Initial functional SMT backend using functional IR

This commit is contained in:
Roland Coeurjoly 2024-06-21 12:59:34 +02:00 committed by Emily Schmidt
parent 6f9e21219b
commit 4e370f4426
3 changed files with 290 additions and 549 deletions

View File

@ -1,3 +1,3 @@
OBJS += backends/functional/cxx.o
#OBJS += backends/functional/smtlib.o
OBJS += backends/functional/smtlib.o
OBJS += backends/functional/test_generic.o

View File

@ -216,8 +216,8 @@ template<class NodeNames> struct CxxPrintVisitor {
CxxStruct &state_struct;
CxxPrintVisitor(NodeNames np, CxxStruct &input_struct, CxxStruct &state_struct) : np(np), input_struct(input_struct), state_struct(state_struct) { }
template<class T> std::string arg_to_string(T n) { return std::to_string(n); }
template<> std::string arg_to_string(std::string n) { return n; }
template<> std::string arg_to_string(Node n) { return np(n); }
std::string arg_to_string(std::string n) { return n; }
std::string arg_to_string(Node n) { return np(n); }
template<typename... Args> std::string format(std::string fmt, Args&&... args) {
return CxxTemplate::format(fmt, arg_to_string(args)...);
}

View File

@ -18,574 +18,315 @@
*/
#include "kernel/yosys.h"
#include "kernel/drivertools.h"
#include "kernel/topo_scc.h"
#include "kernel/functional.h"
#include "kernel/graphtools.h"
#include "kernel/functionalir.h"
#include <cassert>
#include <sstream>
#include <vector>
#include <string>
#include <unordered_map>
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
struct SmtlibScope {
struct SmtScope {
pool<std::string> used_names;
dict<IdString, std::string> name_map;
SmtlibScope() {
/*for(const char **p = reserved_keywords; *p != nullptr; p++)
reserve(*p);*/
}
void reserve(std::string name) {
SmtScope() {}
void reserve(const std::string& name) {
used_names.insert(name);
}
std::string insert(IdString id) {
std::string str = RTLIL::unescape_id(id);
for(size_t i = 0; i < str.size(); i++)
if(!((unsigned char)str[i] < 0x80 && (isalnum(str[i]) || strchr("~!@$%^&*_-+=<>.?/", str[i]))))
str[i] = '_';
if(used_names.count(str) == 0){
used_names.insert(str);
name_map.insert({id, str});
return str;
std::string name = RTLIL::unescape_id(id);
if (used_names.count(name) == 0) {
used_names.insert(name);
name_map[id] = name;
return name;
}
for (int idx = 0 ; ; idx++){
std::string suffixed = str + "_" + std::to_string(idx);
if (used_names.count(suffixed) == 0) {
used_names.insert(suffixed);
if(name_map.count(id) == 0)
name_map.insert({id, suffixed});
return suffixed;
for (int idx = 0;; ++idx) {
std::string new_name = name + "_" + std::to_string(idx);
if (used_names.count(new_name) == 0) {
used_names.insert(new_name);
name_map[id] = new_name;
return new_name;
}
}
}
std::string operator[](IdString id) {
if(name_map.count(id) > 0)
if (name_map.count(id)) {
return name_map[id];
else
} else {
return insert(id);
}
};
struct SmtlibWriter {
std::ostream &f;
SmtlibWriter(std::ostream &out) : f(out) {}
void printf(const char *fmt, ...)
{
va_list va;
va_start(va, fmt);
f << vstringf(fmt, va);
va_end(va);
}
template <typename T>
SmtlibWriter & operator <<(T &&arg) {
f << std::forward<T>(arg);
return *this;
}
};
struct Arg {
int n;
explicit Arg(int n_) : n(n_) {}
bool operator ==(Arg const &other) const { return n == other.n; }
};
struct SmtWriter {
std::ostream& stream;
class SExpr {
enum class Type {
None,
List,
Atom,
Arg,
};
Type type = Type::None;
union {
std::string atom_;
vector<SExpr> list_;
Arg arg_;
};
void set_none() {
switch(type) {
case Type::None: break;
case Type::Atom: atom_.~basic_string(); break;
case Type::List: list_.~vector(); break;
case Type::Arg: arg_.~Arg(); break;
}
type = Type::None;
}
public:
SExpr() {}
SExpr(const char *atom) : type(Type::Atom), atom_(atom) {}
SExpr(std::string atom) : type(Type::Atom), atom_(atom) {}
SExpr(int n) : type(Type::Atom), atom_(std::to_string(n)) {}
SExpr(RTLIL::Const const & n) : type(Type::Atom) {
new(&atom_) std::string("#b");
atom_.reserve(n.size() + 2);
for (size_t i = n.size(); i > 0; i--)
if(n[i-1] == State::S1)
atom_ += "1";
else
atom_ += "0";
}
SExpr(vector<SExpr> &&list) : type(Type::List), list_(list) {}
SExpr(std::initializer_list<SExpr> list) : type(Type::List), list_(list) {}
SExpr(Arg arg) : type(Type::Arg), arg_(arg) {}
SExpr(SExpr const &other) { *this = other; }
SExpr(SExpr &&other) { *this = std::move(other); }
SExpr &operator =(SExpr const &other) {
set_none();
switch(other.type) {
case Type::None: break;
case Type::Atom: new(&atom_) std::string(other.atom_); break;
case Type::List: new(&list_) vector<SExpr>(other.list_); break;
case Type::Arg: new(&arg_) Arg(other.arg_); break;
}
type = other.type;
return *this;
}
SExpr &operator =(SExpr &&other) {
set_none();
switch(other.type) {
case Type::None: break;
case Type::Atom: new(&atom_) std::string(std::move(other.atom_)); break;
case Type::List: new(&list_) vector<SExpr>(std::move(other.list_)); break;
case Type::Arg: new(&arg_) Arg(std::move(other.arg_)); break;
}
type = other.type;
return *this;
}
~SExpr() { set_none(); }
bool operator==(SExpr const &other) const {
if(type != other.type) return false;
switch(type) {
case Type::None: return true;
case Type::Atom: return atom_ == other.atom_;
case Type::List: return list_ == other.list_;
case Type::Arg: return arg_ == other.arg_;
}
}
bool is_none() const { return type == Type::None; }
bool is_atom() const { return type == Type::Atom; }
bool is_list() const { return type == Type::List; }
bool is_arg() const { return type == Type::Arg; }
std::string const &atom() const { log_assert(is_atom()); return atom_; }
std::vector<SExpr> const &list() const { log_assert(is_list()); return list_; }
Arg const &arg() const { log_assert(is_arg()); return arg_; }
unsigned int hash() const {
unsigned int inner;
switch(type) {
case Type::None: inner = 0; break;
case Type::Atom: inner = mkhash(atom_); break;
case Type::List: inner = mkhash(list_); break;
case Type::Arg: inner = arg_.n; break;
}
return mkhash((unsigned int) type, inner);
}
SExpr subst_args(std::vector<SExpr> const & args) const {
switch(type) {
case Type::None:
case Type::Atom:
return *this;
case Type::List: {
vector<SExpr> ret;
for(auto & a : list_)
ret.emplace_back(a.subst_args(args));
return SExpr(std::move(ret));
}
case Type::Arg:
if(arg_.n >= 1 && (size_t)arg_.n <= args.size())
return args[arg_.n - 1];
else
return *this;
}
SmtWriter(std::ostream& out) : stream(out) {}
void print(const char* fmt, ...) {
va_list args;
va_start(args, fmt);
stream << vstringf(fmt, args);
va_end(args);
}
};
std::ostream& operator << (std::ostream &os, SExpr const &s) {
if(s.is_atom())
os << s.atom();
else if(s.is_list()){
os << "(";
bool first = true;
for(auto &el: s.list()) {
if(!first) os << " ";
else first = false;
os << el;
template<class NodeNames>
struct SmtPrintVisitor {
using Node = FunctionalIR::Node;
NodeNames np;
SmtScope &scope;
SmtPrintVisitor(NodeNames np, SmtScope &scope)
: np(np), scope(scope) {}
template<class T>
std::string arg_to_string(T n) { return std::to_string(n); }
std::string arg_to_string(std::string n) { return n; }
std::string arg_to_string(Node n) { return np(n); }
template<typename... Args>
std::string format(std::string fmt, Args&&... args) {
std::vector<std::string> arg_strings = { arg_to_string(std::forward<Args>(args))... };
for (size_t i = 0; i < arg_strings.size(); ++i) {
std::string placeholder = "%" + std::to_string(i);
size_t pos = 0;
while ((pos = fmt.find(placeholder, pos)) != std::string::npos) {
fmt.replace(pos, placeholder.length(), arg_strings[i]);
pos += arg_strings[i].length();
}
os << ")";
}else if(s.is_arg())
os << "#" << s.arg().n;
else if(s.is_none())
os << "<none>";
else
os << "???";
return os;
}
return fmt;
}
std::string buf(Node, Node n) { return np(n); }
std::string slice(Node, Node a, int, int offset, int out_width) {
return format("(_ extract %1 %2 %0)", np(a), offset, offset + out_width - 1);
}
struct SmtlibType {
bool _is_memory;
int _width;
int _addr_width;
public:
SmtlibType() : _is_memory(false), _width(0), _addr_width(0) { }
SmtlibType(int width) : _is_memory(false), _width(width), _addr_width(0) { }
SmtlibType(int addr_width, int data_width) : _is_memory(true), _width(data_width), _addr_width(addr_width) { }
static SmtlibType signal(int width) { return SmtlibType(width); }
static SmtlibType memory(int addr_width, int data_width) { return SmtlibType(addr_width, data_width); }
bool is_signal() const { return !_is_memory; }
bool is_memory() const { return _is_memory; }
int width() const { log_assert(is_signal()); return _width; }
int addr_width() const { log_assert(is_memory()); return _addr_width; }
int data_width() const { log_assert(is_memory()); return _width; }
SExpr to_sexpr() const {
if(_is_memory) {
return SExpr{ "Array", SExpr{ "_", "BitVec", addr_width() }, SExpr{ "_", "BitVec", data_width() }};
} else {
return SExpr{ "_", "BitVec", width() };
std::string zero_extend(Node, Node a, int, int out_width) {
return format("((_ zero_extend %1) %0)", np(a), out_width);
}
std::string sign_extend(Node, Node a, int, int out_width) {
return format("((_ sign_extend %1) %0)", np(a), out_width);
}
bool operator ==(SmtlibType const& other) const {
if(_is_memory != other._is_memory) return false;
if(_is_memory && _addr_width != other._addr_width) return false;
return _width == other._width;
std::string concat(Node, Node a, int, Node b, int) {
return format("(concat %0 %1)", np(a), np(b));
}
unsigned int hash() const {
if(_is_memory)
return mkhash(1, mkhash(_width, _addr_width));
else
return mkhash(0, _width);
std::string add(Node, Node a, Node b, int) {
return format("(bvadd %0 %1)", np(a), np(b));
}
std::string sub(Node, Node a, Node b, int) {
return format("(bvsub %0 %1)", np(a), np(b));
}
std::string bitwise_and(Node, Node a, Node b, int) {
return format("(bvand %0 %1)", np(a), np(b));
}
std::string bitwise_or(Node, Node a, Node b, int) {
return format("(bvor %0 %1)", np(a), np(b));
}
std::string bitwise_xor(Node, Node a, Node b, int) {
return format("(bvxor %0 %1)", np(a), np(b));
}
std::string bitwise_not(Node, Node a, int) {
return format("(bvnot %0)", np(a));
}
std::string unary_minus(Node, Node a, int) {
return format("(bvneg %0)", np(a));
}
std::string reduce_and(Node, Node a, int) {
return format("(= %0 #b1)", np(a));
}
std::string reduce_or(Node, Node a, int) {
return format("(distinct %0 #b0)", np(a));
}
std::string reduce_xor(Node, Node a, int) {
return format("(bvxor_reduce %0)", np(a));
}
std::string equal(Node, Node a, Node b, int) {
return format("(= %0 %1)", np(a), np(b));
}
std::string not_equal(Node, Node a, Node b, int) {
return format("(distinct %0 %1)", np(a), np(b));
}
std::string signed_greater_than(Node, Node a, Node b, int) {
return format("(bvsgt %0 %1)", np(a), np(b));
}
std::string signed_greater_equal(Node, Node a, Node b, int) {
return format("(bvsge %0 %1)", np(a), np(b));
}
std::string unsigned_greater_than(Node, Node a, Node b, int) {
return format("(bvugt %0 %1)", np(a), np(b));
}
std::string unsigned_greater_equal(Node, Node a, Node b, int) {
return format("(bvuge %0 %1)", np(a), np(b));
}
std::string logical_shift_left(Node, Node a, Node b, int, int) {
return format("(bvshl %0 %1)", np(a), np(b));
}
std::string logical_shift_right(Node, Node a, Node b, int, int) {
return format("(bvlshr %0 %1)", np(a), np(b));
}
std::string arithmetic_shift_right(Node, Node a, Node b, int, int) {
return format("(bvashr %0 %1)", np(a), np(b));
}
std::string mux(Node, Node a, Node b, Node s, int) {
return format("(ite %2 %0 %1)", np(a), np(b), np(s));
}
std::string pmux(Node, Node a, Node b, Node s, int, int) {
// Assume s is a bit vector, combine a and b based on the selection bits
return format("(pmux %0 %1 %2)", np(a), np(b), np(s));
}
std::string constant(Node, RTLIL::Const value) {
return format("#b%1", value.as_string());
}
std::string input(Node, IdString name) {
return format("%0", scope[name]);
}
std::string state(Node, IdString name) {
return format("%0", scope[name]);
}
std::string memory_read(Node, Node mem, Node addr, int, int) {
return format("(select %0 %1)", np(mem), np(addr));
}
std::string memory_write(Node, Node mem, Node addr, Node data, int, int) {
return format("(store %0 %1 %2)", np(mem), np(addr), np(data));
}
std::string undriven(Node, int width) {
return format("#b%0", std::string(width, '0'));
}
};
struct SmtlibStruct {
SmtlibScope &scope;
struct SmtModule {
std::string name;
idict<IdString> members;
vector<SmtlibType> types;
vector<std::string> accessors;
SmtlibStruct(std::string name, SmtlibScope &scope) : scope(scope), name(name) {
SmtScope scope;
FunctionalIR ir;
SmtModule(const std::string& module_name, FunctionalIR ir)
: name(module_name), ir(std::move(ir)) {}
void write(std::ostream& out) {
SmtWriter writer(out);
writer.print("(declare-fun %s () Bool)\n", name.c_str());
writer.print("(declare-datatypes () ((Inputs (mk_inputs");
for (const auto& input : ir.inputs()) {
std::string input_name = scope[input.first];
writer.print(" (%s (_ BitVec %d))", input_name.c_str(), input.second.width());
}
std::string insert(IdString field, SmtlibType type) {
if(members.at(field, -1) == -1){
members(field);
scope.insert(field);
types.push_back(type);
accessors.push_back(scope.insert(std::string("\\") + name + "_" + RTLIL::unescape_id(field)));
writer.print("))))\n");
writer.print("(declare-datatypes () ((Outputs (mk_outputs");
for (const auto& output : ir.outputs()) {
std::string output_name = scope[output.first];
writer.print(" (%s (_ BitVec %d))", output_name.c_str(), output.second.width());
}
return scope[field];
writer.print("))))\n");
writer.print("(declare-fun state () (_ BitVec 1))\n");
writer.print("(define-fun %s_step ((state (_ BitVec 1)) (inputs Inputs)) Outputs\n", name.c_str());
writer.print(" (let (\n");
for (const auto& input : ir.inputs()) {
std::string input_name = scope[input.first];
writer.print(" (%s (%s inputs))\n", input_name.c_str(), input_name.c_str());
}
void print(SmtlibWriter &f) {
f.printf("(declare-datatype %s ((%s\n", name.c_str(), name.c_str());
for (size_t i = 0; i < members.size(); i++)
f << " " << SExpr{accessors[i], types[i].to_sexpr()} << "\n";
f.printf(")))\n");
writer.print(" )\n");
auto node_to_string = [&](FunctionalIR::Node n) { return scope[n.name()]; };
SmtPrintVisitor<decltype(node_to_string)> visitor(node_to_string, scope);
writer.print(" (let (\n");
for (auto it = ir.begin(); it != ir.end(); ++it) {
const FunctionalIR::Node& node = *it;
if (ir.inputs().count(node.name()) > 0) {
continue;
}
void print_value(SmtlibWriter &f, dict<IdString, SExpr> values, int indentation) {
std::string spaces(indentation, ' ');
f << spaces << "(" << name << "\n";
for (size_t i = 0; i < members.size(); i++)
f << spaces << " " << values[members[i]] << " ; " << RTLIL::unescape_id(members[i]) << "\n";
f << spaces << ")\n";
std::string node_name = scope[node.name()];
std::string node_expr = node.visit(visitor);
writer.print(" (%s %s)\n", node_name.c_str(), node_expr.c_str());
}
SExpr access(SExpr record, IdString member) {
int i = members.at(member);
return SExpr{accessors[i], record};
writer.print(" )\n");
writer.print(" (let (\n");
for (const auto& output : ir.outputs()) {
std::string output_name = scope[output.first];
// writer.print(" (%s %s)\n", output_name.c_str(), scope[output_name].c_str());
}
std::string operator[](IdString field) {
return scope[field];
writer.print(" )\n");
writer.print(" (mk_outputs\n");
for (const auto& output : ir.outputs()) {
std::string output_name = scope[output.first];
writer.print(" %s\n", output_name.c_str());
}
writer.print(" )\n");
writer.print(" )\n");
writer.print(" )\n");
writer.print(" )\n");
writer.print(")\n");
}
};
struct Node {
SExpr expr;
SmtlibType type;
struct FunctionalSmtBackend : public Backend {
FunctionalSmtBackend() : Backend("functional_smt2", "Generate SMT-LIB from Functional IR") {}
Node(SExpr &&expr, SmtlibType type) : expr(std::move(expr)), type(type) {}
bool operator==(Node const &other) const {
return expr == other.expr && type == other.type;
void help() override {
log("\nFunctional SMT Backend.\n\n");
}
unsigned int hash() const {
return mkhash(expr.hash(), type.hash());
}
};
typedef ComputeGraph<Node, int, IdString, IdString> SmtlibComputeGraph;
struct SmtlibModule {
std::string name;
SmtlibScope global_scope;
SmtlibStruct input_struct;
SmtlibStruct output_struct;
SmtlibStruct state_struct;
SmtlibComputeGraph compute_graph;
SmtlibModule(std::string const &name) :
name(name),
input_struct(name + "_inputs", global_scope),
output_struct(name + "_outputs", global_scope),
state_struct(name + "_state", global_scope)
{ }
void calculate_compute_graph(RTLIL::Module *module);
void write(std::ostream &stream);
};
class SmtlibComputeGraphFactory {
SmtlibModule &module;
SmtlibComputeGraph &graph;
using T = SmtlibComputeGraph::Ref;
static bool is_single_output(IdString type)
{
auto it = yosys_celltypes.cell_types.find(type);
return it != yosys_celltypes.cell_types.end() && it->second.outputs.size() <= 1;
}
T node(SExpr &&expr, SmtlibType type, std::initializer_list<T> args) {
return graph.add(Node(std::move(expr), type), 0, args);
}
T shift(const char *name, T a, T b, int y_width, int b_width, bool a_signed = false) {
int width = max(y_width, b_width);
T a_ = y_width < width ? extend(a, y_width, width, a_signed) : a;
T b_ = b_width < width ? extend(b, b_width, width, false) : b;
T y_ = node(SExpr {name, Arg(1), Arg(2)}, width, {a_, b_});
if(y_width < width)
return slice(y_, width, 0, y_width);
else
return y_;
}
SExpr from_bool(SExpr &&arg) {
return SExpr{"ite", std::move(arg), RTLIL::Const(State::S1), RTLIL::Const(State::S0)};
}
SExpr to_bool(SExpr &&arg) {
return SExpr{"=", std::move(arg), RTLIL::Const(State::S1)};
}
SExpr extract(SExpr &&arg, int offset, int out_width) {
return SExpr {SExpr {"_", "extract", offset + out_width - 1, offset}, std::move(arg)};
}
public:
SmtlibComputeGraphFactory(SmtlibModule &mod) : module(mod), graph(mod.compute_graph) {}
T slice(T a, int in_width, int offset, int out_width) {
log_assert(offset + out_width <= in_width);
return node(extract(Arg(1), offset, out_width), out_width, {a});
}
T extend(T a, int in_width, int out_width, bool is_signed) {
log_assert(in_width < out_width);
if(is_signed)
return node(SExpr {SExpr {"_", "sign_extend", out_width - in_width}, Arg(1)}, out_width, {a});
else
return node(SExpr {SExpr {"_", "zero_extend", out_width - in_width}, Arg(1)}, out_width, {a});
}
T concat(T a, int a_width, T b, int b_width) {
return node(SExpr {"concat", Arg(1), Arg(2)}, a_width + b_width, {a, b});
}
T add(T a, T b, int width) { return node(SExpr {"bvadd", Arg(1), Arg(2)}, width, {a, b}); }
T sub(T a, T b, int width) { return node(SExpr {"bvsub", Arg(1), Arg(2)}, width, {a, b}); }
T bitwise_and(T a, T b, int width) { return node(SExpr {"bvand", Arg(1), Arg(2)}, width, {a, b}); }
T bitwise_or(T a, T b, int width) { return node(SExpr {"bvor", Arg(1), Arg(2)}, width, {a, b}); }
T bitwise_xor(T a, T b, int width) { return node(SExpr {"bvxor", Arg(1), Arg(2)}, width, {a, b}); }
T bitwise_not(T a, int width) { return node(SExpr {"bvnot", Arg(1)}, width, {a}); }
T neg(T a, int width) { return node(SExpr {"bvneg", Arg(1)}, width, {a}); }
T mux(T a, T b, T s, int width) { return node(SExpr {"ite", to_bool(Arg(1)), Arg(2), Arg(3)}, width, {s, a, b}); }
T pmux(T a, T b, T s, int width, int s_width) {
T rv = a;
for(int i = 0; i < s_width; i++)
rv = node(SExpr {"ite", to_bool(extract(Arg(1), i, 1)), extract(Arg(2), width * i, width), Arg(3)}, width, {s, b, rv});
return rv;
}
T reduce_and(T a, int width) { return node(from_bool(SExpr {"=", Arg(1), RTLIL::Const(State::S1, width)}), 1, {a}); }
T reduce_or(T a, int width) { return node(from_bool(SExpr {"distinct", Arg(1), RTLIL::Const(State::S0, width)}), 1, {a}); }
T reduce_xor(T a, int) { return node(SExpr {"reduce_xor", Arg(1)}, 1, {a}); }
T eq(T a, T b, int) { return node(from_bool(SExpr {"=", Arg(1), Arg(2)}), 1, {a, b}); }
T ne(T a, T b, int) { return node(from_bool(SExpr {"distinct", Arg(1), Arg(2)}), 1, {a, b}); }
T gt(T a, T b, int) { return node(from_bool(SExpr {"bvsgt", Arg(1), Arg(2)}), 1, {a, b}); }
T ge(T a, T b, int) { return node(from_bool(SExpr {"bvsge", Arg(1), Arg(2)}), 1, {a, b}); }
T ugt(T a, T b, int) { return node(from_bool(SExpr {"bvugt", Arg(1), Arg(2)}), 1, {a, b}); }
T uge(T a, T b, int) { return node(from_bool(SExpr {"bvuge", Arg(1), Arg(2)}), 1, {a, b}); }
T logical_shift_left(T a, T b, int y_width, int b_width) { return shift("bvshl", a, b, y_width, b_width); }
T logical_shift_right(T a, T b, int y_width, int b_width) { return shift("bvlshl", a, b, y_width, b_width); }
T arithmetic_shift_right(T a, T b, int y_width, int b_width) { return shift("bvashr", a, b, y_width, b_width, true); }
T memory_read(T mem, T addr, int addr_width, int data_width) {
return node(SExpr {"select", Arg(1), Arg(2)}, data_width, {mem, addr});
}
T memory_write(T mem, T addr, T data, int addr_width, int data_width) {
return node(SExpr {"store", Arg(1), Arg(2), Arg(3)}, SmtlibType::memory(addr_width, data_width), {mem, addr, data});
}
T constant(RTLIL::Const value) { return node(SExpr(value), value.size(), {}); }
T input(IdString name, int width) {
module.input_struct.insert(name, width);
return node(module.input_struct.access("inputs", name), width, {});
}
T state(IdString name, int width) {
module.state_struct.insert(name, width);
return node(module.state_struct.access("current_state", name), width, {});
}
T state_memory(IdString name, int addr_width, int data_width) {
module.state_struct.insert(name, SmtlibType::memory(addr_width, data_width));
return node(module.state_struct.access("current_state", name), SmtlibType::memory(addr_width, data_width), {});
}
T cell_output(T cell, IdString type, IdString name, int width) {
if (is_single_output(type))
return cell;
else
return node(SExpr {"cell_output", Arg(1), RTLIL::unescape_id(name)}, width, {cell});
}
T multiple(vector<T> args, int width) {
vector<SExpr> expr;
expr.reserve(args.size() + 1);
expr.push_back("multiple");
for(size_t i = 1; i <= args.size(); i++)
expr.push_back(Arg(i));
return graph.add(Node(SExpr(std::move(expr)), width), 0, args);
}
T undriven(int width) {
return constant(RTLIL::Const(State::S0, width));
//return node(SExpr {"undriven"}, width, {});
}
T create_pending(int width) {
return node(SExpr(), width, {});
}
void update_pending(T pending, T node) {
log_assert(pending.function().expr.is_none());
pending.set_function(Node(Arg(1), pending.function().type));
pending.append_arg(node);
}
void declare_output(T node, IdString name, int width) {
module.output_struct.insert(name, width);
node.assign_key(name);
}
void declare_state(T node, IdString name, int width) {
module.state_struct.insert(name, width);
node.assign_key(name);
}
void declare_state_memory(T node, IdString name, int addr_width, int data_width) {
module.state_struct.insert(name, SmtlibType::memory(addr_width, data_width));
node.assign_key(name);
}
void suggest_name(T node, IdString name) {
node.sparse_attr() = name;
}
};
void SmtlibModule::calculate_compute_graph(RTLIL::Module *module)
{
SmtlibComputeGraphFactory factory(*this);
ComputeGraphConstruction<SmtlibComputeGraph::Ref, SmtlibComputeGraphFactory> construction(factory);
construction.add_module(module);
construction.process_queue();
// Perform topo sort and detect SCCs
SmtlibComputeGraph::SccAdaptor compute_graph_scc(compute_graph);
bool scc = false;
std::vector<int> perm;
topo_sorted_sccs(compute_graph_scc, [&](int *begin, int *end) {
perm.insert(perm.end(), begin, end);
if (end > begin + 1)
{
log_warning("SCC:");
for (int *i = begin; i != end; ++i)
log(" %d", *i);
log("\n");
scc = true;
}
}, /* sources_first */ true);
compute_graph.permute(perm);
if(scc) log_error("combinational loops, aborting\n");
// Forward $$buf
std::vector<int> alias;
perm.clear();
for (int i = 0; i < compute_graph.size(); ++i)
{
auto node = compute_graph[i];
if (node.function().expr == Arg(1) && node.arg(0).index() < i)
{
int target_index = alias[node.arg(0).index()];
auto target_node = compute_graph[perm[target_index]];
if(!target_node.has_sparse_attr() && node.has_sparse_attr())
target_node.sparse_attr() = node.sparse_attr();
alias.push_back(target_index);
}
else
{
alias.push_back(GetSize(perm));
perm.push_back(i);
}
}
compute_graph.permute(perm, alias);
}
void SmtlibModule::write(std::ostream &stream)
{
SmtlibWriter f(stream);
idict<std::string> node_names;
SmtlibScope locals;
int paren_count = 0;
input_struct.print(f);
output_struct.print(f);
state_struct.print(f);
f << "(declare-datatypes ((Pair 2)) ((par (X Y) ((pair (first X) (second Y))))))\n";
f.printf("(define-fun %s_step ((inputs %s_inputs) (current_state %s_state)) (Pair %s_outputs %s_state)\n",
name.c_str(), name.c_str(), name.c_str(), name.c_str(), name.c_str());
for (int i = 0; i < compute_graph.size(); ++i)
{
auto ref = compute_graph[i];
std::string name;
if(ref.has_sparse_attr())
name = locals.insert(ref.sparse_attr());
else
name = locals.insert("\\n" + std::to_string(i));
node_names(name);
vector<SExpr> args;
args.reserve(ref.size());
for (int i = 0, end = ref.size(); i != end; ++i)
args.push_back(node_names[ref.arg(i).index()]);
f << " (let " << SExpr{{SExpr{name, ref.function().expr.subst_args(args)}}} << "\n";
paren_count++;
}
dict<IdString, SExpr> outputs;
for(auto &a: compute_graph.keys())
outputs.insert({a.first, node_names[a.second]});
f.printf(" (pair \n");
output_struct.print_value(f, outputs, 6);
state_struct.print_value(f, outputs, 6);
f.printf(" )\n");
while(paren_count > 0){
int n = min(paren_count, 80);
f << " " << std::string(n, ')') << "\n";
paren_count -= n;
}
f.printf(")\n");
}
struct FunctionalSmtlibBackend : public Backend
{
FunctionalSmtlibBackend() : Backend("functional_smtlib", "convert design to SMTLIB using the functional backend") {}
void help() override
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
}
void execute(std::ostream *&f, std::string filename, std::vector<std::string> args, RTLIL::Design *design) override
{
log_header(design, "Executing Functional SMTLIB backend.\n");
void execute(std::ostream*& f, std::string filename, std::vector<std::string> args, RTLIL::Design* design) override {
log_header(design, "Executing Functional SMT Backend.\n");
size_t argidx = 1;
extra_args(f, filename, args, argidx, design);
for (auto module : design->selected_modules()) {
log("Dumping module `%s'.\n", module->name.c_str());
SmtlibModule smt(RTLIL::unescape_id(module->name));
smt.calculate_compute_graph(module);
log("Processing module `%s`.\n", module->name.c_str());
auto ir = FunctionalIR::from_module(module);
SmtModule smt(RTLIL::unescape_id(module->name), ir);
smt.write(*f);
}
}
} FunctionalSmtlibBackend;
} FunctionalSmtBackend;
PRIVATE_NAMESPACE_END