connections_.items():
p = Port(first)
p.input = cell.input(p.name)
p.output = cell.output(p.name)
for bit in sigmap(second).to_sigbit_vector():
b = Bit(bit, self.design, self.module, c, p, len(p.bits))
p.bits.append(b)
c.ports.append(p)
self.cells.append(c)
log(" Creating wire nodes\n")
for wire in self.module.selected_wires():
node = PyWire(self.design, self.module, wire.name)
p = Port(IdString(""))
if wire.port_input:
node.nodeType = NodeType.GRAPH_PI
p.name = IdString("\\PI")
p.input = False
p.output = True
elif wire.port_output:
node.nodeType = NodeType.GRAPH_PO
p.name = IdString("\\PO")
p.input = True
p.output = False
for bit in sigmap(wire).to_sigbit_set():
b = Bit(bit, self.design, self.module, node, p, len(p.bits))
p.bits.append(b)
node.ports.append(p)
self.wires.append(node)
self.nodes.extend(self.cells)
self.nodes.extend(wire for wire in self.wires if wire.nodeType in [NodeType.GRAPH_PI, NodeType.GRAPH_PO])
log(" Creating node index for fast lookup\n")
idx = 0
for node in self.nodes:
self.node_index[node.name] = idx
idx += 1
log(" Creating node bits (= const + cell + PI + PO)\n")
for node in self.nodes:
for port in node.ports:
for bit in port.bits:
self.node_bits.append(bit)
log(" Creating wire bits\n")
for wire in self.wires:
for port in wire.ports:
for bit in port.bits:
self.wire_bits.append(bit)
log(" Creating node bit index for fast lookup\n")
idx = 0
for bit in self.node_bits:
self.node_bit_index[bit] = idx
idx += 1
log(" Creating wire bit index for fast lookup\n")
idx = 0
for bit in self.wire_bits:
self.wire_bit_index[bit] = idx
idx += 1
log(" Mapping port.wire connections to wire bit index\n")
idx = 0
wbitmap = {}
for wbit in self.wire_bits:
wbitmap[wbit.bit] = idx
idx += 1
inputTriplets = []
outputTriplets = [(0,0,1)]
log(" Mapping node bits to wire bits\n")
idx = 0
for nbit in self.node_bits:
row = idx
idx += 1
col = 0
val = 1
def check_wire():
nonlocal nbit
try:
wire = nbit.bit.wire
return True
except:
return False
if check_wire() and not self.design.selected_member(self.module.name, self.module.wire(nbit.bit.wire.name).name):
continue
if check_wire():
col = wbitmap[nbit.bit]
triplet = (row, col, val)
if col == 0 and row != 0:
inputTriplets.append(triplet)
continue
if nbit.node.nodeType == NodeType.GRAPH_CELL:
cell = nbit.node
if check_wire() and self.design.selected_member(self.module.name, self.module.wire(nbit.bit.wire.name).name):
if cell.cell.input(nbit.port.name):
inputTriplets.append(triplet)
if cell.cell.output(nbit.port.name):
outputTriplets.append(triplet)
continue
if nbit.node.nodeType == NodeType.GRAPH_PI and self.design.selected_member(self.module.name, self.module.wire(nbit.bit.wire.name).name):
outputTriplets.append(triplet)
continue
if nbit.node.nodeType == NodeType.GRAPH_PO and self.design.selected_member(self.module.name, self.module.wire(nbit.bit.wire.name).name):
inputTriplets.append(triplet)
continue
log(" Creating port-to-wire incidence matrices\n")
sizeX = len(self.node_bits)
sizeY= len(self.wire_bits)
inputRows = [i[0] for i in inputTriplets]
inputCols = [i[1] for i in inputTriplets]
inputVals = [i[2] for i in inputTriplets]
self.incoming = coo_matrix((inputVals, (inputRows, inputCols)), shape=(sizeX, sizeY), dtype='int32')
outputRows = [i[0] for i in outputTriplets]
outputCols = [i[1] for i in outputTriplets]
outputVals = [i[2] for i in outputTriplets]
self.outgoing = coo_matrix((outputVals, (outputRows, outputCols)), shape=(sizeX, sizeY), dtype='int32')
def dot(self):
log_header(self.design, "Creating 'dot' bipartite module graph representation of module " + self.module.name.str() + "\n")
log_push()
bitmap = {}
ss = "digraph g{\n"
ss += " rankdir = LR\n"
nidx = 0
pidx = 0
bidx = 0
cells_wires = []
cells_wires.extend(self.cells)
cells_wires.extend(self.wires)
idx = 0
for node in cells_wires:
for port in node.ports:
for bit in port.bits:
bitmap[bit] = idx
idx += 1
for node in cells_wires:
ss += " subgraph cluster" + str(nidx) + " {\n"
ss += " style = \"setlinewidth(2)\";\n"
ss += " margin = .2;\n"
ss += " n" + str(node.name.index_)
def s_cell():
nonlocal ss
ss += "[shape=ellipse,label=\"" + str(nidx) + ":"
ss += unescape_id(node.cell.type) + "\""
def s_pi():
nonlocal ss
ss += "[shape = box, label=\"" + str(nidx) + ":"
ss += unescape_id(node.name.str()) + "\""
def s_po():
nonlocal ss
ss += "[shape = diamond, label=\"" + str(nidx) + ":"
ss += unescape_id(node.name.str()) + "\""
def s_const():
nonlocal ss
ss += "[shape = octagon, label=\"" + str(nidx) + ":CO\""
def s_wire():
nonlocal ss
ss += "[shape = plaintext, label=\"" + str(nidx - len(self.cells)) + ":"
ss += unescape_id(node.name.str()) + "\""
switch = {
NodeType.GRAPH_CELL : s_cell,
NodeType.GRAPH_PI : s_pi,
NodeType.GRAPH_PO : s_po,
NodeType.GRAPH_CONST : s_const,
NodeType.GRAPH_WIRE : s_wire
}
switch[node.nodeType]()
ss += "];\n"
pidx = 0
for port in node.ports:
ss += " port_" + str(node.name.index_) + "_" + str(port.name.index_)
ss += "[shape=none,label=<\n"
ss += " <table border=\"0\" cellborder=\"1\" cellspacing=\"0\" cellpadding=\"4\" >\n"
ss += " <tr><td bgcolor=\"lightgray\" port=\"p" + str(node.name.index_) + "_"
ss += str(port.name.index_) + "\"> "
ss += unescape_id(port.name.str())
ss += "</td></tr>\n"
bidx = 0;
for bit in port.bits:
ss += " <tr><td bgcolor=\"white\" port=\"b" + str(node.name.index_) + "_" + str(port.name.index_) + "_" + str(bit.pos) + "\"> " + str(bitmap[bit]) + ":" + str(bidx) + "</td></tr>\n"
bidx += 1
ss += " </table>\n >];\n"
if node.nodeType == NodeType.GRAPH_CELL:
if node.cell.output(port.name):
ss += " n" + str(node.name.index_) + " -> " + "port_" + str(node.name.index_) + "_" + str(port.name.index_) + ":p" + str(node.name.index_) + "_" + str(port.name.index_) + ";\n"
else:
ss += " port_" + str(node.name.index_) + "_" + str(port.name.index_) + ":p" + str(node.name.index_) + "_" + str(port.name.index_) + " -> " + "n" + str(node.name.index_) + ";\n"
if node.nodeType == NodeType.GRAPH_PI or node.nodeType == NodeType.GRAPH_CONST:
ss += " n" + str(node.name.index_) + " -> " + "port_" + str(node.name.index_) + "_" + str(port.name.index_) + ":p" + str(node.name.index_) + "_" + str(port.name.index_) + ";\n"
if node.nodeType == NodeType.GRAPH_PO:
ss += " port_" + str(node.name.index_) + "_" + str(port.name.index_) + ":p" + str(node.name.index_) + "_" + str(port.name.index_) + " -> " + "n" + str(node.name.index_) + ";\n"
pidx += 1
ss += " }\n"
nidx += 1
for i in range(len(self.incoming.nonzero()[0])):
b1 = self.node_bits[self.incoming.nonzero()[0][i]]
b2 = self.wire_bits[self.incoming.nonzero()[1][i]]
if b1.node.nodeType == NodeType.GRAPH_PO or b1.node.nodeType == NodeType.GRAPH_CONST:
continue
ss += " "
ss += "port_" + str(b2.node.name.index_) + "_" + str(b2.port.name.index_) + ":"
ss += "b" + str(b2.node.name.index_) + "_" + str(b2.port.name.index_) + "_" + str(b2.pos)
ss += " -> "
ss += "port_" + str(b1.node.name.index_) + "_" + str(b1.port.name.index_) + ":"
ss += "b" + str(b1.node.name.index_) + "_" + str(b1.port.name.index_) + "_" + str(b1.pos)
ss += ";\n"
for i in range(len(self.outgoing.nonzero()[0])):
b1 = self.node_bits[self.outgoing.nonzero()[0][i]]
b2 = self.wire_bits[self.outgoing.nonzero()[1][i]]
if b1.node.nodeType == NodeType.GRAPH_PI:
continue
ss += " "
ss += "port_" + str(b1.node.name.index_) + "_" + str(b1.port.name.index_) + ":"
ss += "b" + str(b1.node.name.index_) + "_" + str(b1.port.name.index_) + "_" + str(b1.pos)
ss += " -> "
ss += "port_" + str(b2.node.name.index_) + "_" + str(b2.port.name.index_) + ":"
ss += "b" + str(b2.node.name.index_) + "_" + str(b2.port.name.index_) + "_" + str(b2.pos)
ss += ";\n"
ss += "}\n"
log_pop()
return ss
def save_dot(self, filename):
savetxt(filename, [self.dot()], fmt="%s")
def save_incoming(self, filename, delimiter = ","):
savetxt(filename, self.incoming.todense(), "%d", delimiter=delimiter)
def save_outgoing(self, filename, delimiter = ","):
savetxt(filename, self.outgoing.todense(), "%d", delimiter=delimiter)
def save_adjacency(self, filename, delimiter = ","):
savetxt(filename, (self.outgoing*self.incoming.transpose()).todense(), "%d", delimiter=delimiter)
p = None
class NetlistGraphPass(Pass):
def __init__(self):
super().__init__("netlist_graph", "Generates the Netlist-Graph of a module")
import argparse
self.parser = argparse.ArgumentParser()
self.parser.add_argument("-mod", nargs=1, metavar="MOD", help="The Netlist-Graph of the module with the id-string <module> will be generated. If this argument is not given, the first module will be used")
self.parser.add_argument("-dot", nargs=1, metavar="FILE", help="Write the Netlist-Graph to FILE in dot format")
self.parser.add_argument("-i","-incoming", nargs=1, metavar="FILE", help="Write the incoming incidence matrix to FILE in csv format")
self.parser.add_argument("-o","-outgoing", nargs=1, metavar="FILE", help="Write the outgoing incidence matrix to FILE in csv format")
self.parser.add_argument("-a","-adjacency", nargs=1, metavar="FILE", help="Write the adjacency matrix to FILE in csv format")
def py_help(self):
log("This pass generates the Netlist-Graph of a module\n")
log(self.parser.format_help())
def py_execute(self, args, des):
args = self.parser.parse_args(args[1:])
graph = None
if args.mod:
try:
graph = NetlistGraph(des, des.modules_[IdString(args.mod[0])])
except KeyError:
log("Module \"" + args.mod[0] + "\" not found!\n")
exit()
else:
graph = NetlistGraph(des, list(des.modules_.values())[0])
if args.dot:
graph.save_dot(args.dot[0])
if args.i:
graph.save_incoming(args.i[0])
if args.o:
graph.save_outgoing(args.o[0])
if args.a:
graph.save_adjacency(args.a[0])
def py_clear_flags(self):
log("Clear\n")
if __name__ == "__main__":
designs = {}
graphs = {}
testdir = "../../tests/simple/"
import os
for testcase in os.listdir(testdir):
if not testcase.endswith(".v"):
continue
designs[testcase] = Design()
run_pass("read_verilog " + testdir + testcase, designs[testcase])
run_pass("hierarchy -check -auto-top", designs[testcase])
run_pass("proc", designs[testcase])
run_pass("clean", designs[testcase])
run_pass("memory", designs[testcase])
run_pass("clean", designs[testcase])
run_pass("opt -full", designs[testcase])
run_pass("clean", designs[testcase])
graphs[testcase] = NetlistGraph(designs[testcase])
file_prefix = "out/" + testcase
graphs[testcase].save_dot(file_prefix + ".dot")
graphs[testcase].save_incoming(file_prefix + "_in.csv")
graphs[testcase].save_outgoing(file_prefix + "_out.csv")
graphs[testcase].save_adjacency(file_prefix + "_adjacency.csv")
else:
p = NetlistGraphPass()

32
examples/python-api/pass.py Executable file
View File

@ -0,0 +1,32 @@
#!/usr/bin/python3
from pyosys import libyosys as ys
import matplotlib.pyplot as plt
import numpy as np
class CellStatsPass(ys.Pass):
def __init__(self):
super().__init__("cell_stats", "Shows cell stats as plot")
def py_help(self):
ys.log("This pass uses the matplotlib library to display cell stats\n")
def py_execute(self, args, design):
ys.log_header(design, "Plotting cell stats\n")
cell_stats = {}
for module in design.selected_whole_modules_warn():
for cell in module.selected_cells():
if cell.type.str() in cell_stats:
cell_stats[cell.type.str()] += 1
else:
cell_stats[cell.type.str()] = 1
plt.bar(range(len(cell_stats)), height = list(cell_stats.values()),align='center')
plt.xticks(range(len(cell_stats)), list(cell_stats.keys()))
plt.show()
def py_clear_flags(self):
ys.log("Clear Flags - CellStatsPass\n")
p = CellStatsPass()

View File

@ -1,6 +0,0 @@
PYTHONPATH=`pwd`/../../:$PYTHONPATH
mkdir -p out
if [ ! -f ../../libyosys.so ]; then
make -C ../..
fi
python3.5 netlist_graph.py

22
examples/python-api/script.py Executable file
View File

@ -0,0 +1,22 @@
#!/usr/bin/python3
from pyosys import libyosys as ys
import matplotlib.pyplot as plt
import numpy as np
design = ys.Design()
ys.run_pass("read_verilog ../../tests/simple/fiedler-cooley.v", design);
ys.run_pass("prep", design)
ys.run_pass("opt -full", design)
cell_stats = {}
for module in design.selected_whole_modules_warn():
for cell in module.selected_cells():
if cell.type.str() in cell_stats:
cell_stats[cell.type.str()] += 1
else:
cell_stats[cell.type.str()] = 1
plt.bar(range(len(cell_stats)), height = list(cell_stats.values()),align='center')
plt.xticks(range(len(cell_stats)), list(cell_stats.keys()))
plt.show()