Merge pull request #1619 from YosysHQ/eddie/abc9_refactor

Refactor `abc9` pass
This commit is contained in:
Eddie Hung 2020-01-27 13:29:15 -08:00 committed by GitHub
commit 48f3f5213e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
11 changed files with 1833 additions and 1410 deletions

View File

@ -93,7 +93,6 @@ struct XAigerWriter
dict<SigBit, int> ordered_outputs;
vector<Cell*> box_list;
dict<IdString, std::vector<IdString>> box_ports;
int mkgate(int a0, int a1)
{
@ -157,7 +156,6 @@ struct XAigerWriter
if (wire->get_bool_attribute(ID::keep))
sigmap.add(wire);
for (auto wire : module->wires())
for (int i = 0; i < GetSize(wire); i++)
{
@ -175,108 +173,96 @@ struct XAigerWriter
undriven_bits.insert(bit);
unused_bits.insert(bit);
if (wire->port_input)
bool keep = wire->get_bool_attribute(ID::keep);
if (wire->port_input || keep)
input_bits.insert(bit);
if (wire->port_output) {
if (wire->port_output || keep) {
if (bit != wirebit)
alias_map[wirebit] = bit;
output_bits.insert(wirebit);
}
}
// TODO: Speed up toposort -- ultimately we care about
// box ordering, but not individual AIG cells
dict<SigBit, pool<IdString>> bit_drivers, bit_users;
TopoSort<IdString, RTLIL::sort_by_id_str> toposort;
bool abc9_box_seen = false;
for (auto cell : module->selected_cells()) {
if (cell->type == "$_NOT_")
{
SigBit A = sigmap(cell->getPort("\\A").as_bit());
SigBit Y = sigmap(cell->getPort("\\Y").as_bit());
unused_bits.erase(A);
undriven_bits.erase(Y);
not_map[Y] = A;
toposort.node(cell->name);
bit_users[A].insert(cell->name);
bit_drivers[Y].insert(cell->name);
continue;
}
if (cell->type == "$_AND_")
{
SigBit A = sigmap(cell->getPort("\\A").as_bit());
SigBit B = sigmap(cell->getPort("\\B").as_bit());
SigBit Y = sigmap(cell->getPort("\\Y").as_bit());
unused_bits.erase(A);
unused_bits.erase(B);
undriven_bits.erase(Y);
and_map[Y] = make_pair(A, B);
toposort.node(cell->name);
bit_users[A].insert(cell->name);
bit_users[B].insert(cell->name);
bit_drivers[Y].insert(cell->name);
continue;
}
if (cell->type == "$__ABC9_FF_" &&
// The presence of an abc9_mergeability attribute indicates
// that we do want to pass this flop to ABC
cell->attributes.count("\\abc9_mergeability"))
{
SigBit D = sigmap(cell->getPort("\\D").as_bit());
SigBit Q = sigmap(cell->getPort("\\Q").as_bit());
unused_bits.erase(D);
undriven_bits.erase(Q);
alias_map[Q] = D;
auto r YS_ATTRIBUTE(unused) = ff_bits.insert(std::make_pair(D, cell));
log_assert(r.second);
continue;
}
dict<IdString,dict<IdString,int>> arrival_cache;
for (auto cell : module->cells()) {
RTLIL::Module* inst_module = module->design->module(cell->type);
if (inst_module) {
bool abc9_box = inst_module->attributes.count("\\abc9_box_id");
bool abc9_flop = inst_module->get_bool_attribute("\\abc9_flop");
if (abc9_box && cell->get_bool_attribute("\\abc9_keep"))
abc9_box = false;
if (!cell->has_keep_attr()) {
if (cell->type == "$_NOT_")
{
SigBit A = sigmap(cell->getPort("\\A").as_bit());
SigBit Y = sigmap(cell->getPort("\\Y").as_bit());
unused_bits.erase(A);
undriven_bits.erase(Y);
not_map[Y] = A;
continue;
}
for (const auto &conn : cell->connections()) {
auto port_wire = inst_module->wire(conn.first);
if (cell->type == "$_AND_")
{
SigBit A = sigmap(cell->getPort("\\A").as_bit());
SigBit B = sigmap(cell->getPort("\\B").as_bit());
SigBit Y = sigmap(cell->getPort("\\Y").as_bit());
unused_bits.erase(A);
unused_bits.erase(B);
undriven_bits.erase(Y);
and_map[Y] = make_pair(A, B);
continue;
}
if (abc9_box) {
// Ignore inout for the sake of topographical ordering
if (port_wire->port_input && !port_wire->port_output)
for (auto bit : sigmap(conn.second))
bit_users[bit].insert(cell->name);
if (port_wire->port_output)
for (auto bit : sigmap(conn.second))
bit_drivers[bit].insert(cell->name);
if (cell->type == "$__ABC9_FF_" &&
// The presence of an abc9_mergeability attribute indicates
// that we do want to pass this flop to ABC
cell->attributes.count("\\abc9_mergeability"))
{
SigBit D = sigmap(cell->getPort("\\D").as_bit());
SigBit Q = sigmap(cell->getPort("\\Q").as_bit());
unused_bits.erase(D);
undriven_bits.erase(Q);
alias_map[Q] = D;
auto r YS_ATTRIBUTE(unused) = ff_bits.insert(std::make_pair(D, cell));
log_assert(r.second);
if (input_bits.erase(Q))
log_assert(Q.wire->attributes.count(ID::keep));
continue;
}
if (inst_module) {
bool abc9_flop = false;
auto it = cell->attributes.find("\\abc9_box_seq");
if (it != cell->attributes.end()) {
int abc9_box_seq = it->second.as_int();
if (GetSize(box_list) <= abc9_box_seq)
box_list.resize(abc9_box_seq+1);
box_list[abc9_box_seq] = cell;
// Only flop boxes may have arrival times
abc9_flop = inst_module->get_bool_attribute("\\abc9_flop");
if (!abc9_flop)
continue;
}
if (port_wire->port_output) {
int arrival = 0;
auto it = port_wire->attributes.find("\\abc9_arrival");
if (it != port_wire->attributes.end()) {
if (it->second.flags != 0)
log_error("Attribute 'abc9_arrival' on port '%s' of module '%s' is not an integer.\n", log_id(port_wire), log_id(cell->type));
arrival = it->second.as_int();
auto &cell_arrivals = arrival_cache[cell->type];
for (const auto &conn : cell->connections()) {
auto r = cell_arrivals.insert(conn.first);
auto &arrival = r.first->second;
if (r.second) {
auto port_wire = inst_module->wire(conn.first);
if (port_wire->port_output) {
auto it = port_wire->attributes.find("\\abc9_arrival");
if (it != port_wire->attributes.end()) {
if (it->second.flags != 0)
log_error("Attribute 'abc9_arrival' on port '%s' of module '%s' is not an integer.\n", log_id(port_wire), log_id(cell->type));
arrival = it->second.as_int();
}
}
}
if (arrival)
for (auto bit : sigmap(conn.second))
arrival_times[bit] = arrival;
}
}
if (abc9_box) {
abc9_box_seen = true;
toposort.node(cell->name);
continue;
if (abc9_flop)
continue;
}
}
@ -293,6 +279,9 @@ struct XAigerWriter
for (auto b : c.second) {
Wire *w = b.wire;
if (!w) continue;
// Do not add as PO if bit is already a PI
if (input_bits.count(b))
continue;
if (!w->port_output || !cell_known) {
SigBit I = sigmap(b);
if (I != b)
@ -305,138 +294,54 @@ struct XAigerWriter
//log_warning("Unsupported cell type: %s (%s)\n", log_id(cell->type), log_id(cell));
}
if (abc9_box_seen) {
for (auto &it : bit_users)
if (bit_drivers.count(it.first))
for (auto driver_cell : bit_drivers.at(it.first))
for (auto user_cell : it.second)
toposort.edge(driver_cell, user_cell);
dict<IdString, std::vector<IdString>> box_ports;
for (auto cell : box_list) {
log_assert(cell);
#if 0
toposort.analyze_loops = true;
#endif
bool no_loops YS_ATTRIBUTE(unused) = toposort.sort();
#if 0
unsigned i = 0;
for (auto &it : toposort.loops) {
log(" loop %d\n", i++);
for (auto cell_name : it) {
auto cell = module->cell(cell_name);
log_assert(cell);
log("\t%s (%s @ %s)\n", log_id(cell), log_id(cell->type), cell->get_src_attribute().c_str());
}
}
#endif
log_assert(no_loops);
RTLIL::Module* box_module = module->design->module(cell->type);
log_assert(box_module);
log_assert(box_module->attributes.count("\\abc9_box_id"));
for (auto cell_name : toposort.sorted) {
RTLIL::Cell *cell = module->cell(cell_name);
log_assert(cell);
RTLIL::Module* box_module = module->design->module(cell->type);
if (!box_module || !box_module->attributes.count("\\abc9_box_id"))
continue;
bool blackbox = box_module->get_blackbox_attribute(true /* ignore_wb */);
auto r = box_ports.insert(cell->type);
if (r.second) {
// Make carry in the last PI, and carry out the last PO
// since ABC requires it this way
IdString carry_in, carry_out;
for (const auto &port_name : box_module->ports) {
auto w = box_module->wire(port_name);
log_assert(w);
if (w->get_bool_attribute("\\abc9_carry")) {
if (w->port_input) {
if (carry_in != IdString())
log_error("Module '%s' contains more than one 'abc9_carry' input port.\n", log_id(box_module));
carry_in = port_name;
}
if (w->port_output) {
if (carry_out != IdString())
log_error("Module '%s' contains more than one 'abc9_carry' output port.\n", log_id(box_module));
carry_out = port_name;
}
}
else
r.first->second.push_back(port_name);
}
if (carry_in != IdString() && carry_out == IdString())
log_error("Module '%s' contains an 'abc9_carry' input port but no output port.\n", log_id(box_module));
if (carry_in == IdString() && carry_out != IdString())
log_error("Module '%s' contains an 'abc9_carry' output port but no input port.\n", log_id(box_module));
if (carry_in != IdString()) {
r.first->second.push_back(carry_in);
r.first->second.push_back(carry_out);
}
}
// Fully pad all unused input connections of this box cell with S0
// Fully pad all undriven output connections of this box cell with anonymous wires
for (auto port_name : r.first->second) {
auto r = box_ports.insert(cell->type);
if (r.second) {
// Make carry in the last PI, and carry out the last PO
// since ABC requires it this way
IdString carry_in, carry_out;
for (const auto &port_name : box_module->ports) {
auto w = box_module->wire(port_name);
log_assert(w);
auto it = cell->connections_.find(port_name);
if (w->port_input) {
RTLIL::SigSpec rhs;
if (it != cell->connections_.end()) {
if (GetSize(it->second) < GetSize(w))
it->second.append(RTLIL::SigSpec(State::S0, GetSize(w)-GetSize(it->second)));
rhs = it->second;
if (w->get_bool_attribute("\\abc9_carry")) {
if (w->port_input) {
if (carry_in != IdString())
log_error("Module '%s' contains more than one 'abc9_carry' input port.\n", log_id(box_module));
carry_in = port_name;
}
else {
rhs = RTLIL::SigSpec(State::S0, GetSize(w));
cell->setPort(port_name, rhs);
}
for (auto b : rhs) {
SigBit I = sigmap(b);
if (b == RTLIL::Sx)
b = State::S0;
else if (I != b) {
if (I == RTLIL::Sx)
alias_map[b] = State::S0;
else
alias_map[b] = I;
}
co_bits.emplace_back(b);
unused_bits.erase(I);
}
}
if (w->port_output) {
RTLIL::SigSpec rhs;
auto it = cell->connections_.find(port_name);
if (it != cell->connections_.end()) {
if (GetSize(it->second) < GetSize(w))
it->second.append(module->addWire(NEW_ID, GetSize(w)-GetSize(it->second)));
rhs = it->second;
}
else {
Wire *wire = module->addWire(NEW_ID, GetSize(w));
if (blackbox)
wire->set_bool_attribute(ID(abc9_padding));
rhs = wire;
cell->setPort(port_name, rhs);
}
for (const auto &b : rhs.bits()) {
SigBit O = sigmap(b);
if (O != b)
alias_map[O] = b;
ci_bits.emplace_back(b);
undriven_bits.erase(O);
if (w->port_output) {
if (carry_out != IdString())
log_error("Module '%s' contains more than one 'abc9_carry' output port.\n", log_id(box_module));
carry_out = port_name;
}
}
else
r.first->second.push_back(port_name);
}
// Connect <cell>.abc9_ff.Q (inserted by abc9_map.v) as the last input to the flop box
if (box_module->get_bool_attribute("\\abc9_flop")) {
SigSpec rhs = module->wire(stringf("%s.abc9_ff.Q", cell->name.c_str()));
if (rhs.empty())
log_error("'%s.abc9_ff.Q' is not a wire present in module '%s'.\n", log_id(cell), log_id(module));
if (carry_in != IdString() && carry_out == IdString())
log_error("Module '%s' contains an 'abc9_carry' input port but no output port.\n", log_id(box_module));
if (carry_in == IdString() && carry_out != IdString())
log_error("Module '%s' contains an 'abc9_carry' output port but no input port.\n", log_id(box_module));
if (carry_in != IdString()) {
r.first->second.push_back(carry_in);
r.first->second.push_back(carry_out);
}
}
for (auto port_name : r.first->second) {
auto w = box_module->wire(port_name);
log_assert(w);
auto rhs = cell->connections_.at(port_name, SigSpec());
rhs.append(Const(State::Sx, GetSize(w)-GetSize(rhs)));
if (w->port_input)
for (auto b : rhs) {
SigBit I = sigmap(b);
if (b == RTLIL::Sx)
@ -450,12 +355,41 @@ struct XAigerWriter
co_bits.emplace_back(b);
unused_bits.erase(I);
}
}
box_list.emplace_back(cell);
if (w->port_output)
for (const auto &b : rhs) {
SigBit O = sigmap(b);
if (O != b)
alias_map[O] = b;
ci_bits.emplace_back(b);
undriven_bits.erase(O);
// If PI and CI, then must be a (* keep *) wire
if (input_bits.erase(O)) {
log_assert(output_bits.count(O));
log_assert(O.wire->get_bool_attribute(ID::keep));
}
}
}
// TODO: Free memory from toposort, bit_drivers, bit_users
// Connect <cell>.abc9_ff.Q (inserted by abc9_map.v) as the last input to the flop box
if (box_module->get_bool_attribute("\\abc9_flop")) {
SigSpec rhs = module->wire(stringf("%s.abc9_ff.Q", cell->name.c_str()));
if (rhs.empty())
log_error("'%s.abc9_ff.Q' is not a wire present in module '%s'.\n", log_id(cell), log_id(module));
for (auto b : rhs) {
SigBit I = sigmap(b);
if (b == RTLIL::Sx)
b = State::S0;
else if (I != b) {
if (I == RTLIL::Sx)
alias_map[b] = State::S0;
else
alias_map[b] = I;
}
co_bits.emplace_back(b);
unused_bits.erase(I);
}
}
}
for (auto bit : input_bits)
@ -501,6 +435,10 @@ struct XAigerWriter
for (auto &bit : ci_bits) {
aig_m++, aig_i++;
// 1'bx may exist here due to a box output
// that has been padded to its full width
if (bit == State::Sx)
continue;
log_assert(!aig_map.count(bit));
aig_map[bit] = 2*aig_m;
}
@ -512,7 +450,27 @@ struct XAigerWriter
for (const auto &bit : output_bits) {
ordered_outputs[bit] = aig_o++;
aig_outputs.push_back(bit2aig(bit));
int aig;
// Unlike bit2aig() which checks aig_map first, for
// inout/keep bits, since aig_map will point to
// the PI, first attempt to find the NOT/AND driver
// before resorting to an aig_map lookup (which
// could be another PO)
if (input_bits.count(bit)) {
if (not_map.count(bit)) {
aig = bit2aig(not_map.at(bit)) ^ 1;
} else if (and_map.count(bit)) {
auto args = and_map.at(bit);
int a0 = bit2aig(args.first);
int a1 = bit2aig(args.second);
aig = mkgate(a0, a1);
}
else
aig = aig_map.at(bit);
}
else
aig = bit2aig(bit);
aig_outputs.push_back(aig);
}
for (auto &i : ff_bits) {
@ -612,106 +570,41 @@ struct XAigerWriter
// write_o_buffer(0);
if (!box_list.empty() || !ff_bits.empty()) {
RTLIL::Module *holes_module = module->design->addModule("$__holes__");
log_assert(holes_module);
dict<IdString, std::tuple<int,int,int>> cell_cache;
dict<IdString, std::tuple<Cell*,int,int,int>> cell_cache;
int port_id = 1;
int box_count = 0;
for (auto cell : box_list) {
RTLIL::Module* orig_box_module = module->design->module(cell->type);
log_assert(orig_box_module);
IdString derived_name = orig_box_module->derive(module->design, cell->parameters);
RTLIL::Module* box_module = module->design->module(derived_name);
log_assert(cell);
auto r = cell_cache.insert(derived_name);
RTLIL::Module* box_module = module->design->module(cell->type);
log_assert(box_module);
auto r = cell_cache.insert(cell->type);
auto &v = r.first->second;
if (r.second) {
if (box_module->has_processes())
Pass::call_on_module(module->design, box_module, "proc");
int box_inputs = 0, box_outputs = 0;
if (box_module->get_bool_attribute("\\whitebox")) {
auto holes_cell = holes_module->addCell(cell->name, derived_name);
for (auto port_name : box_ports.at(cell->type)) {
RTLIL::Wire *w = box_module->wire(port_name);
log_assert(w);
log_assert(!w->port_input || !w->port_output);
auto &conn = holes_cell->connections_[port_name];
if (w->port_input) {
for (int i = 0; i < GetSize(w); i++) {
box_inputs++;
RTLIL::Wire *holes_wire = holes_module->wire(stringf("\\i%d", box_inputs));
if (!holes_wire) {
holes_wire = holes_module->addWire(stringf("\\i%d", box_inputs));
holes_wire->port_input = true;
holes_wire->port_id = port_id++;
holes_module->ports.push_back(holes_wire->name);
}
conn.append(holes_wire);
}
}
else if (w->port_output) {
box_outputs += GetSize(w);
conn = holes_module->addWire(stringf("%s.%s", derived_name.c_str(), log_id(port_name)), GetSize(w));
}
}
// For flops only, create an extra 1-bit input that drives a new wire
// called "<cell>.abc9_ff.Q" that is used below
if (box_module->get_bool_attribute("\\abc9_flop")) {
box_inputs++;
Wire *holes_wire = holes_module->wire(stringf("\\i%d", box_inputs));
if (!holes_wire) {
holes_wire = holes_module->addWire(stringf("\\i%d", box_inputs));
holes_wire->port_input = true;
holes_wire->port_id = port_id++;
holes_module->ports.push_back(holes_wire->name);
}
Wire *Q = holes_module->addWire(stringf("%s.abc9_ff.Q", cell->name.c_str()));
holes_module->connect(Q, holes_wire);
}
std::get<0>(v) = holes_cell;
}
else {
for (auto port_name : box_ports.at(cell->type)) {
RTLIL::Wire *w = box_module->wire(port_name);
log_assert(w);
log_assert(!w->port_input || !w->port_output);
if (w->port_input)
box_inputs += GetSize(w);
else if (w->port_output)
box_outputs += GetSize(w);
}
log_assert(std::get<0>(v) == nullptr);
for (auto port_name : box_module->ports) {
RTLIL::Wire *w = box_module->wire(port_name);
log_assert(w);
if (w->port_input)
box_inputs += GetSize(w);
if (w->port_output)
box_outputs += GetSize(w);
}
std::get<1>(v) = box_inputs;
std::get<2>(v) = box_outputs;
std::get<3>(v) = box_module->attributes.at("\\abc9_box_id").as_int();
}
auto holes_cell = std::get<0>(v);
for (auto port_name : box_ports.at(cell->type)) {
RTLIL::Wire *w = box_module->wire(port_name);
log_assert(w);
if (!w->port_output)
continue;
Wire *holes_wire = holes_module->addWire(stringf("$abc%s.%s", cell->name.c_str(), log_id(port_name)), GetSize(w));
holes_wire->port_output = true;
holes_wire->port_id = port_id++;
holes_module->ports.push_back(holes_wire->name);
if (holes_cell) // whitebox
holes_module->connect(holes_wire, holes_cell->getPort(port_name));
else // blackbox
holes_module->connect(holes_wire, Const(State::S0, GetSize(w)));
// For flops only, create an extra 1-bit input that drives a new wire
// called "<cell>.abc9_ff.Q" that is used below
if (box_module->get_bool_attribute("\\abc9_flop"))
box_inputs++;
std::get<0>(v) = box_inputs;
std::get<1>(v) = box_outputs;
std::get<2>(v) = box_module->attributes.at("\\abc9_box_id").as_int();
}
write_h_buffer(std::get<0>(v));
write_h_buffer(std::get<1>(v));
write_h_buffer(std::get<2>(v));
write_h_buffer(std::get<3>(v));
write_h_buffer(box_count++);
}
@ -759,82 +652,17 @@ struct XAigerWriter
f.write(reinterpret_cast<const char*>(&buffer_size_be), sizeof(buffer_size_be));
f.write(buffer_str.data(), buffer_str.size());
RTLIL::Module *holes_module = module->design->module(stringf("%s$holes", module->name.c_str()));
if (holes_module) {
log_push();
// NB: fixup_ports() will sort ports by name
//holes_module->fixup_ports();
holes_module->check();
// Cannot techmap/aigmap/check all lib_whitebox-es outside of write_xaiger
// since boxes may contain parameters in which case `flatten` would have
// created a new $paramod ...
Pass::call_on_module(holes_module->design, holes_module, "flatten -wb; techmap; aigmap");
SigMap holes_sigmap(holes_module);
dict<SigSpec, SigSpec> replace;
for (auto it = holes_module->cells_.begin(); it != holes_module->cells_.end(); ) {
auto cell = it->second;
if (cell->type.in("$_DFF_N_", "$_DFF_NN0_", "$_DFF_NN1_", "$_DFF_NP0_", "$_DFF_NP1_",
"$_DFF_P_", "$_DFF_PN0_", "$_DFF_PN1", "$_DFF_PP0_", "$_DFF_PP1_")) {
SigBit D = cell->getPort("\\D");
SigBit Q = cell->getPort("\\Q");
// Remove the $_DFF_* cell from what needs to be a combinatorial box
it = holes_module->cells_.erase(it);
Wire *port;
if (GetSize(Q.wire) == 1)
port = holes_module->wire(stringf("$abc%s", Q.wire->name.c_str()));
else
port = holes_module->wire(stringf("$abc%s[%d]", Q.wire->name.c_str(), Q.offset));
log_assert(port);
// Prepare to replace "assign <port> = $_DFF_*.Q;" with "assign <port> = $_DFF_*.D;"
// in order to extract just the combinatorial control logic that feeds the box
// (i.e. clock enable, synchronous reset, etc.)
replace.insert(std::make_pair(Q,D));
// Since `flatten` above would have created wires named "<cell>.Q",
// extract the pre-techmap cell name
auto pos = Q.wire->name.str().rfind(".");
log_assert(pos != std::string::npos);
IdString driver = Q.wire->name.substr(0, pos);
// And drive the signal that was previously driven by "DFF.Q" (typically
// used to implement clock-enable functionality) with the "<cell>.abc9_ff.Q"
// wire (which itself is driven by an input port) we inserted above
Wire *currQ = holes_module->wire(stringf("%s.abc9_ff.Q", driver.c_str()));
log_assert(currQ);
holes_module->connect(Q, currQ);
continue;
}
else if (!cell->type.in("$_NOT_", "$_AND_"))
log_error("Whitebox contents cannot be represented as AIG. Please verify whiteboxes are synthesisable.\n");
++it;
}
for (auto &conn : holes_module->connections_) {
auto it = replace.find(sigmap(conn.second));
if (it != replace.end())
conn.second = it->second;
}
// Move into a new (temporary) design so that "clean" will only
// operate (and run checks on) this one module
RTLIL::Design *holes_design = new RTLIL::Design;
module->design->modules_.erase(holes_module->name);
holes_design->add(holes_module);
Pass::call(holes_design, "opt -purge");
std::stringstream a_buffer;
XAigerWriter writer(holes_module, true /* holes_mode */);
writer.write_aiger(a_buffer, false /*ascii_mode*/);
delete holes_design;
f << "a";
std::string buffer_str = a_buffer.str();
int32_t buffer_size_be = to_big_endian(buffer_str.size());
f.write(reinterpret_cast<const char*>(&buffer_size_be), sizeof(buffer_size_be));
f.write(buffer_str.data(), buffer_str.size());
log_pop();
}
}
@ -917,7 +745,8 @@ struct XAigerBackend : public Backend {
log("Write the top module (according to the (* top *) attribute or if only one module\n");
log("is currently selected) to an XAIGER file. Any non $_NOT_, $_AND_, $_ABC9_FF_, or");
log("non (* abc9_box_id *) cells will be converted into psuedo-inputs and\n");
log("pseudo-outputs.\n");
log("pseudo-outputs. Whitebox contents will be taken from the '<module-name>$holes'\n");
log("module, if it exists.\n");
log("\n");
log(" -ascii\n");
log(" write ASCII version of AIGER format\n");

View File

@ -393,21 +393,6 @@ void AigerReader::parse_xaiger()
if (f.peek() == '\n')
f.get();
dict<int,IdString> box_lookup;
for (auto m : design->modules()) {
auto it = m->attributes.find(ID(abc9_box_id));
if (it == m->attributes.end())
continue;
if (m->name.begins_with("$paramod"))
continue;
auto id = it->second.as_int();
auto r = box_lookup.insert(std::make_pair(id, m->name));
if (!r.second)
log_error("Module '%s' has the same abc9_box_id = %d value as '%s'.\n",
log_id(m), id, log_id(r.first->second));
log_assert(r.second);
}
// Parse footer (symbol table, comments, etc.)
std::string s;
for (int c = f.get(); c != EOF; c = f.get()) {
@ -429,6 +414,10 @@ void AigerReader::parse_xaiger()
for (unsigned j = 0; j < cutLeavesM; ++j) {
nodeID = parse_xaiger_literal(f);
log_debug2("\t%u\n", nodeID);
if (nodeID == 0) {
log_debug("\tLUT '$lut$aiger%d$%d' input %d is constant!\n", aiger_autoidx, rootNodeID, cutLeavesM);
continue;
}
RTLIL::Wire *wire = module->wire(stringf("$aiger%d$%d", aiger_autoidx, nodeID));
log_assert(wire);
input_sig.append(wire);
@ -436,10 +425,10 @@ void AigerReader::parse_xaiger()
// TODO: Compute LUT mask from AIG in less than O(2 ** input_sig.size())
ce.clear();
ce.compute_deps(output_sig, input_sig.to_sigbit_pool());
RTLIL::Const lut_mask(RTLIL::State::Sx, 1 << input_sig.size());
for (int j = 0; j < (1 << cutLeavesM); ++j) {
RTLIL::Const lut_mask(RTLIL::State::Sx, 1 << GetSize(input_sig));
for (int j = 0; j < GetSize(lut_mask); ++j) {
int gray = j ^ (j >> 1);
ce.set_incremental(input_sig, RTLIL::Const{gray, static_cast<int>(cutLeavesM)});
ce.set_incremental(input_sig, RTLIL::Const{gray, GetSize(input_sig)});
RTLIL::SigBit o(output_sig);
bool success YS_ATTRIBUTE(unused) = ce.eval(o);
log_assert(success);
@ -453,11 +442,13 @@ void AigerReader::parse_xaiger()
}
}
else if (c == 'r') {
uint32_t dataSize YS_ATTRIBUTE(unused) = parse_xaiger_literal(f);
uint32_t dataSize = parse_xaiger_literal(f);
flopNum = parse_xaiger_literal(f);
log_debug("flopNum = %u\n", flopNum);
log_assert(dataSize == (flopNum+1) * sizeof(uint32_t));
f.ignore(flopNum * sizeof(uint32_t));
mergeability.reserve(flopNum);
for (unsigned i = 0; i < flopNum; i++)
mergeability.emplace_back(parse_xaiger_literal(f));
}
else if (c == 'n') {
parse_xaiger_literal(f);
@ -479,11 +470,15 @@ void AigerReader::parse_xaiger()
uint32_t boxNum = parse_xaiger_literal(f);
log_debug("boxNum = %u\n", boxNum);
for (unsigned i = 0; i < boxNum; i++) {
f.ignore(2*sizeof(uint32_t));
uint32_t boxInputs = parse_xaiger_literal(f);
uint32_t boxOutputs = parse_xaiger_literal(f);
uint32_t boxUniqueId = parse_xaiger_literal(f);
log_assert(boxUniqueId > 0);
uint32_t oldBoxNum = parse_xaiger_literal(f);
RTLIL::Cell* cell = module->addCell(stringf("$box%u", oldBoxNum), box_lookup.at(boxUniqueId));
RTLIL::Cell* cell = module->addCell(stringf("$box%u", oldBoxNum), stringf("$__boxid%u", boxUniqueId));
cell->setPort("\\i", SigSpec(State::S0, boxInputs));
cell->setPort("\\o", SigSpec(State::S0, boxOutputs));
cell->attributes["\\abc9_box_seq"] = oldBoxNum;
boxes.emplace_back(cell);
}
}
@ -568,25 +563,18 @@ void AigerReader::parse_aiger_ascii()
}
// Parse outputs
digits = ceil(log10(O));
for (unsigned i = 0; i < O; ++i, ++line_count) {
if (!(f >> l1))
log_error("Line %u cannot be interpreted as an output!\n", line_count);
log_debug2("%d is an output\n", l1);
const unsigned variable = l1 >> 1;
const bool invert = l1 & 1;
RTLIL::IdString wire_name(stringf("$%d%s", variable, invert ? "b" : "")); // FIXME: is "b" the right suffix?
RTLIL::Wire *wire = module->wire(wire_name);
if (!wire)
wire = createWireIfNotExists(module, l1);
else if (wire->port_input || wire->port_output) {
RTLIL::Wire *new_wire = module->addWire(NEW_ID);
module->connect(new_wire, wire);
wire = new_wire;
}
RTLIL::Wire *wire = module->addWire(stringf("$o%0*d", digits, i));
wire->port_output = true;
module->connect(wire, createWireIfNotExists(module, l1));
outputs.push_back(wire);
}
//std::getline(f, line); // Ignore up to start of next line
// Parse bad properties
for (unsigned i = 0; i < B; ++i, ++line_count) {
@ -598,6 +586,8 @@ void AigerReader::parse_aiger_ascii()
wire->port_output = true;
bad_properties.push_back(wire);
}
//if (B > 0)
// std::getline(f, line); // Ignore up to start of next line
// TODO: Parse invariant constraints
for (unsigned i = 0; i < C; ++i, ++line_count)
@ -753,84 +743,41 @@ void AigerReader::parse_aiger_binary()
void AigerReader::post_process()
{
dict<IdString, std::vector<IdString>> box_ports;
unsigned ci_count = 0, co_count = 0, flop_count = 0;
unsigned ci_count = 0, co_count = 0;
for (auto cell : boxes) {
RTLIL::Module* box_module = design->module(cell->type);
log_assert(box_module);
auto r = box_ports.insert(cell->type);
if (r.second) {
// Make carry in the last PI, and carry out the last PO
// since ABC requires it this way
IdString carry_in, carry_out;
for (const auto &port_name : box_module->ports) {
auto w = box_module->wire(port_name);
log_assert(w);
if (w->get_bool_attribute("\\abc9_carry")) {
if (w->port_input)
carry_in = port_name;
if (w->port_output)
carry_out = port_name;
}
else
r.first->second.push_back(port_name);
}
if (carry_in != IdString()) {
log_assert(carry_out != IdString());
r.first->second.push_back(carry_in);
r.first->second.push_back(carry_out);
}
}
for (auto port_name : box_ports.at(cell->type)) {
RTLIL::Wire* port = box_module->wire(port_name);
log_assert(port);
RTLIL::SigSpec rhs;
for (int i = 0; i < GetSize(port); i++) {
RTLIL::Wire* wire = nullptr;
if (port->port_input) {
log_assert(co_count < outputs.size());
wire = outputs[co_count++];
log_assert(wire);
log_assert(wire->port_output);
wire->port_output = false;
}
if (port->port_output) {
log_assert((piNum + ci_count) < inputs.size());
wire = inputs[piNum + ci_count++];
log_assert(wire);
log_assert(wire->port_input);
wire->port_input = false;
}
rhs.append(wire);
}
cell->setPort(port_name, rhs);
}
if (box_module->attributes.count("\\abc9_flop")) {
for (auto &bit : cell->connections_.at("\\i")) {
log_assert(bit == State::S0);
log_assert(co_count < outputs.size());
Wire *wire = outputs[co_count++];
log_assert(wire);
log_assert(wire->port_output);
wire->port_output = false;
RTLIL::Wire *d = outputs[outputs.size() - flopNum + flop_count];
log_assert(d);
log_assert(d->port_output);
d->port_output = false;
RTLIL::Wire *q = inputs[piNum - flopNum + flop_count];
log_assert(q);
log_assert(q->port_input);
q->port_input = false;
auto ff = module->addCell(NEW_ID, "$__ABC9_FF_");
ff->setPort("\\D", d);
ff->setPort("\\Q", q);
flop_count++;
continue;
bit = outputs[co_count++];
log_assert(bit.wire && GetSize(bit.wire) == 1);
log_assert(bit.wire->port_output);
bit.wire->port_output = false;
}
for (auto &bit : cell->connections_.at("\\o")) {
log_assert(bit == State::S0);
log_assert((piNum + ci_count) < inputs.size());
bit = inputs[piNum + ci_count++];
log_assert(bit.wire && GetSize(bit.wire) == 1);
log_assert(bit.wire->port_input);
bit.wire->port_input = false;
}
}
for (uint32_t i = 0; i < flopNum; i++) {
RTLIL::Wire *d = outputs[outputs.size() - flopNum + i];
log_assert(d);
log_assert(d->port_output);
d->port_output = false;
RTLIL::Wire *q = inputs[piNum - flopNum + i];
log_assert(q);
log_assert(q->port_input);
q->port_input = false;
auto ff = module->addCell(NEW_ID, "$__ABC9_FF_");
ff->setPort("\\D", d);
ff->setPort("\\Q", q);
ff->attributes["\\abc9_mergeability"] = mergeability[i];
}
dict<RTLIL::IdString, int> wideports_cache;
@ -859,6 +806,7 @@ void AigerReader::post_process()
wire->port_input = false;
module->connect(wire, existing);
}
log_debug(" -> %s\n", log_id(escaped_s));
}
else if (index > 0) {
std::string indexed_name = stringf("%s[%d]", escaped_s.c_str(), index);
@ -872,18 +820,14 @@ void AigerReader::post_process()
module->connect(wire, existing);
wire->port_input = false;
}
log_debug(" -> %s\n", log_id(indexed_name));
}
log_debug(" -> %s\n", log_id(wire));
}
else if (type == "output") {
log_assert(static_cast<unsigned>(variable + co_count) < outputs.size());
RTLIL::Wire* wire = outputs[variable + co_count];
log_assert(wire);
log_assert(wire->port_output);
if (escaped_s == "$__dummy__") {
wire->port_output = false;
continue;
}
log_debug("Renaming output %s", log_id(wire));
if (index == 0) {
@ -896,9 +840,11 @@ void AigerReader::post_process()
}
else {
wire->port_output = false;
existing->port_output = true;
module->connect(wire, existing);
wire = existing;
}
log_debug(" -> %s\n", log_id(escaped_s));
}
else if (index > 0) {
std::string indexed_name = stringf("%s[%d]", escaped_s.c_str(), index);
@ -909,11 +855,12 @@ void AigerReader::post_process()
wideports_cache[escaped_s] = std::max(wideports_cache[escaped_s], index);
}
else {
module->connect(wire, existing);
wire->port_output = false;
existing->port_output = true;
module->connect(wire, existing);
}
log_debug(" -> %s\n", log_id(indexed_name));
}
log_debug(" -> %s\n", log_id(wire));
int init;
mf >> init;
if (init < 2)
@ -921,26 +868,8 @@ void AigerReader::post_process()
}
else if (type == "box") {
RTLIL::Cell* cell = module->cell(stringf("$box%d", variable));
if (cell) { // ABC could have optimised this box away
if (cell) // ABC could have optimised this box away
module->rename(cell, escaped_s);
for (const auto &i : cell->connections()) {
RTLIL::IdString port_name = i.first;
RTLIL::SigSpec rhs = i.second;
int index = 0;
for (auto bit : rhs.bits()) {
RTLIL::Wire* wire = bit.wire;
RTLIL::IdString escaped_s = RTLIL::escape_id(stringf("%s.%s", log_id(cell), log_id(port_name)));
if (index == 0)
module->rename(wire, escaped_s);
else if (index > 0) {
module->rename(wire, stringf("%s[%d]", escaped_s.c_str(), index));
if (wideports)
wideports_cache[escaped_s] = std::max(wideports_cache[escaped_s], index);
}
index++;
}
}
}
}
else
log_error("Symbol type '%s' not recognised.\n", type.c_str());
@ -1018,18 +947,21 @@ struct AigerFrontend : public Frontend {
log("Load module from an AIGER file into the current design.\n");
log("\n");
log(" -module_name <module_name>\n");
log(" Name of module to be created (default: <filename>)\n");
log(" name of module to be created (default: <filename>)\n");
log("\n");
log(" -clk_name <wire_name>\n");
log(" If specified, AIGER latches to be transformed into $_DFF_P_ cells\n");
log(" clocked by wire of this name. Otherwise, $_FF_ cells will be used.\n");
log(" if specified, AIGER latches to be transformed into $_DFF_P_ cells\n");
log(" clocked by wire of this name. otherwise, $_FF_ cells will be used\n");
log("\n");
log(" -map <filename>\n");
log(" read file with port and latch symbols\n");
log("\n");
log(" -wideports\n");
log(" Merge ports that match the pattern 'name[int]' into a single\n");
log(" multi-bit port 'name'.\n");
log(" merge ports that match the pattern 'name[int]' into a single\n");
log(" multi-bit port 'name'\n");
log("\n");
log(" -xaiger\n");
log(" read XAIGER extensions\n");
log("\n");
}
void execute(std::istream *&f, std::string filename, std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
@ -1039,7 +971,7 @@ struct AigerFrontend : public Frontend {
RTLIL::IdString clk_name;
RTLIL::IdString module_name;
std::string map_filename;
bool wideports = false;
bool wideports = false, xaiger = false;
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) {
@ -1060,6 +992,10 @@ struct AigerFrontend : public Frontend {
wideports = true;
continue;
}
if (arg == "-xaiger") {
xaiger = true;
continue;
}
break;
}
extra_args(f, filename, args, argidx, true);
@ -1079,7 +1015,10 @@ struct AigerFrontend : public Frontend {
}
AigerReader reader(design, *f, module_name, clk_name, map_filename, wideports);
reader.parse_aiger();
if (xaiger)
reader.parse_xaiger();
else
reader.parse_aiger();
}
} AigerFrontend;

View File

@ -45,6 +45,7 @@ struct AigerReader
std::vector<RTLIL::Wire*> outputs;
std::vector<RTLIL::Wire*> bad_properties;
std::vector<RTLIL::Cell*> boxes;
std::vector<int> mergeability;
AigerReader(RTLIL::Design *design, std::istream &f, RTLIL::IdString module_name, RTLIL::IdString clk_name, std::string map_filename, bool wideports);
void parse_aiger();

View File

@ -8,6 +8,8 @@ OBJS += passes/techmap/libparse.o
ifeq ($(ENABLE_ABC),1)
OBJS += passes/techmap/abc.o
OBJS += passes/techmap/abc9.o
OBJS += passes/techmap/abc9_exe.o
OBJS += passes/techmap/abc9_ops.o
ifneq ($(ABCEXTERNAL),)
passes/techmap/abc.o: CXXFLAGS += -DABCEXTERNAL='"$(ABCEXTERNAL)"'
passes/techmap/abc9.o: CXXFLAGS += -DABCEXTERNAL='"$(ABCEXTERNAL)"'

File diff suppressed because it is too large Load Diff

531
passes/techmap/abc9_exe.cc Normal file
View File

@ -0,0 +1,531 @@
/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
* 2019 Eddie Hung <eddie@fpgeh.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
// [[CITE]] ABC
// Berkeley Logic Synthesis and Verification Group, ABC: A System for Sequential Synthesis and Verification
// http://www.eecs.berkeley.edu/~alanmi/abc/
#include "kernel/register.h"
#include "kernel/log.h"
#ifndef _WIN32
# include <unistd.h>
# include <dirent.h>
#endif
#ifdef YOSYS_LINK_ABC
extern "C" int Abc_RealMain(int argc, char *argv[]);
#endif
std::string fold_abc9_cmd(std::string str)
{
std::string token, new_str = " ";
int char_counter = 10;
for (size_t i = 0; i <= str.size(); i++) {
if (i < str.size())
token += str[i];
if (i == str.size() || str[i] == ';') {
if (char_counter + token.size() > 75)
new_str += "\n ", char_counter = 14;
new_str += token, char_counter += token.size();
token.clear();
}
}
return new_str;
}
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
std::string add_echos_to_abc9_cmd(std::string str)
{
std::string new_str, token;
for (size_t i = 0; i < str.size(); i++) {
token += str[i];
if (str[i] == ';') {
while (i+1 < str.size() && str[i+1] == ' ')
i++;
new_str += "echo + " + token + " " + token + " ";
token.clear();
}
}
if (!token.empty()) {
if (!new_str.empty())
new_str += "echo + " + token + "; ";
new_str += token;
}
return new_str;
}
std::string replace_tempdir(std::string text, std::string tempdir_name, bool show_tempdir)
{
if (show_tempdir)
return text;
while (1) {
size_t pos = text.find(tempdir_name);
if (pos == std::string::npos)
break;
text = text.substr(0, pos) + "<abc-temp-dir>" + text.substr(pos + GetSize(tempdir_name));
}
std::string selfdir_name = proc_self_dirname();
if (selfdir_name != "/") {
while (1) {
size_t pos = text.find(selfdir_name);
if (pos == std::string::npos)
break;
text = text.substr(0, pos) + "<yosys-exe-dir>/" + text.substr(pos + GetSize(selfdir_name));
}
}
return text;
}
struct abc9_output_filter
{
bool got_cr;
int escape_seq_state;
std::string linebuf;
std::string tempdir_name;
bool show_tempdir;
abc9_output_filter(std::string tempdir_name, bool show_tempdir) : tempdir_name(tempdir_name), show_tempdir(show_tempdir)
{
got_cr = false;
escape_seq_state = 0;
}
void next_char(char ch)
{
if (escape_seq_state == 0 && ch == '\033') {
escape_seq_state = 1;
return;
}
if (escape_seq_state == 1) {
escape_seq_state = ch == '[' ? 2 : 0;
return;
}
if (escape_seq_state == 2) {
if ((ch < '0' || '9' < ch) && ch != ';')
escape_seq_state = 0;
return;
}
escape_seq_state = 0;
if (ch == '\r') {
got_cr = true;
return;
}
if (ch == '\n') {
log("ABC: %s\n", replace_tempdir(linebuf, tempdir_name, show_tempdir).c_str());
got_cr = false, linebuf.clear();
return;
}
if (got_cr)
got_cr = false, linebuf.clear();
linebuf += ch;
}
void next_line(const std::string &line)
{
//int pi, po;
//if (sscanf(line.c_str(), "Start-point = pi%d. End-point = po%d.", &pi, &po) == 2) {
// log("ABC: Start-point = pi%d (%s). End-point = po%d (%s).\n",
// pi, pi_map.count(pi) ? pi_map.at(pi).c_str() : "???",
// po, po_map.count(po) ? po_map.at(po).c_str() : "???");
// return;
//}
for (char ch : line)
next_char(ch);
}
};
void abc9_module(RTLIL::Design *design, std::string script_file, std::string exe_file,
vector<int> lut_costs, bool dff_mode, std::string delay_target, std::string /*lutin_shared*/, bool fast_mode,
bool show_tempdir, std::string box_file, std::string lut_file,
std::string wire_delay, std::string tempdir_name
)
{
std::string abc9_script;
if (!lut_costs.empty())
abc9_script += stringf("read_lut %s/lutdefs.txt; ", tempdir_name.c_str());
else if (!lut_file.empty())
abc9_script += stringf("read_lut %s; ", lut_file.c_str());
else
log_abort();
log_assert(!box_file.empty());
abc9_script += stringf("read_box %s; ", box_file.c_str());
abc9_script += stringf("&read %s/input.xaig; &ps; ", tempdir_name.c_str());
if (!script_file.empty()) {
if (script_file[0] == '+') {
for (size_t i = 1; i < script_file.size(); i++)
if (script_file[i] == '\'')
abc9_script += "'\\''";
else if (script_file[i] == ',')
abc9_script += " ";
else
abc9_script += script_file[i];
} else
abc9_script += stringf("source %s", script_file.c_str());
} else if (!lut_costs.empty() || !lut_file.empty()) {
abc9_script += fast_mode ? RTLIL::constpad.at("abc9.script.default.fast").substr(1,std::string::npos)
: RTLIL::constpad.at("abc9.script.default").substr(1,std::string::npos);
} else
log_abort();
for (size_t pos = abc9_script.find("{D}"); pos != std::string::npos; pos = abc9_script.find("{D}", pos))
abc9_script = abc9_script.substr(0, pos) + delay_target + abc9_script.substr(pos+3);
//for (size_t pos = abc9_script.find("{S}"); pos != std::string::npos; pos = abc9_script.find("{S}", pos))
// abc9_script = abc9_script.substr(0, pos) + lutin_shared + abc9_script.substr(pos+3);
for (size_t pos = abc9_script.find("{W}"); pos != std::string::npos; pos = abc9_script.find("{W}", pos))
abc9_script = abc9_script.substr(0, pos) + wire_delay + abc9_script.substr(pos+3);
std::string C;
if (design->scratchpad.count("abc9.if.C"))
C = "-C " + design->scratchpad_get_string("abc9.if.C");
for (size_t pos = abc9_script.find("{C}"); pos != std::string::npos; pos = abc9_script.find("{C}", pos))
abc9_script = abc9_script.substr(0, pos) + C + abc9_script.substr(pos+3);
std::string R;
if (design->scratchpad.count("abc9.if.R"))
R = "-R " + design->scratchpad_get_string("abc9.if.R");
for (size_t pos = abc9_script.find("{R}"); pos != std::string::npos; pos = abc9_script.find("{R}", pos))
abc9_script = abc9_script.substr(0, pos) + R + abc9_script.substr(pos+3);
abc9_script += stringf("; &ps -l; &write -n %s/output.aig", tempdir_name.c_str());
if (design->scratchpad_get_bool("abc9.verify")) {
if (dff_mode)
abc9_script += "; verify -s";
else
abc9_script += "; verify";
}
abc9_script += "; time";
abc9_script = add_echos_to_abc9_cmd(abc9_script);
for (size_t i = 0; i+1 < abc9_script.size(); i++)
if (abc9_script[i] == ';' && abc9_script[i+1] == ' ')
abc9_script[i+1] = '\n';
FILE *f = fopen(stringf("%s/abc.script", tempdir_name.c_str()).c_str(), "wt");
fprintf(f, "%s\n", abc9_script.c_str());
fclose(f);
std::string buffer;
log_header(design, "Executing ABC9.\n");
if (!lut_costs.empty()) {
buffer = stringf("%s/lutdefs.txt", tempdir_name.c_str());
f = fopen(buffer.c_str(), "wt");
if (f == NULL)
log_error("Opening %s for writing failed: %s\n", buffer.c_str(), strerror(errno));
for (int i = 0; i < GetSize(lut_costs); i++)
fprintf(f, "%d %d.00 1.00\n", i+1, lut_costs.at(i));
fclose(f);
}
buffer = stringf("%s -s -f %s/abc.script 2>&1", exe_file.c_str(), tempdir_name.c_str());
log("Running ABC command: %s\n", replace_tempdir(buffer, tempdir_name, show_tempdir).c_str());
#ifndef YOSYS_LINK_ABC
abc9_output_filter filt(tempdir_name, show_tempdir);
int ret = run_command(buffer, std::bind(&abc9_output_filter::next_line, filt, std::placeholders::_1));
#else
// These needs to be mutable, supposedly due to getopt
char *abc9_argv[5];
string tmp_script_name = stringf("%s/abc.script", tempdir_name.c_str());
abc9_argv[0] = strdup(exe_file.c_str());
abc9_argv[1] = strdup("-s");
abc9_argv[2] = strdup("-f");
abc9_argv[3] = strdup(tmp_script_name.c_str());
abc9_argv[4] = 0;
int ret = Abc_RealMain(4, abc9_argv);
free(abc9_argv[0]);
free(abc9_argv[1]);
free(abc9_argv[2]);
free(abc9_argv[3]);
#endif
if (ret != 0)
log_error("ABC: execution of command \"%s\" failed: return code %d.\n", buffer.c_str(), ret);
}
struct Abc9ExePass : public Pass {
Abc9ExePass() : Pass("abc9_exe", "use ABC9 for technology mapping") { }
void help() YS_OVERRIDE
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" abc9_exe [options]\n");
log("\n");
log(" \n");
log("This pass uses the ABC tool [1] for technology mapping of the top module\n");
log("(according to the (* top *) attribute or if only one module is currently selected)\n");
log("to a target FPGA architecture.\n");
log("\n");
log(" -exe <command>\n");
#ifdef ABCEXTERNAL
log(" use the specified command instead of \"" ABCEXTERNAL "\" to execute ABC.\n");
#else
log(" use the specified command instead of \"<yosys-bindir>/yosys-abc\" to execute ABC.\n");
#endif
log(" This can e.g. be used to call a specific version of ABC or a wrapper.\n");
log("\n");
log(" -script <file>\n");
log(" use the specified ABC script file instead of the default script.\n");
log("\n");
log(" if <file> starts with a plus sign (+), then the rest of the filename\n");
log(" string is interpreted as the command string to be passed to ABC. The\n");
log(" leading plus sign is removed and all commas (,) in the string are\n");
log(" replaced with blanks before the string is passed to ABC.\n");
log("\n");
log(" if no -script parameter is given, the following scripts are used:\n");
log("%s\n", fold_abc9_cmd(RTLIL::constpad.at("abc9.script.default").substr(1,std::string::npos)).c_str());
log("\n");
log(" -fast\n");
log(" use different default scripts that are slightly faster (at the cost\n");
log(" of output quality):\n");
log("%s\n", fold_abc9_cmd(RTLIL::constpad.at("abc9.script.default.fast").substr(1,std::string::npos)).c_str());
log("\n");
log(" -D <picoseconds>\n");
log(" set delay target. the string {D} in the default scripts above is\n");
log(" replaced by this option when used, and an empty string otherwise\n");
log(" (indicating best possible delay).\n");
log("\n");
// log(" -S <num>\n");
// log(" maximum number of LUT inputs shared.\n");
// log(" (replaces {S} in the default scripts above, default: -S 1)\n");
// log("\n");
log(" -lut <width>\n");
log(" generate netlist using luts of (max) the specified width.\n");
log("\n");
log(" -lut <w1>:<w2>\n");
log(" generate netlist using luts of (max) the specified width <w2>. All\n");
log(" luts with width <= <w1> have constant cost. for luts larger than <w1>\n");
log(" the area cost doubles with each additional input bit. the delay cost\n");
log(" is still constant for all lut widths.\n");
log("\n");
log(" -lut <file>\n");
log(" pass this file with lut library to ABC.\n");
log("\n");
log(" -luts <cost1>,<cost2>,<cost3>,<sizeN>:<cost4-N>,..\n");
log(" generate netlist using luts. Use the specified costs for luts with 1,\n");
log(" 2, 3, .. inputs.\n");
log("\n");
log(" -showtmp\n");
log(" print the temp dir name in log. usually this is suppressed so that the\n");
log(" command output is identical across runs.\n");
log("\n");
log(" -box <file>\n");
log(" pass this file with box library to ABC.\n");
log("\n");
log(" -cwd <dir>\n");
log(" use this as the current working directory, inside which the 'input.xaig'\n");
log(" file is expected. temporary files will be created in this directory, and\n");
log(" the mapped result will be written to 'output.aig'.\n");
log("\n");
log("Note that this is a logic optimization pass within Yosys that is calling ABC\n");
log("internally. This is not going to \"run ABC on your design\". It will instead run\n");
log("ABC on logic snippets extracted from your design. You will not get any useful\n");
log("output when passing an ABC script that writes a file. Instead write your full\n");
log("design as BLIF file with write_blif and then load that into ABC externally if\n");
log("you want to use ABC to convert your design into another format.\n");
log("\n");
log("[1] http://www.eecs.berkeley.edu/~alanmi/abc/\n");
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
{
log_header(design, "Executing ABC9_MAP pass (technology mapping using ABC9).\n");
#ifdef ABCEXTERNAL
std::string exe_file = ABCEXTERNAL;
#else
std::string exe_file = proc_self_dirname() + "yosys-abc";
#endif
std::string script_file, clk_str, box_file, lut_file;
std::string delay_target, lutin_shared = "-S 1", wire_delay;
std::string tempdir_name;
bool fast_mode = false, dff_mode = false;
bool show_tempdir = false;
vector<int> lut_costs;
#if 0
cleanup = false;
show_tempdir = true;
#endif
#ifdef _WIN32
#ifndef ABCEXTERNAL
if (!check_file_exists(exe_file + ".exe") && check_file_exists(proc_self_dirname() + "..\\yosys-abc.exe"))
exe_file = proc_self_dirname() + "..\\yosys-abc";
#endif
#endif
std::string lut_arg, luts_arg;
exe_file = design->scratchpad_get_string("abc9.exe", exe_file /* inherit default value if not set */);
script_file = design->scratchpad_get_string("abc9.script", script_file);
if (design->scratchpad.count("abc9.D")) {
delay_target = "-D " + design->scratchpad_get_string("abc9.D");
}
lut_arg = design->scratchpad_get_string("abc9.lut", lut_arg);
luts_arg = design->scratchpad_get_string("abc9.luts", luts_arg);
fast_mode = design->scratchpad_get_bool("abc9.fast", fast_mode);
dff_mode = design->scratchpad_get_bool("abc9.dff", dff_mode);
show_tempdir = design->scratchpad_get_bool("abc9.showtmp", show_tempdir);
box_file = design->scratchpad_get_string("abc9.box", box_file);
if (design->scratchpad.count("abc9.W")) {
wire_delay = "-W " + design->scratchpad_get_string("abc9.W");
}
size_t argidx;
char pwd [PATH_MAX];
if (!getcwd(pwd, sizeof(pwd))) {
log_cmd_error("getcwd failed: %s\n", strerror(errno));
log_abort();
}
for (argidx = 1; argidx < args.size(); argidx++) {
std::string arg = args[argidx];
if (arg == "-exe" && argidx+1 < args.size()) {
exe_file = args[++argidx];
continue;
}
if (arg == "-script" && argidx+1 < args.size()) {
script_file = args[++argidx];
continue;
}
if (arg == "-D" && argidx+1 < args.size()) {
delay_target = "-D " + args[++argidx];
continue;
}
//if (arg == "-S" && argidx+1 < args.size()) {
// lutin_shared = "-S " + args[++argidx];
// continue;
//}
if (arg == "-lut" && argidx+1 < args.size()) {
lut_arg = args[++argidx];
continue;
}
if (arg == "-luts" && argidx+1 < args.size()) {
lut_arg = args[++argidx];
continue;
}
if (arg == "-fast") {
fast_mode = true;
continue;
}
if (arg == "-dff") {
dff_mode = true;
continue;
}
if (arg == "-showtmp") {
show_tempdir = true;
continue;
}
if (arg == "-box" && argidx+1 < args.size()) {
box_file = args[++argidx];
continue;
}
if (arg == "-W" && argidx+1 < args.size()) {
wire_delay = "-W " + args[++argidx];
continue;
}
if (arg == "-cwd" && argidx+1 < args.size()) {
tempdir_name = args[++argidx];
continue;
}
break;
}
extra_args(args, argidx, design);
rewrite_filename(script_file);
if (!script_file.empty() && !is_absolute_path(script_file) && script_file[0] != '+')
script_file = std::string(pwd) + "/" + script_file;
// handle -lut / -luts args
if (!lut_arg.empty()) {
string arg = lut_arg;
if (arg.find_first_not_of("0123456789:") == std::string::npos) {
size_t pos = arg.find_first_of(':');
int lut_mode = 0, lut_mode2 = 0;
if (pos != string::npos) {
lut_mode = atoi(arg.substr(0, pos).c_str());
lut_mode2 = atoi(arg.substr(pos+1).c_str());
} else {
lut_mode = atoi(arg.c_str());
lut_mode2 = lut_mode;
}
lut_costs.clear();
for (int i = 0; i < lut_mode; i++)
lut_costs.push_back(1);
for (int i = lut_mode; i < lut_mode2; i++)
lut_costs.push_back(2 << (i - lut_mode));
}
else {
lut_file = arg;
rewrite_filename(lut_file);
if (!lut_file.empty() && !is_absolute_path(lut_file) && lut_file[0] != '+')
lut_file = std::string(pwd) + "/" + lut_file;
}
}
if (!luts_arg.empty()) {
lut_costs.clear();
for (auto &tok : split_tokens(luts_arg, ",")) {
auto parts = split_tokens(tok, ":");
if (GetSize(parts) == 0 && !lut_costs.empty())
lut_costs.push_back(lut_costs.back());
else if (GetSize(parts) == 1)
lut_costs.push_back(atoi(parts.at(0).c_str()));
else if (GetSize(parts) == 2)
while (GetSize(lut_costs) < atoi(parts.at(0).c_str()))
lut_costs.push_back(atoi(parts.at(1).c_str()));
else
log_cmd_error("Invalid -luts syntax.\n");
}
}
// ABC expects a box file for XAIG
if (box_file.empty())
box_file = "+/dummy.box";
rewrite_filename(box_file);
if (!box_file.empty() && !is_absolute_path(box_file) && box_file[0] != '+')
box_file = std::string(pwd) + "/" + box_file;
if (tempdir_name.empty())
log_cmd_error("abc9_exe '-cwd' option is mandatory.\n");
abc9_module(design, script_file, exe_file, lut_costs, dff_mode,
delay_target, lutin_shared, fast_mode, show_tempdir,
box_file, lut_file, wire_delay, tempdir_name);
}
} Abc9ExePass;
PRIVATE_NAMESPACE_END

825
passes/techmap/abc9_ops.cc Normal file
View File

@ -0,0 +1,825 @@
/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
* 2019 Eddie Hung <eddie@fpgeh.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/register.h"
#include "kernel/sigtools.h"
#include "kernel/utils.h"
#include "kernel/celltypes.h"
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
int map_autoidx;
inline std::string remap_name(RTLIL::IdString abc9_name)
{
return stringf("$abc$%d$%s", map_autoidx, abc9_name.c_str()+1);
}
void mark_scc(RTLIL::Module *module)
{
// For every unique SCC found, (arbitrarily) find the first
// cell in the component, and convert all wires driven by
// its output ports into a new PO, and drive its previous
// sinks with a new PI
pool<RTLIL::Const> ids_seen;
for (auto cell : module->cells()) {
auto it = cell->attributes.find(ID(abc9_scc_id));
if (it == cell->attributes.end())
continue;
auto id = it->second;
auto r = ids_seen.insert(id);
cell->attributes.erase(it);
if (!r.second)
continue;
for (auto &c : cell->connections_) {
if (c.second.is_fully_const()) continue;
if (cell->output(c.first)) {
SigBit b = c.second.as_bit();
Wire *w = b.wire;
w->set_bool_attribute(ID::keep);
w->attributes[ID(abc9_scc_id)] = id.as_int();
}
}
}
module->fixup_ports();
}
void prep_dff(RTLIL::Module *module)
{
auto design = module->design;
log_assert(design);
SigMap assign_map(module);
typedef SigSpec clkdomain_t;
dict<clkdomain_t, int> clk_to_mergeability;
for (auto cell : module->cells()) {
if (cell->type != "$__ABC9_FF_")
continue;
Wire *abc9_clock_wire = module->wire(stringf("%s.clock", cell->name.c_str()));
if (abc9_clock_wire == NULL)
log_error("'%s.clock' is not a wire present in module '%s'.\n", cell->name.c_str(), log_id(module));
SigSpec abc9_clock = assign_map(abc9_clock_wire);
clkdomain_t key(abc9_clock);
auto r = clk_to_mergeability.insert(std::make_pair(abc9_clock, clk_to_mergeability.size() + 1));
auto r2 YS_ATTRIBUTE(unused) = cell->attributes.insert(std::make_pair(ID(abc9_mergeability), r.first->second));
log_assert(r2.second);
Wire *abc9_init_wire = module->wire(stringf("%s.init", cell->name.c_str()));
if (abc9_init_wire == NULL)
log_error("'%s.init' is not a wire present in module '%s'.\n", cell->name.c_str(), log_id(module));
log_assert(GetSize(abc9_init_wire) == 1);
SigSpec abc9_init = assign_map(abc9_init_wire);
if (!abc9_init.is_fully_const())
log_error("'%s.init' is not a constant wire present in module '%s'.\n", cell->name.c_str(), log_id(module));
if (abc9_init == State::S1)
log_error("'%s.init' in module '%s' has value 1'b1 which is not supported by 'abc9 -dff'.\n", cell->name.c_str(), log_id(module));
r2 = cell->attributes.insert(std::make_pair(ID(abc9_init), abc9_init.as_const()));
log_assert(r2.second);
}
RTLIL::Module *holes_module = design->module(stringf("%s$holes", module->name.c_str()));
if (holes_module) {
SigMap sigmap(holes_module);
dict<SigSpec, SigSpec> replace;
for (auto cell : holes_module->cells().to_vector()) {
if (!cell->type.in("$_DFF_N_", "$_DFF_NN0_", "$_DFF_NN1_", "$_DFF_NP0_", "$_DFF_NP1_",
"$_DFF_P_", "$_DFF_PN0_", "$_DFF_PN1", "$_DFF_PP0_", "$_DFF_PP1_"))
continue;
SigBit D = cell->getPort("\\D");
SigBit Q = cell->getPort("\\Q");
// Emulate async control embedded inside $_DFF_* cell with mux in front of D
if (cell->type.in("$_DFF_NN0_", "$_DFF_PN0_"))
D = holes_module->MuxGate(NEW_ID, State::S0, D, cell->getPort("\\R"));
else if (cell->type.in("$_DFF_NN1_", "$_DFF_PN1_"))
D = holes_module->MuxGate(NEW_ID, State::S1, D, cell->getPort("\\R"));
else if (cell->type.in("$_DFF_NP0_", "$_DFF_PP0_"))
D = holes_module->MuxGate(NEW_ID, D, State::S0, cell->getPort("\\R"));
else if (cell->type.in("$_DFF_NP1_", "$_DFF_PP1_"))
D = holes_module->MuxGate(NEW_ID, D, State::S1, cell->getPort("\\R"));
// Remove the $_DFF_* cell from what needs to be a combinatorial box
holes_module->remove(cell);
Wire *port;
if (GetSize(Q.wire) == 1)
port = holes_module->wire(stringf("$abc%s", Q.wire->name.c_str()));
else
port = holes_module->wire(stringf("$abc%s[%d]", Q.wire->name.c_str(), Q.offset));
log_assert(port);
// Prepare to replace "assign <port> = $_DFF_*.Q;" with "assign <port> = $_DFF_*.D;"
// in order to extract just the combinatorial control logic that feeds the box
// (i.e. clock enable, synchronous reset, etc.)
replace.insert(std::make_pair(Q,D));
// Since `flatten` above would have created wires named "<cell>.Q",
// extract the pre-techmap cell name
auto pos = Q.wire->name.str().rfind(".");
log_assert(pos != std::string::npos);
IdString driver = Q.wire->name.substr(0, pos);
// And drive the signal that was previously driven by "DFF.Q" (typically
// used to implement clock-enable functionality) with the "<cell>.$abc9_currQ"
// wire (which itself is driven an by input port) we inserted above
Wire *currQ = holes_module->wire(stringf("%s.abc9_ff.Q", driver.c_str()));
log_assert(currQ);
holes_module->connect(Q, currQ);
}
for (auto &conn : holes_module->connections_)
conn.second = replace.at(sigmap(conn.second), conn.second);
}
}
void prep_xaiger(RTLIL::Module *module, bool dff)
{
auto design = module->design;
log_assert(design);
SigMap sigmap(module);
dict<SigBit, pool<IdString>> bit_drivers, bit_users;
TopoSort<IdString, RTLIL::sort_by_id_str> toposort;
dict<IdString, std::vector<IdString>> box_ports;
for (auto cell : module->cells()) {
if (cell->type == "$__ABC9_FF_")
continue;
if (cell->has_keep_attr())
continue;
auto inst_module = module->design->module(cell->type);
bool abc9_box = inst_module && inst_module->attributes.count("\\abc9_box_id");
bool abc9_flop = false;
if (abc9_box) {
abc9_flop = inst_module->get_bool_attribute("\\abc9_flop");
if (abc9_flop && !dff)
continue;
auto r = box_ports.insert(cell->type);
if (r.second) {
// Make carry in the last PI, and carry out the last PO
// since ABC requires it this way
IdString carry_in, carry_out;
for (const auto &port_name : inst_module->ports) {
auto w = inst_module->wire(port_name);
log_assert(w);
if (w->get_bool_attribute("\\abc9_carry")) {
if (w->port_input) {
if (carry_in != IdString())
log_error("Module '%s' contains more than one 'abc9_carry' input port.\n", log_id(inst_module));
carry_in = port_name;
}
if (w->port_output) {
if (carry_out != IdString())
log_error("Module '%s' contains more than one 'abc9_carry' output port.\n", log_id(inst_module));
carry_out = port_name;
}
}
else
r.first->second.push_back(port_name);
}
if (carry_in != IdString() && carry_out == IdString())
log_error("Module '%s' contains an 'abc9_carry' input port but no output port.\n", log_id(inst_module));
if (carry_in == IdString() && carry_out != IdString())
log_error("Module '%s' contains an 'abc9_carry' output port but no input port.\n", log_id(inst_module));
if (carry_in != IdString()) {
r.first->second.push_back(carry_in);
r.first->second.push_back(carry_out);
}
}
}
else if (!yosys_celltypes.cell_known(cell->type))
continue;
// TODO: Speed up toposort -- we care about box ordering only
for (auto conn : cell->connections()) {
if (cell->input(conn.first))
for (auto bit : sigmap(conn.second))
bit_users[bit].insert(cell->name);
if (cell->output(conn.first) && !abc9_flop)
for (auto bit : sigmap(conn.second))
bit_drivers[bit].insert(cell->name);
}
toposort.node(cell->name);
}
if (box_ports.empty())
return;
for (auto &it : bit_users)
if (bit_drivers.count(it.first))
for (auto driver_cell : bit_drivers.at(it.first))
for (auto user_cell : it.second)
toposort.edge(driver_cell, user_cell);
if (ys_debug(1))
toposort.analyze_loops = true;
bool no_loops YS_ATTRIBUTE(unused) = toposort.sort();
if (ys_debug(1)) {
unsigned i = 0;
for (auto &it : toposort.loops) {
log(" loop %d\n", i++);
for (auto cell_name : it) {
auto cell = module->cell(cell_name);
log_assert(cell);
log("\t%s (%s @ %s)\n", log_id(cell), log_id(cell->type), cell->get_src_attribute().c_str());
}
}
}
log_assert(no_loops);
RTLIL::Module *holes_module = design->addModule(stringf("%s$holes", module->name.c_str()));
log_assert(holes_module);
holes_module->set_bool_attribute("\\abc9_holes");
dict<IdString, Cell*> cell_cache;
int port_id = 1, box_count = 0;
for (auto cell_name : toposort.sorted) {
RTLIL::Cell *cell = module->cell(cell_name);
log_assert(cell);
RTLIL::Module* box_module = design->module(cell->type);
if (!box_module || !box_module->attributes.count("\\abc9_box_id"))
continue;
cell->attributes["\\abc9_box_seq"] = box_count++;
IdString derived_name = box_module->derive(design, cell->parameters);
box_module = design->module(derived_name);
auto r = cell_cache.insert(derived_name);
auto &holes_cell = r.first->second;
if (r.second) {
if (box_module->has_processes())
Pass::call_on_module(design, box_module, "proc");
if (box_module->get_bool_attribute("\\whitebox")) {
holes_cell = holes_module->addCell(cell->name, derived_name);
int box_inputs = 0;
for (auto port_name : box_ports.at(cell->type)) {
RTLIL::Wire *w = box_module->wire(port_name);
log_assert(w);
log_assert(!w->port_input || !w->port_output);
auto &conn = holes_cell->connections_[port_name];
if (w->port_input) {
for (int i = 0; i < GetSize(w); i++) {
box_inputs++;
RTLIL::Wire *holes_wire = holes_module->wire(stringf("\\i%d", box_inputs));
if (!holes_wire) {
holes_wire = holes_module->addWire(stringf("\\i%d", box_inputs));
holes_wire->port_input = true;
holes_wire->port_id = port_id++;
holes_module->ports.push_back(holes_wire->name);
}
conn.append(holes_wire);
}
}
else if (w->port_output)
conn = holes_module->addWire(stringf("%s.%s", derived_name.c_str(), log_id(port_name)), GetSize(w));
}
// For flops only, create an extra 1-bit input that drives a new wire
// called "<cell>.abc9_ff.Q" that is used below
if (box_module->get_bool_attribute("\\abc9_flop")) {
box_inputs++;
Wire *holes_wire = holes_module->wire(stringf("\\i%d", box_inputs));
if (!holes_wire) {
holes_wire = holes_module->addWire(stringf("\\i%d", box_inputs));
holes_wire->port_input = true;
holes_wire->port_id = port_id++;
holes_module->ports.push_back(holes_wire->name);
}
Wire *Q = holes_module->addWire(stringf("%s.abc9_ff.Q", cell->name.c_str()));
holes_module->connect(Q, holes_wire);
}
}
else // box_module is a blackbox
log_assert(holes_cell == nullptr);
}
for (auto port_name : box_ports.at(cell->type)) {
RTLIL::Wire *w = box_module->wire(port_name);
log_assert(w);
if (!w->port_output)
continue;
Wire *holes_wire = holes_module->addWire(stringf("$abc%s.%s", cell->name.c_str(), log_id(port_name)), GetSize(w));
holes_wire->port_output = true;
holes_wire->port_id = port_id++;
holes_module->ports.push_back(holes_wire->name);
if (holes_cell) // whitebox
holes_module->connect(holes_wire, holes_cell->getPort(port_name));
else // blackbox
holes_module->connect(holes_wire, Const(State::S0, GetSize(w)));
}
}
}
void reintegrate(RTLIL::Module *module)
{
auto design = module->design;
log_assert(design);
map_autoidx = autoidx++;
RTLIL::Module *mapped_mod = design->module(stringf("%s$abc9", module->name.c_str()));
if (mapped_mod == NULL)
log_error("ABC output file does not contain a module `%s$abc'.\n", log_id(module));
for (auto w : mapped_mod->wires())
module->addWire(remap_name(w->name), GetSize(w));
dict<IdString,std::vector<IdString>> box_ports;
for (auto m : design->modules()) {
if (!m->attributes.count(ID(abc9_box_id)))
continue;
auto r = box_ports.insert(m->name);
if (r.second) {
// Make carry in the last PI, and carry out the last PO
// since ABC requires it this way
IdString carry_in, carry_out;
for (const auto &port_name : m->ports) {
auto w = m->wire(port_name);
log_assert(w);
if (w->get_bool_attribute("\\abc9_carry")) {
if (w->port_input) {
if (carry_in != IdString())
log_error("Module '%s' contains more than one 'abc9_carry' input port.\n", log_id(m));
carry_in = port_name;
}
if (w->port_output) {
if (carry_out != IdString())
log_error("Module '%s' contains more than one 'abc9_carry' output port.\n", log_id(m));
carry_out = port_name;
}
}
else
r.first->second.push_back(port_name);
}
if (carry_in != IdString() && carry_out == IdString())
log_error("Module '%s' contains an 'abc9_carry' input port but no output port.\n", log_id(m));
if (carry_in == IdString() && carry_out != IdString())
log_error("Module '%s' contains an 'abc9_carry' output port but no input port.\n", log_id(m));
if (carry_in != IdString()) {
r.first->second.push_back(carry_in);
r.first->second.push_back(carry_out);
}
}
}
std::vector<Cell*> boxes;
for (auto cell : module->cells().to_vector()) {
if (cell->has_keep_attr())
continue;
if (cell->type.in(ID($_AND_), ID($_NOT_), ID($__ABC9_FF_)))
module->remove(cell);
else if (cell->attributes.erase("\\abc9_box_seq"))
boxes.emplace_back(cell);
}
dict<SigBit, pool<IdString>> bit_drivers, bit_users;
TopoSort<IdString, RTLIL::sort_by_id_str> toposort;
dict<RTLIL::Cell*,RTLIL::Cell*> not2drivers;
dict<SigBit, std::vector<RTLIL::Cell*>> bit2sinks;
std::map<IdString, int> cell_stats;
for (auto mapped_cell : mapped_mod->cells())
{
// TODO: Speed up toposort -- we care about NOT ordering only
toposort.node(mapped_cell->name);
if (mapped_cell->type == ID($_NOT_)) {
RTLIL::SigBit a_bit = mapped_cell->getPort(ID::A);
RTLIL::SigBit y_bit = mapped_cell->getPort(ID::Y);
bit_users[a_bit].insert(mapped_cell->name);
// Ignore inouts for topo ordering
if (y_bit.wire && !(y_bit.wire->port_input && y_bit.wire->port_output))
bit_drivers[y_bit].insert(mapped_cell->name);
if (!a_bit.wire) {
mapped_cell->setPort(ID::Y, module->addWire(NEW_ID));
RTLIL::Wire *wire = module->wire(remap_name(y_bit.wire->name));
log_assert(wire);
module->connect(RTLIL::SigBit(wire, y_bit.offset), State::S1);
}
else {
RTLIL::Cell* driver_lut = nullptr;
// ABC can return NOT gates that drive POs
if (!a_bit.wire->port_input) {
// If it's not a NOT gate that that comes from a PI directly,
// find the driver LUT and clone that to guarantee that we won't
// increase the max logic depth
// (TODO: Optimise by not cloning unless will increase depth)
RTLIL::IdString driver_name;
if (GetSize(a_bit.wire) == 1)
driver_name = stringf("$lut%s", a_bit.wire->name.c_str());
else
driver_name = stringf("$lut%s[%d]", a_bit.wire->name.c_str(), a_bit.offset);
driver_lut = mapped_mod->cell(driver_name);
}
if (!driver_lut) {
// If a driver couldn't be found (could be from PI or box CI)
// then implement using a LUT
RTLIL::Cell *cell = module->addLut(remap_name(stringf("$lut%s", mapped_cell->name.c_str())),
RTLIL::SigBit(module->wires_.at(remap_name(a_bit.wire->name)), a_bit.offset),
RTLIL::SigBit(module->wires_.at(remap_name(y_bit.wire->name)), y_bit.offset),
RTLIL::Const::from_string("01"));
bit2sinks[cell->getPort(ID::A)].push_back(cell);
cell_stats[ID($lut)]++;
}
else
not2drivers[mapped_cell] = driver_lut;
}
continue;
}
if (mapped_cell->type.in(ID($lut), ID($__ABC9_FF_))) {
// Convert buffer into direct connection
if (mapped_cell->type == ID($lut) &&
GetSize(mapped_cell->getPort(ID::A)) == 1 &&
mapped_cell->getParam(ID(LUT)) == RTLIL::Const::from_string("01")) {
SigSpec my_a = module->wires_.at(remap_name(mapped_cell->getPort(ID::A).as_wire()->name));
SigSpec my_y = module->wires_.at(remap_name(mapped_cell->getPort(ID::Y).as_wire()->name));
module->connect(my_y, my_a);
log_abort();
continue;
}
RTLIL::Cell *cell = module->addCell(remap_name(mapped_cell->name), mapped_cell->type);
cell->parameters = mapped_cell->parameters;
cell->attributes = mapped_cell->attributes;
for (auto &mapped_conn : mapped_cell->connections()) {
RTLIL::SigSpec newsig;
for (auto c : mapped_conn.second.chunks()) {
if (c.width == 0)
continue;
//log_assert(c.width == 1);
if (c.wire)
c.wire = module->wires_.at(remap_name(c.wire->name));
newsig.append(c);
}
cell->setPort(mapped_conn.first, newsig);
if (cell->input(mapped_conn.first)) {
for (auto i : newsig)
bit2sinks[i].push_back(cell);
for (auto i : mapped_conn.second)
bit_users[i].insert(mapped_cell->name);
}
if (cell->output(mapped_conn.first))
for (auto i : mapped_conn.second)
// Ignore inouts for topo ordering
if (i.wire && !(i.wire->port_input && i.wire->port_output))
bit_drivers[i].insert(mapped_cell->name);
}
}
else {
RTLIL::Cell *existing_cell = module->cell(mapped_cell->name);
log_assert(existing_cell);
RTLIL::Module* box_module = design->module(existing_cell->type);
auto it = box_module->attributes.find(ID(abc9_box_id));
log_assert(it != box_module->attributes.end());
log_assert(mapped_cell->type == stringf("$__boxid%d", it->second.as_int()));
mapped_cell->type = existing_cell->type;
RTLIL::Cell *cell = module->addCell(remap_name(mapped_cell->name), mapped_cell->type);
cell->parameters = existing_cell->parameters;
cell->attributes = existing_cell->attributes;
module->swap_names(cell, existing_cell);
auto jt = mapped_cell->connections_.find("\\i");
log_assert(jt != mapped_cell->connections_.end());
SigSpec inputs = std::move(jt->second);
mapped_cell->connections_.erase(jt);
jt = mapped_cell->connections_.find("\\o");
log_assert(jt != mapped_cell->connections_.end());
SigSpec outputs = std::move(jt->second);
mapped_cell->connections_.erase(jt);
auto abc9_flop = box_module->attributes.count("\\abc9_flop");
if (!abc9_flop) {
for (const auto &i : inputs)
bit_users[i].insert(mapped_cell->name);
for (const auto &i : outputs)
// Ignore inouts for topo ordering
if (i.wire && !(i.wire->port_input && i.wire->port_output))
bit_drivers[i].insert(mapped_cell->name);
}
int input_count = 0, output_count = 0;
for (const auto &port_name : box_ports.at(cell->type)) {
RTLIL::Wire *w = box_module->wire(port_name);
log_assert(w);
SigSpec sig;
if (w->port_input) {
sig = inputs.extract(input_count, GetSize(w));
input_count += GetSize(w);
}
if (w->port_output) {
sig = outputs.extract(output_count, GetSize(w));
output_count += GetSize(w);
}
SigSpec newsig;
for (auto c : sig.chunks()) {
if (c.width == 0)
continue;
//log_assert(c.width == 1);
if (c.wire)
c.wire = module->wires_.at(remap_name(c.wire->name));
newsig.append(c);
}
cell->setPort(port_name, newsig);
if (w->port_input && !abc9_flop)
for (const auto &i : newsig)
bit2sinks[i].push_back(cell);
}
}
cell_stats[mapped_cell->type]++;
}
for (auto cell : boxes)
module->remove(cell);
// Copy connections (and rename) from mapped_mod to module
for (auto conn : mapped_mod->connections()) {
if (!conn.first.is_fully_const()) {
auto chunks = conn.first.chunks();
for (auto &c : chunks)
c.wire = module->wires_.at(remap_name(c.wire->name));
conn.first = std::move(chunks);
}
if (!conn.second.is_fully_const()) {
auto chunks = conn.second.chunks();
for (auto &c : chunks)
if (c.wire)
c.wire = module->wires_.at(remap_name(c.wire->name));
conn.second = std::move(chunks);
}
module->connect(conn);
}
for (auto &it : cell_stats)
log("ABC RESULTS: %15s cells: %8d\n", it.first.c_str(), it.second);
int in_wires = 0, out_wires = 0;
// Stitch in mapped_mod's inputs/outputs into module
for (auto port : mapped_mod->ports) {
RTLIL::Wire *mapped_wire = mapped_mod->wire(port);
RTLIL::Wire *wire = module->wire(port);
log_assert(wire);
if (wire->attributes.erase(ID(abc9_scc_id))) {
auto r YS_ATTRIBUTE(unused) = wire->attributes.erase(ID::keep);
log_assert(r);
}
RTLIL::Wire *remap_wire = module->wire(remap_name(port));
RTLIL::SigSpec signal(wire, 0, GetSize(remap_wire));
log_assert(GetSize(signal) >= GetSize(remap_wire));
RTLIL::SigSig conn;
if (mapped_wire->port_output) {
conn.first = signal;
conn.second = remap_wire;
out_wires++;
module->connect(conn);
}
else if (mapped_wire->port_input) {
conn.first = remap_wire;
conn.second = signal;
in_wires++;
module->connect(conn);
}
}
// ABC9 will return $_NOT_ gates in its mapping (since they are
// treated as being "free"), in particular driving primary
// outputs (real primary outputs, or cells treated as blackboxes)
// or driving box inputs.
// Instead of just mapping those $_NOT_ gates into 2-input $lut-s
// at an area and delay cost, see if it is possible to push
// this $_NOT_ into the driving LUT, or into all sink LUTs.
// When this is not possible, (i.e. this signal drives two primary
// outputs, only one of which is complemented) and when the driver
// is a LUT, then clone the LUT so that it can be inverted without
// increasing depth/delay.
for (auto &it : bit_users)
if (bit_drivers.count(it.first))
for (auto driver_cell : bit_drivers.at(it.first))
for (auto user_cell : it.second)
toposort.edge(driver_cell, user_cell);
bool no_loops YS_ATTRIBUTE(unused) = toposort.sort();
log_assert(no_loops);
for (auto ii = toposort.sorted.rbegin(); ii != toposort.sorted.rend(); ii++) {
RTLIL::Cell *not_cell = mapped_mod->cell(*ii);
log_assert(not_cell);
if (not_cell->type != ID($_NOT_))
continue;
auto it = not2drivers.find(not_cell);
if (it == not2drivers.end())
continue;
RTLIL::Cell *driver_lut = it->second;
RTLIL::SigBit a_bit = not_cell->getPort(ID::A);
RTLIL::SigBit y_bit = not_cell->getPort(ID::Y);
RTLIL::Const driver_mask;
a_bit.wire = module->wires_.at(remap_name(a_bit.wire->name));
y_bit.wire = module->wires_.at(remap_name(y_bit.wire->name));
auto jt = bit2sinks.find(a_bit);
if (jt == bit2sinks.end())
goto clone_lut;
for (auto sink_cell : jt->second)
if (sink_cell->type != ID($lut))
goto clone_lut;
// Push downstream LUTs past inverter
for (auto sink_cell : jt->second) {
SigSpec A = sink_cell->getPort(ID::A);
RTLIL::Const mask = sink_cell->getParam(ID(LUT));
int index = 0;
for (; index < GetSize(A); index++)
if (A[index] == a_bit)
break;
log_assert(index < GetSize(A));
int i = 0;
while (i < GetSize(mask)) {
for (int j = 0; j < (1 << index); j++)
std::swap(mask[i+j], mask[i+j+(1 << index)]);
i += 1 << (index+1);
}
A[index] = y_bit;
sink_cell->setPort(ID::A, A);
sink_cell->setParam(ID(LUT), mask);
}
// Since we have rewritten all sinks (which we know
// to be only LUTs) to be after the inverter, we can
// go ahead and clone the LUT with the expectation
// that the original driving LUT will become dangling
// and get cleaned away
clone_lut:
driver_mask = driver_lut->getParam(ID(LUT));
for (auto &b : driver_mask.bits) {
if (b == RTLIL::State::S0) b = RTLIL::State::S1;
else if (b == RTLIL::State::S1) b = RTLIL::State::S0;
}
auto cell = module->addLut(NEW_ID,
driver_lut->getPort(ID::A),
y_bit,
driver_mask);
for (auto &bit : cell->connections_.at(ID::A)) {
bit.wire = module->wires_.at(remap_name(bit.wire->name));
bit2sinks[bit].push_back(cell);
}
}
//log("ABC RESULTS: internal signals: %8d\n", int(signal_list.size()) - in_wires - out_wires);
log("ABC RESULTS: input signals: %8d\n", in_wires);
log("ABC RESULTS: output signals: %8d\n", out_wires);
design->remove(mapped_mod);
}
struct Abc9OpsPass : public Pass {
Abc9OpsPass() : Pass("abc9_ops", "helper functions for ABC9") { }
void help() YS_OVERRIDE
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" abc9_ops [options] [selection]\n");
log("\n");
log("This pass contains a set of supporting operations for use during ABC technology\n");
log("mapping, and is expected to be called in conjunction with other operations from\n");
log("the `abc9' script pass. Only fully-selected modules are supported.\n");
log("\n");
log(" -mark_scc\n");
log(" for an arbitrarily chosen cell in each unique SCC of each selected module\n");
log(" (tagged with an (* abc9_scc_id = <int> *) attribute), temporarily mark all\n");
log(" wires driven by this cell's outputs with a (* keep *) attribute in order\n");
log(" to break the SCC. this temporary attribute will be removed on -reintegrate.\n");
log("\n");
log(" -prep_xaiger\n");
log(" prepare the design for XAIGER output. this includes computing the\n");
log(" topological ordering of ABC9 boxes, as well as preparing the\n");
log(" '<module-name>$holes' module that contains the logic behaviour of ABC9\n");
log(" whiteboxes.\n");
log("\n");
log(" -dff\n");
log(" consider flop cells (those instantiating modules marked with (* abc9_flop *)\n");
log(" during -prep_xaiger.\n");
log("\n");
log(" -prep_dff\n");
log(" compute the clock domain and initial value of each flop in the design.\n");
log(" process the '$holes' module to support clock-enable functionality.\n");
log("\n");
log(" -reintegrate\n");
log(" for each selected module, re-intergrate the module '<module-name>$abc9'\n");
log(" by first recovering ABC9 boxes, and then stitching in the remaining primary\n");
log(" inputs and outputs.\n");
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
{
log_header(design, "Executing ABC9_OPS pass (helper functions for ABC9).\n");
bool mark_scc_mode = false;
bool prep_dff_mode = false;
bool prep_xaiger_mode = false;
bool reintegrate_mode = false;
bool dff_mode = false;
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) {
std::string arg = args[argidx];
if (arg == "-mark_scc") {
mark_scc_mode = true;
continue;
}
if (arg == "-prep_dff") {
prep_dff_mode = true;
continue;
}
if (arg == "-prep_xaiger") {
prep_xaiger_mode = true;
continue;
}
if (arg == "-reintegrate") {
reintegrate_mode = true;
continue;
}
if (arg == "-dff") {
dff_mode = true;
continue;
}
break;
}
extra_args(args, argidx, design);
if (!(mark_scc_mode || prep_dff_mode || reintegrate_mode))
log_cmd_error("At least one of -mark_scc, -prep_{xaiger,dff}, -reintegrate must be specified.\n");
if (dff_mode && !prep_xaiger_mode)
log_cmd_error("'-dff' option is only relevant for -prep_xaiger.\n");
for (auto mod : design->selected_modules()) {
if (mod->get_bool_attribute("\\abc9_holes"))
continue;
if (mod->processes.size() > 0) {
log("Skipping module %s as it contains processes.\n", log_id(mod));
continue;
}
if (!design->selected_whole_module(mod))
log_error("Can't handle partially selected module %s!\n", log_id(mod));
if (mark_scc_mode)
mark_scc(mod);
if (prep_dff_mode)
prep_dff(mod);
if (prep_xaiger_mode)
prep_xaiger(mod, dff_mode);
if (reintegrate_mode)
reintegrate(mod);
}
}
} Abc9OpsPass;
PRIVATE_NAMESPACE_END

View File

@ -74,7 +74,7 @@
// (e) a special _TECHMAP_REPLACE_.abc9_ff.Q wire that will be used for feedback
// into the (combinatorial) FD* cell to facilitate clock-enable behaviour
module FDRE (output Q, input C, CE, D, R);
module FDRE (output Q, (* techmap_autopurge *) input C, CE, D, R);
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
@ -110,7 +110,7 @@ module FDRE (output Q, input C, CE, D, R);
wire [0:0] abc9_ff.init = 1'b0;
wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = QQ;
endmodule
module FDRE_1 (output Q, input C, CE, D, R);
module FDRE_1 (output Q, (* techmap_autopurge *) input C, CE, D, R);
parameter [0:0] INIT = 1'b0;
wire QQ, $Q;
generate if (INIT == 1'b1) begin
@ -138,7 +138,7 @@ module FDRE_1 (output Q, input C, CE, D, R);
wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = QQ;
endmodule
module FDSE (output Q, input C, CE, D, S);
module FDSE (output Q, (* techmap_autopurge *) input C, CE, D, S);
parameter [0:0] INIT = 1'b1;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
@ -173,7 +173,7 @@ module FDSE (output Q, input C, CE, D, S);
wire [0:0] abc9_ff.init = 1'b0;
wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = QQ;
endmodule
module FDSE_1 (output Q, input C, CE, D, S);
module FDSE_1 (output Q, (* techmap_autopurge *) input C, CE, D, S);
parameter [0:0] INIT = 1'b1;
wire QQ, $Q;
generate if (INIT == 1'b1) begin
@ -200,7 +200,7 @@ module FDSE_1 (output Q, input C, CE, D, S);
wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = QQ;
endmodule
module FDCE (output Q, input C, CE, D, CLR);
module FDCE (output Q, (* techmap_autopurge *) input C, CE, D, CLR);
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
@ -249,7 +249,7 @@ module FDCE (output Q, input C, CE, D, CLR);
wire [0:0] abc9_ff.init = 1'b0;
wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = $QQ;
endmodule
module FDCE_1 (output Q, input C, CE, D, CLR);
module FDCE_1 (output Q, (* techmap_autopurge *) input C, CE, D, CLR);
parameter [0:0] INIT = 1'b0;
wire QQ, $Q, $QQ;
generate if (INIT == 1'b1) begin
@ -288,7 +288,7 @@ module FDCE_1 (output Q, input C, CE, D, CLR);
wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = $QQ;
endmodule
module FDPE (output Q, input C, CE, D, PRE);
module FDPE (output Q, (* techmap_autopurge *) input C, CE, D, PRE);
parameter [0:0] INIT = 1'b1;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
@ -335,7 +335,7 @@ module FDPE (output Q, input C, CE, D, PRE);
wire [0:0] abc9_ff.init = 1'b0;
wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = $QQ;
endmodule
module FDPE_1 (output Q, input C, CE, D, PRE);
module FDPE_1 (output Q, (* techmap_autopurge *) input C, CE, D, PRE);
parameter [0:0] INIT = 1'b1;
wire QQ, $Q, $QQ;
generate if (INIT == 1'b1) begin

View File

@ -291,3 +291,19 @@ module abc9_test035(input clk, d, output reg [1:0] q);
always @(posedge clk) q[0] <= d;
always @(negedge clk) q[1] <= q[0];
endmodule
module abc9_test036(input A, B, S, output [1:0] O);
(* keep *)
MUXF8 m (
.I0(I0),
.I1(I1),
.O(O[0]),
.S(S)
);
MUXF8 m2 (
.I0(I0),
.I1(I1),
.O(O[1]),
.S(S)
);
endmodule

View File

@ -39,6 +39,35 @@ design -load gold
scratchpad -copy abc9.script.flow3 abc9.script
abc9 -lut 4
design -reset
read_verilog <<EOT
module top(input a, b, output o);
(* keep *) wire w = a & b;
assign o = ~w;
endmodule
EOT
simplemap
equiv_opt -assert abc9 -lut 4
design -load postopt
select -assert-count 2 t:$lut
design -reset
read_verilog -icells <<EOT
module top(input a, b, output o);
wire w;
(* keep *) $_AND_ gate (.Y(w), .A(a), .B(b));
assign o = ~w;
endmodule
EOT
simplemap
equiv_opt -assert abc9 -lut 4
design -load postopt
select -assert-count 1 t:$lut
select -assert-count 1 t:$_AND_
design -reset
read_verilog -icells <<EOT

View File

@ -14,6 +14,7 @@ design -import gate -as gate
miter -equiv -flatten -make_assert -make_outputs gold gate miter
sat -verify -prove-asserts -show-ports miter
design -load read
hierarchy -top abc9_test028
proc
@ -23,6 +24,7 @@ select -assert-count 1 t:$lut r:LUT=2'b01 r:WIDTH=1 %i %i
select -assert-count 1 t:unknown
select -assert-none t:$lut t:unknown %% t: %D
design -load read
hierarchy -top abc9_test032
proc
@ -38,3 +40,16 @@ design -import gate -as gate
miter -equiv -flatten -make_assert -make_outputs gold gate miter
sat -seq 10 -verify -prove-asserts -show-ports miter
design -reset
read_verilog -icells <<EOT
module abc9_test036(input clk, d, output q);
(* keep *) reg w;
$__ABC9_FF_ ff(.D(d), .Q(w));
wire \ff.clock = clk;
wire \ff.init = 1'b0;
assign q = w;
endmodule
EOT
abc9 -lut 4 -dff