mirror of https://github.com/YosysHQ/yosys.git
Converting PRESENTATION_ExSyn
This commit is contained in:
parent
4b40372446
commit
330a2272da
|
@ -1,6 +1,6 @@
|
|||
all: resources dots tex svg tidy
|
||||
|
||||
RES_LIST:= PRESENTATION_Intro/
|
||||
RES_LIST:= PRESENTATION_Intro/ PRESENTATION_ExSyn/
|
||||
RES_DIRS:= $(addprefix ../resources/,$(RES_LIST))
|
||||
.PHONY: resources
|
||||
resources: $(RES_DIRS)
|
||||
|
|
|
@ -1 +1,2 @@
|
|||
*.dot
|
||||
*.pdf
|
|
@ -9,7 +9,7 @@ all: $(addsuffix .pdf,$(TARGETS))
|
|||
|
||||
define make_pdf_template
|
||||
$(1).pdf: $(1)*.v $(1)*.ys
|
||||
../../yosys -p 'script $(1).ys; show -notitle -prefix $(1) -format pdf'
|
||||
../../../yosys -p 'script $(1).ys; show -notitle -prefix $(1) -format pdf'
|
||||
endef
|
||||
|
||||
$(foreach trg,$(TARGETS),$(eval $(call make_pdf_template,$(trg))))
|
|
@ -5,4 +5,5 @@ Getting started with Yosys
|
|||
|
||||
installation
|
||||
scripting_intro
|
||||
typical_phases
|
||||
examples
|
||||
|
|
|
@ -0,0 +1,438 @@
|
|||
Typical Phases of a Synthesis Flow
|
||||
----------------------------------
|
||||
|
||||
- Reading and elaborating the design
|
||||
- Higher-level synthesis and optimization
|
||||
|
||||
- Converting ``always``-blocks to logic and registers
|
||||
- Perform coarse-grain optimizations (resource sharing, const folding, ...)
|
||||
- Handling of memories and other coarse-grain blocks
|
||||
- Extracting and optimizing finite state machines
|
||||
|
||||
- Convert remaining logic to bit-level logic functions
|
||||
- Perform optimizations on bit-level logic functions
|
||||
- Map bit-level logic gates and registers to cell library
|
||||
- Write results to output file
|
||||
|
||||
|
||||
Reading the design
|
||||
~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. code-block:: yoscrypt
|
||||
|
||||
read_verilog file1.v
|
||||
read_verilog -I include_dir -D enable_foo -D WIDTH=12 file2.v
|
||||
read_verilog -lib cell_library.v
|
||||
|
||||
verilog_defaults -add -I include_dir
|
||||
read_verilog file3.v
|
||||
read_verilog file4.v
|
||||
verilog_defaults -clear
|
||||
|
||||
verilog_defaults -push
|
||||
verilog_defaults -add -I include_dir
|
||||
read_verilog file5.v
|
||||
read_verilog file6.v
|
||||
verilog_defaults -pop
|
||||
|
||||
|
||||
Design elaboration
|
||||
~~~~~~~~~~~~~~~~~~
|
||||
|
||||
During design elaboration Yosys figures out how the modules are hierarchically
|
||||
connected. It also re-runs the AST parts of the Verilog frontend to create all
|
||||
needed variations of parametric modules.
|
||||
|
||||
.. code-block:: yoscrypt
|
||||
|
||||
# simplest form. at least this version should be used after reading all input files
|
||||
#
|
||||
hierarchy
|
||||
|
||||
# recommended form. fails if parts of the design hierarchy are missing, removes
|
||||
# everything that is unreachable from the top module, and marks the top module.
|
||||
#
|
||||
hierarchy -check -top top_module
|
||||
|
||||
|
||||
The ``proc`` command
|
||||
~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
The Verilog frontend converts ``always``-blocks to RTL netlists for the
|
||||
expressions and "processess" for the control- and memory elements.
|
||||
|
||||
The ``proc`` command transforms this "processess" to netlists of RTL multiplexer
|
||||
and register cells.
|
||||
|
||||
The ``proc`` command is actually a macro-command that calls the following other
|
||||
commands:
|
||||
|
||||
.. code-block:: yoscrypt
|
||||
|
||||
proc_clean # remove empty branches and processes
|
||||
proc_rmdead # remove unreachable branches
|
||||
proc_init # special handling of "initial" blocks
|
||||
proc_arst # identify modeling of async resets
|
||||
proc_mux # convert decision trees to multiplexer networks
|
||||
proc_dff # extract registers from processes
|
||||
proc_clean # if all went fine, this should remove all the processes
|
||||
|
||||
Many commands can not operate on modules with "processess" in them. Usually a
|
||||
call to ``proc`` is the first command in the actual synthesis procedure after
|
||||
design elaboration.
|
||||
|
||||
Example
|
||||
^^^^^^^
|
||||
|
||||
.. literalinclude:: ../../resources/PRESENTATION_ExSyn/proc_01.v
|
||||
:language: verilog
|
||||
:caption: ``docs/resources/PRESENTATION_ExSyn/proc_01.v``
|
||||
|
||||
.. literalinclude:: ../../resources/PRESENTATION_ExSyn/proc_01.ys
|
||||
:language: yoscrypt
|
||||
:caption: ``docs/resources/PRESENTATION_ExSyn/proc_01.ys``
|
||||
|
||||
.. figure:: ../../images/res/PRESENTATION_ExSyn/proc_01.*
|
||||
:class: width-helper
|
||||
|
||||
.. figure:: ../../images/res/PRESENTATION_ExSyn/proc_02.*
|
||||
:class: width-helper
|
||||
|
||||
.. literalinclude:: ../../resources/PRESENTATION_ExSyn/proc_02.v
|
||||
:language: verilog
|
||||
:caption: ``docs/resources/PRESENTATION_ExSyn/proc_02.v``
|
||||
|
||||
.. literalinclude:: ../../resources/PRESENTATION_ExSyn/proc_02.ys
|
||||
:language: yoscrypt
|
||||
:caption: ``docs/resources/PRESENTATION_ExSyn/proc_02.ys``
|
||||
|
||||
.. figure:: ../../images/res/PRESENTATION_ExSyn/proc_03.*
|
||||
:class: width-helper
|
||||
|
||||
.. literalinclude:: ../../resources/PRESENTATION_ExSyn/proc_03.ys
|
||||
:language: yoscrypt
|
||||
:caption: ``docs/resources/PRESENTATION_ExSyn/proc_03.ys``
|
||||
|
||||
.. literalinclude:: ../../resources/PRESENTATION_ExSyn/proc_03.v
|
||||
:language: verilog
|
||||
:caption: ``docs/resources/PRESENTATION_ExSyn/proc_03.v``
|
||||
|
||||
|
||||
The ``opt`` command
|
||||
~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
The ``opt`` command implements a series of simple optimizations. It also is a
|
||||
macro command that calls other commands:
|
||||
|
||||
.. code-block:: yoscrypt
|
||||
|
||||
opt_expr # const folding and simple expression rewriting
|
||||
opt_merge -nomux # merging identical cells
|
||||
|
||||
do
|
||||
opt_muxtree # remove never-active branches from multiplexer tree
|
||||
opt_reduce # consolidate trees of boolean ops to reduce functions
|
||||
opt_merge # merging identical cells
|
||||
opt_rmdff # remove/simplify registers with constant inputs
|
||||
opt_clean # remove unused objects (cells, wires) from design
|
||||
opt_expr # const folding and simple expression rewriting
|
||||
while [changed design]
|
||||
|
||||
The command ``clean`` can be used as alias for ``opt_clean``. And ``;;`` can be
|
||||
used as shortcut for ``clean``. For example:
|
||||
|
||||
.. code-block:: yoscrypt
|
||||
|
||||
proc; opt; memory; opt_expr;; fsm;;
|
||||
|
||||
Example
|
||||
^^^^^^^
|
||||
|
||||
.. figure:: ../../images/res/PRESENTATION_ExSyn/opt_01.*
|
||||
:class: width-helper
|
||||
|
||||
.. literalinclude:: ../../resources/PRESENTATION_ExSyn/opt_01.ys
|
||||
:language: yoscrypt
|
||||
:caption: ``docs/resources/PRESENTATION_ExSyn/opt_01.ys``
|
||||
|
||||
.. literalinclude:: ../../resources/PRESENTATION_ExSyn/opt_01.v
|
||||
:language: verilog
|
||||
:caption: ``docs/resources/PRESENTATION_ExSyn/opt_01.v``
|
||||
|
||||
.. figure:: ../../images/res/PRESENTATION_ExSyn/opt_02.*
|
||||
:class: width-helper
|
||||
|
||||
.. literalinclude:: ../../resources/PRESENTATION_ExSyn/opt_02.ys
|
||||
:language: yoscrypt
|
||||
:caption: ``docs/resources/PRESENTATION_ExSyn/opt_02.ys``
|
||||
|
||||
.. literalinclude:: ../../resources/PRESENTATION_ExSyn/opt_02.v
|
||||
:language: verilog
|
||||
:caption: ``docs/resources/PRESENTATION_ExSyn/opt_02.v``
|
||||
|
||||
.. figure:: ../../images/res/PRESENTATION_ExSyn/opt_03.*
|
||||
:class: width-helper
|
||||
|
||||
.. literalinclude:: ../../resources/PRESENTATION_ExSyn/opt_03.ys
|
||||
:language: yoscrypt
|
||||
:caption: ``docs/resources/PRESENTATION_ExSyn/opt_03.ys``
|
||||
|
||||
.. literalinclude:: ../../resources/PRESENTATION_ExSyn/opt_03.v
|
||||
:language: verilog
|
||||
:caption: ``docs/resources/PRESENTATION_ExSyn/opt_03.v``
|
||||
|
||||
.. figure:: ../../images/res/PRESENTATION_ExSyn/opt_04.*
|
||||
:class: width-helper
|
||||
|
||||
.. literalinclude:: ../../resources/PRESENTATION_ExSyn/opt_04.v
|
||||
:language: verilog
|
||||
:caption: ``docs/resources/PRESENTATION_ExSyn/opt_04.v``
|
||||
|
||||
.. literalinclude:: ../../resources/PRESENTATION_ExSyn/opt_04.ys
|
||||
:language: yoscrypt
|
||||
:caption: ``docs/resources/PRESENTATION_ExSyn/opt_04.ys``
|
||||
|
||||
|
||||
When to use ``opt`` or ``clean``
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Usually it does not hurt to call ``opt`` after each regular command in the
|
||||
synthesis script. But it increases the synthesis time, so it is favourable to
|
||||
only call ``opt`` when an improvement can be achieved.
|
||||
|
||||
The designs in ``yosys-bigsim`` are a good playground for experimenting with the
|
||||
effects of calling ``opt`` in various places of the flow.
|
||||
|
||||
It generally is a good idea to call ``opt`` before inherently expensive commands
|
||||
such as ``sat`` or ``freduce``, as the possible gain is much higher in this
|
||||
cases as the possible loss.
|
||||
|
||||
The ``clean`` command on the other hand is very fast and many commands leave a
|
||||
mess (dangling signal wires, etc). For example, most commands do not remove any
|
||||
wires or cells. They just change the connections and depend on a later call to
|
||||
clean to get rid of the now unused objects. So the occasional ``;;`` is a good
|
||||
idea in every synthesis script.
|
||||
|
||||
The ``memory`` command
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
In the RTL netlist, memory reads and writes are individual cells. This makes
|
||||
consolidating the number of ports for a memory easier. The ``memory``
|
||||
transforms memories to an implementation. Per default that is logic for address
|
||||
decoders and registers. It also is a macro command that calls other commands:
|
||||
|
||||
.. code-block:: yoscrypt
|
||||
|
||||
# this merges registers into the memory read- and write cells.
|
||||
memory_dff
|
||||
|
||||
# this collects all read and write cells for a memory and transforms them
|
||||
# into one multi-port memory cell.
|
||||
memory_collect
|
||||
|
||||
# this takes the multi-port memory cell and transforms it to address decoder
|
||||
# logic and registers. This step is skipped if "memory" is called with -nomap.
|
||||
memory_map
|
||||
|
||||
Usually it is preferred to use architecture-specific RAM resources for memory.
|
||||
For example:
|
||||
|
||||
.. code-block:: yoscrypt
|
||||
|
||||
memory -nomap; techmap -map my_memory_map.v; memory_map
|
||||
|
||||
Example
|
||||
^^^^^^^
|
||||
|
||||
.. figure:: ../../images/res/PRESENTATION_ExSyn/memory_01.*
|
||||
:class: width-helper
|
||||
|
||||
.. literalinclude:: ../../resources/PRESENTATION_ExSyn/memory_01.ys
|
||||
:language: yoscrypt
|
||||
:caption: ``docs/resources/PRESENTATION_ExSyn/memory_01.ys``
|
||||
|
||||
.. literalinclude:: ../../resources/PRESENTATION_ExSyn/memory_01.v
|
||||
:language: verilog
|
||||
:caption: ``docs/resources/PRESENTATION_ExSyn/memory_01.v``
|
||||
|
||||
.. figure:: ../../images/res/PRESENTATION_ExSyn/memory_02.*
|
||||
:class: width-helper
|
||||
|
||||
.. literalinclude:: ../../resources/PRESENTATION_ExSyn/memory_02.v
|
||||
:language: verilog
|
||||
:caption: ``docs/resources/PRESENTATION_ExSyn/memory_02.v``
|
||||
|
||||
.. literalinclude:: ../../resources/PRESENTATION_ExSyn/memory_02.ys
|
||||
:language: yoscrypt
|
||||
:caption: ``docs/resources/PRESENTATION_ExSyn/memory_02.ys``
|
||||
|
||||
|
||||
The ``fsm`` command
|
||||
~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
The ``fsm`` command identifies, extracts, optimizes (re-encodes), and
|
||||
re-synthesizes finite state machines. It again is a macro that calls
|
||||
a series of other commands:
|
||||
|
||||
.. code-block:: yoscrypt
|
||||
|
||||
fsm_detect # unless got option -nodetect
|
||||
fsm_extract
|
||||
|
||||
fsm_opt
|
||||
clean
|
||||
fsm_opt
|
||||
|
||||
fsm_expand # if got option -expand
|
||||
clean # if got option -expand
|
||||
fsm_opt # if got option -expand
|
||||
|
||||
fsm_recode # unless got option -norecode
|
||||
|
||||
fsm_info
|
||||
|
||||
fsm_export # if got option -export
|
||||
fsm_map # unless got option -nomap
|
||||
|
||||
Some details on the most important commands from the ``fsm_*`` group:
|
||||
|
||||
The ``fsm_detect`` command identifies FSM state registers and marks them with
|
||||
the ``(* fsm_encoding = "auto" *)`` attribute, if they do not have the
|
||||
``fsm_encoding`` set already. Mark registers with ``(* fsm_encoding = "none"
|
||||
*)`` to disable FSM optimization for a register.
|
||||
|
||||
The ``fsm_extract`` command replaces the entire FSM (logic and state registers)
|
||||
with a ``$fsm`` cell.
|
||||
|
||||
The commands ``fsm_opt`` and ``fsm_recode`` can be used to optimize the FSM.
|
||||
|
||||
Finally the ``fsm_map`` command can be used to convert the (optimized) ``$fsm``
|
||||
cell back to logic and registers.
|
||||
|
||||
The ``techmap`` command
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. figure:: ../../images/res/PRESENTATION_ExSyn/techmap_01.*
|
||||
:class: width-helper
|
||||
|
||||
The ``techmap`` command replaces cells with implementations given as
|
||||
verilog source. For example implementing a 32 bit adder using 16 bit adders:
|
||||
|
||||
.. literalinclude:: ../../resources/PRESENTATION_ExSyn/techmap_01_map.v
|
||||
:language: verilog
|
||||
:caption: ``docs/resources/PRESENTATION_ExSyn/techmap_01_map.v``
|
||||
|
||||
.. literalinclude:: ../../resources/PRESENTATION_ExSyn/techmap_01.v
|
||||
:language: verilog
|
||||
:caption: ``docs/resources/PRESENTATION_ExSyn/techmap_01.v``
|
||||
|
||||
.. literalinclude:: ../../resources/PRESENTATION_ExSyn/techmap_01.ys
|
||||
:language: yoscrypt
|
||||
:caption: ``docs/resources/PRESENTATION_ExSyn/techmap_01.ys``
|
||||
|
||||
stdcell mapping
|
||||
^^^^^^^^^^^^^^^
|
||||
|
||||
When ``techmap`` is used without a map file, it uses a built-in map file to map
|
||||
all RTL cell types to a generic library of built-in logic gates and registers.
|
||||
|
||||
The built-in logic gate types are: ``$_NOT_``, ``$_AND_``, ``$_OR_``,
|
||||
``$_XOR_``, and ``$_MUX_``.
|
||||
|
||||
The register types are: ``$_SR_NN_``, ``$_SR_NP_``, ``$_SR_PN_``, ``$_SR_PP_``,
|
||||
``$_DFF_N_``, ``$_DFF_P_ $_DFF_NN0_``, ``$_DFF_NN1_``, ``$_DFF_NP0_``,
|
||||
``$_DFF_NP1_``, ``$_DFF_PN0_``, ``$_DFF_PN1_``, ``$_DFF_PP0_ $_DFF_PP1_``,
|
||||
``$_DFFSR_NNN_``, ``$_DFFSR_NNP_``, ``$_DFFSR_NPN_``, ``$_DFFSR_NPP_``,
|
||||
``$_DFFSR_PNN_ $_DFFSR_PNP_``, ``$_DFFSR_PPN_``, ``$_DFFSR_PPP_``,
|
||||
``$_DLATCH_N_``, and ``$_DLATCH_P_``.
|
||||
|
||||
See :doc:`/yosys_internals/formats/cell_library` for more about the internal
|
||||
cells used.
|
||||
|
||||
The ``abc`` command
|
||||
~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
The ``abc`` command provides an interface to ABC_, an open source tool for
|
||||
low-level logic synthesis.
|
||||
|
||||
.. _ABC: http://www.eecs.berkeley.edu/~alanmi/abc/
|
||||
|
||||
The ``abc`` command processes a netlist of internal gate types and can perform:
|
||||
|
||||
- logic minimization (optimization)
|
||||
- mapping of logic to standard cell library (liberty format)
|
||||
- mapping of logic to k-LUTs (for FPGA synthesis)
|
||||
|
||||
Optionally ``abc`` can process registers from one clock domain and perform
|
||||
sequential optimization (such as register balancing).
|
||||
|
||||
ABC is also controlled using scripts. An ABC script can be specified to use more
|
||||
advanced ABC features. It is also possible to write the design with
|
||||
``write_blif`` and load the output file into ABC outside of Yosys.
|
||||
|
||||
Example
|
||||
^^^^^^^
|
||||
|
||||
.. literalinclude:: ../../resources/PRESENTATION_ExSyn/abc_01.v
|
||||
:language: verilog
|
||||
:caption: ``docs/resources/PRESENTATION_ExSyn/abc_01.v``
|
||||
|
||||
.. literalinclude:: ../../resources/PRESENTATION_ExSyn/abc_01.ys
|
||||
:language: yoscrypt
|
||||
:caption: ``docs/resources/PRESENTATION_ExSyn/abc_01.ys``
|
||||
|
||||
.. figure:: ../../images/res/PRESENTATION_ExSyn/abc_01.*
|
||||
:class: width-helper
|
||||
|
||||
Other special-purpose mapping commands
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
``dfflibmap``
|
||||
This command maps the internal register cell types to the register types
|
||||
described in a liberty file.
|
||||
|
||||
``hilomap``
|
||||
Some architectures require special driver cells for driving a constant hi or
|
||||
lo value. This command replaces simple constants with instances of such driver
|
||||
cells.
|
||||
|
||||
``iopadmap``
|
||||
Top-level input/outputs must usually be implemented using special I/O-pad
|
||||
cells. This command inserts this cells to the design.
|
||||
|
||||
Example Synthesis Script
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. code-block:: yoscrypt
|
||||
|
||||
# read and elaborate design
|
||||
read_verilog cpu_top.v cpu_ctrl.v cpu_regs.v
|
||||
read_verilog -D WITH_MULT cpu_alu.v
|
||||
hierarchy -check -top cpu_top
|
||||
|
||||
# high-level synthesis
|
||||
proc; opt; fsm;; memory -nomap; opt
|
||||
|
||||
# substitute block rams
|
||||
techmap -map map_rams.v
|
||||
|
||||
# map remaining memories
|
||||
memory_map
|
||||
|
||||
# low-level synthesis
|
||||
techmap; opt; flatten;; abc -lut6
|
||||
techmap -map map_xl_cells.v
|
||||
|
||||
# add clock buffers
|
||||
select -set xl_clocks t:FDRE %x:+FDRE[C] t:FDRE %d
|
||||
iopadmap -inpad BUFGP O:I @xl_clocks
|
||||
|
||||
# add io buffers
|
||||
select -set xl_nonclocks w:* t:BUFGP %x:+BUFGP[I] %d
|
||||
iopadmap -outpad OBUF I:O -inpad IBUF O:I @xl_nonclocks
|
||||
|
||||
# write synthesis results
|
||||
write_edif synth.edif
|
||||
|
||||
The weird ``select`` expressions at the end of this script are discussed later
|
||||
in :doc:`using_yosys/more_scripting/selections</using_yosys/more_scripting/selections>`.
|
|
@ -1,515 +0,0 @@
|
|||
|
||||
\section{Yosys by example -- Synthesis}
|
||||
|
||||
\begin{frame}
|
||||
\sectionpage
|
||||
\end{frame}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\subsection{Typical Phases of a Synthesis Flow}
|
||||
|
||||
\begin{frame}{\subsecname}
|
||||
\begin{itemize}
|
||||
\item Reading and elaborating the design
|
||||
\item Higher-level synthesis and optimization
|
||||
\begin{itemize}
|
||||
\item Converting {\tt always}-blocks to logic and registers
|
||||
\item Perform coarse-grain optimizations (resource sharing, const folding, ...)
|
||||
\item Handling of memories and other coarse-grain blocks
|
||||
\item Extracting and optimizing finite state machines
|
||||
\end{itemize}
|
||||
\item Convert remaining logic to bit-level logic functions
|
||||
\item Perform optimizations on bit-level logic functions
|
||||
\item Map bit-level logic gates and registers to cell library
|
||||
\item Write results to output file
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\subsection{Reading the design}
|
||||
|
||||
\begin{frame}[fragile]{\subsecname}
|
||||
\begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
|
||||
read_verilog file1.v
|
||||
read_verilog -I include_dir -D enable_foo -D WIDTH=12 file2.v
|
||||
read_verilog -lib cell_library.v
|
||||
|
||||
verilog_defaults -add -I include_dir
|
||||
read_verilog file3.v
|
||||
read_verilog file4.v
|
||||
verilog_defaults -clear
|
||||
|
||||
verilog_defaults -push
|
||||
verilog_defaults -add -I include_dir
|
||||
read_verilog file5.v
|
||||
read_verilog file6.v
|
||||
verilog_defaults -pop
|
||||
\end{lstlisting}
|
||||
\end{frame}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\subsection{Design elaboration}
|
||||
|
||||
\begin{frame}[fragile]{\subsecname}
|
||||
During design elaboration Yosys figures out how the modules are hierarchically
|
||||
connected. It also re-runs the AST parts of the Verilog frontend to create
|
||||
all needed variations of parametric modules.
|
||||
|
||||
\bigskip
|
||||
\begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
|
||||
# simplest form. at least this version should be used after reading all input files
|
||||
#
|
||||
hierarchy
|
||||
|
||||
# recommended form. fails if parts of the design hierarchy are missing, removes
|
||||
# everything that is unreachable from the top module, and marks the top module.
|
||||
#
|
||||
hierarchy -check -top top_module
|
||||
\end{lstlisting}
|
||||
\end{frame}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\subsection{The {\tt proc} command}
|
||||
|
||||
\begin{frame}[fragile]{\subsecname}
|
||||
The Verilog frontend converts {\tt always}-blocks to RTL netlists for the
|
||||
expressions and ``processes'' for the control- and memory elements.
|
||||
|
||||
\medskip
|
||||
The {\tt proc} command transforms this ``processes'' to netlists of RTL
|
||||
multiplexer and register cells.
|
||||
|
||||
\medskip
|
||||
The {\tt proc} command is actually a macro-command that calls the following
|
||||
other commands:
|
||||
|
||||
\begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
|
||||
proc_clean # remove empty branches and processes
|
||||
proc_rmdead # remove unreachable branches
|
||||
proc_init # special handling of "initial" blocks
|
||||
proc_arst # identify modeling of async resets
|
||||
proc_mux # convert decision trees to multiplexer networks
|
||||
proc_dff # extract registers from processes
|
||||
proc_clean # if all went fine, this should remove all the processes
|
||||
\end{lstlisting}
|
||||
|
||||
\medskip
|
||||
Many commands can not operate on modules with ``processes'' in them. Usually
|
||||
a call to {\tt proc} is the first command in the actual synthesis procedure
|
||||
after design elaboration.
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[fragile]{\subsecname{} -- Example 1/3}
|
||||
\begin{columns}
|
||||
\column[t]{5cm}
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=verilog]{PRESENTATION_ExSyn/proc_01.v}
|
||||
\column[t]{5cm}
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys, frame=single]{PRESENTATION_ExSyn/proc_01.ys}
|
||||
\end{columns}
|
||||
\hfil\includegraphics[width=8cm,trim=0 0cm 0 0cm]{PRESENTATION_ExSyn/proc_01.pdf}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[t, fragile]{\subsecname{} -- Example 2/3}
|
||||
\vbox to 0cm{\includegraphics[width=\linewidth,trim=0cm 0cm 0cm -2.5cm]{PRESENTATION_ExSyn/proc_02.pdf}\vss}
|
||||
\vskip-1cm
|
||||
\begin{columns}
|
||||
\column[t]{5cm}
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=verilog]{PRESENTATION_ExSyn/proc_02.v}
|
||||
\column[t]{5cm}
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys, frame=single]{PRESENTATION_ExSyn/proc_02.ys}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[t, fragile]{\subsecname{} -- Example 3/3}
|
||||
\vbox to 0cm{\includegraphics[width=\linewidth,trim=0cm 0cm 0cm -1.5cm]{PRESENTATION_ExSyn/proc_03.pdf}\vss}
|
||||
\vskip-1cm
|
||||
\begin{columns}
|
||||
\column[t]{5cm}
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys, frame=single]{PRESENTATION_ExSyn/proc_03.ys}
|
||||
\column[t]{5cm}
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=verilog]{PRESENTATION_ExSyn/proc_03.v}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\subsection{The {\tt opt} command}
|
||||
|
||||
\begin{frame}[fragile]{\subsecname}
|
||||
The {\tt opt} command implements a series of simple optimizations. It also
|
||||
is a macro command that calls other commands:
|
||||
|
||||
\begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
|
||||
opt_expr # const folding and simple expression rewriting
|
||||
opt_merge -nomux # merging identical cells
|
||||
|
||||
do
|
||||
opt_muxtree # remove never-active branches from multiplexer tree
|
||||
opt_reduce # consolidate trees of boolean ops to reduce functions
|
||||
opt_merge # merging identical cells
|
||||
opt_rmdff # remove/simplify registers with constant inputs
|
||||
opt_clean # remove unused objects (cells, wires) from design
|
||||
opt_expr # const folding and simple expression rewriting
|
||||
while [changed design]
|
||||
\end{lstlisting}
|
||||
|
||||
The command {\tt clean} can be used as alias for {\tt opt\_clean}. And {\tt ;;}
|
||||
can be used as shortcut for {\tt clean}. For example:
|
||||
|
||||
\begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
|
||||
proc; opt; memory; opt_expr;; fsm;;
|
||||
\end{lstlisting}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[t, fragile]{\subsecname{} -- Example 1/4}
|
||||
\vbox to 0cm{\includegraphics[width=\linewidth,trim=0cm 0cm 0cm -0.5cm]{PRESENTATION_ExSyn/opt_01.pdf}\vss}
|
||||
\vskip-1cm
|
||||
\begin{columns}
|
||||
\column[t]{5cm}
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys, frame=single]{PRESENTATION_ExSyn/opt_01.ys}
|
||||
\column[t]{5cm}
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=verilog]{PRESENTATION_ExSyn/opt_01.v}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[t, fragile]{\subsecname{} -- Example 2/4}
|
||||
\vbox to 0cm{\includegraphics[width=\linewidth,trim=0cm 0cm 0cm 0cm]{PRESENTATION_ExSyn/opt_02.pdf}\vss}
|
||||
\vskip-1cm
|
||||
\begin{columns}
|
||||
\column[t]{5cm}
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys, frame=single]{PRESENTATION_ExSyn/opt_02.ys}
|
||||
\column[t]{5cm}
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=verilog]{PRESENTATION_ExSyn/opt_02.v}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[t, fragile]{\subsecname{} -- Example 3/4}
|
||||
\vbox to 0cm{\includegraphics[width=\linewidth,trim=0cm 0cm 0cm -2cm]{PRESENTATION_ExSyn/opt_03.pdf}\vss}
|
||||
\vskip-1cm
|
||||
\begin{columns}
|
||||
\column[t]{5cm}
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys, frame=single]{PRESENTATION_ExSyn/opt_03.ys}
|
||||
\column[t]{5cm}
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=verilog]{PRESENTATION_ExSyn/opt_03.v}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[t, fragile]{\subsecname{} -- Example 4/4}
|
||||
\vbox to 0cm{\hskip6cm\includegraphics[width=6cm,trim=0cm 0cm 0cm -3cm]{PRESENTATION_ExSyn/opt_04.pdf}\vss}
|
||||
\vskip-1cm
|
||||
\begin{columns}
|
||||
\column[t]{5cm}
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=verilog]{PRESENTATION_ExSyn/opt_04.v}
|
||||
\column[t]{5cm}
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys, frame=single]{PRESENTATION_ExSyn/opt_04.ys}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\subsection{When to use {\tt opt} or {\tt clean}}
|
||||
|
||||
\begin{frame}{\subsecname}
|
||||
Usually it does not hurt to call {\tt opt} after each regular command in the
|
||||
synthesis script. But it increases the synthesis time, so it is favourable
|
||||
to only call {\tt opt} when an improvement can be achieved.
|
||||
|
||||
\bigskip
|
||||
The designs in {\tt yosys-bigsim} are a good playground for experimenting with
|
||||
the effects of calling {\tt opt} in various places of the flow.
|
||||
|
||||
\bigskip
|
||||
It generally is a good idea to call {\tt opt} before inherently expensive
|
||||
commands such as {\tt sat} or {\tt freduce}, as the possible gain is much
|
||||
higher in this cases as the possible loss.
|
||||
|
||||
\bigskip
|
||||
The {\tt clean} command on the other hand is very fast and many commands leave
|
||||
a mess (dangling signal wires, etc). For example, most commands do not remove
|
||||
any wires or cells. They just change the connections and depend on a later
|
||||
call to clean to get rid of the now unused objects. So the occasional {\tt ;;}
|
||||
is a good idea in every synthesis script.
|
||||
\end{frame}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\subsection{The {\tt memory} command}
|
||||
|
||||
\begin{frame}[fragile]{\subsecname}
|
||||
In the RTL netlist, memory reads and writes are individual cells. This makes
|
||||
consolidating the number of ports for a memory easier. The {\tt memory}
|
||||
transforms memories to an implementation. Per default that is logic for address
|
||||
decoders and registers. It also is a macro command that calls other commands:
|
||||
|
||||
\begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
|
||||
# this merges registers into the memory read- and write cells.
|
||||
memory_dff
|
||||
|
||||
# this collects all read and write cells for a memory and transforms them
|
||||
# into one multi-port memory cell.
|
||||
memory_collect
|
||||
|
||||
# this takes the multi-port memory cell and transforms it to address decoder
|
||||
# logic and registers. This step is skipped if "memory" is called with -nomap.
|
||||
memory_map
|
||||
\end{lstlisting}
|
||||
|
||||
\bigskip
|
||||
Usually it is preferred to use architecture-specific RAM resources for memory.
|
||||
For example:
|
||||
|
||||
\begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
|
||||
memory -nomap; techmap -map my_memory_map.v; memory_map
|
||||
\end{lstlisting}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[t, fragile]{\subsecname{} -- Example 1/2}
|
||||
\vbox to 0cm{\includegraphics[width=0.7\linewidth,trim=0cm 0cm 0cm -10cm]{PRESENTATION_ExSyn/memory_01.pdf}\vss}
|
||||
\vskip-1cm
|
||||
\begin{columns}
|
||||
\column[t]{5cm}
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys, frame=single]{PRESENTATION_ExSyn/memory_01.ys}
|
||||
\column[t]{5cm}
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=verilog]{PRESENTATION_ExSyn/memory_01.v}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[t, fragile]{\subsecname{} -- Example 2/2}
|
||||
\vbox to 0cm{\hfill\includegraphics[width=7.5cm,trim=0cm 0cm 0cm -5cm]{PRESENTATION_ExSyn/memory_02.pdf}\vss}
|
||||
\vskip-1cm
|
||||
\begin{columns}
|
||||
\column[t]{5cm}
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{6pt}{8pt}\selectfont, language=verilog]{PRESENTATION_ExSyn/memory_02.v}
|
||||
\column[t]{5cm}
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys, frame=single]{PRESENTATION_ExSyn/memory_02.ys}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\subsection{The {\tt fsm} command}
|
||||
|
||||
\begin{frame}[fragile]{\subsecname{}}
|
||||
The {\tt fsm} command identifies, extracts, optimizes (re-encodes), and
|
||||
re-synthesizes finite state machines. It again is a macro that calls
|
||||
a series of other commands:
|
||||
|
||||
\begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
|
||||
fsm_detect # unless got option -nodetect
|
||||
fsm_extract
|
||||
|
||||
fsm_opt
|
||||
clean
|
||||
fsm_opt
|
||||
|
||||
fsm_expand # if got option -expand
|
||||
clean # if got option -expand
|
||||
fsm_opt # if got option -expand
|
||||
|
||||
fsm_recode # unless got option -norecode
|
||||
|
||||
fsm_info
|
||||
|
||||
fsm_export # if got option -export
|
||||
fsm_map # unless got option -nomap
|
||||
\end{lstlisting}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{\subsecname{} -- details}
|
||||
Some details on the most important commands from the {\tt fsm\_*} group:
|
||||
|
||||
\bigskip
|
||||
The {\tt fsm\_detect} command identifies FSM state registers and marks them
|
||||
with the {\tt (* fsm\_encoding = "auto" *)} attribute, if they do not have the
|
||||
{\tt fsm\_encoding} set already. Mark registers with {\tt (* fsm\_encoding =
|
||||
"none" *)} to disable FSM optimization for a register.
|
||||
|
||||
\bigskip
|
||||
The {\tt fsm\_extract} command replaces the entire FSM (logic and state
|
||||
registers) with a {\tt \$fsm} cell.
|
||||
|
||||
\bigskip
|
||||
The commands {\tt fsm\_opt} and {\tt fsm\_recode} can be used to optimize the
|
||||
FSM.
|
||||
|
||||
\bigskip
|
||||
Finally the {\tt fsm\_map} command can be used to convert the (optimized) {\tt
|
||||
\$fsm} cell back to logic and registers.
|
||||
\end{frame}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\subsection{The {\tt techmap} command}
|
||||
|
||||
\begin{frame}[t]{\subsecname}
|
||||
\vbox to 0cm{\includegraphics[width=12cm,trim=-15cm 0cm 0cm -20cm]{PRESENTATION_ExSyn/techmap_01.pdf}\vss}
|
||||
\vskip-0.8cm
|
||||
The {\tt techmap} command replaces cells with implementations given as
|
||||
verilog source. For example implementing a 32 bit adder using 16 bit adders:
|
||||
|
||||
\vbox to 0cm{
|
||||
\vskip-0.3cm
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{6pt}{7pt}\selectfont, language=verilog]{PRESENTATION_ExSyn/techmap_01_map.v}
|
||||
}\vbox to 0cm{
|
||||
\vskip-0.5cm
|
||||
\lstinputlisting[xleftmargin=5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, frame=single, language=verilog]{PRESENTATION_ExSyn/techmap_01.v}
|
||||
\lstinputlisting[xleftmargin=5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys, frame=single]{PRESENTATION_ExSyn/techmap_01.ys}
|
||||
}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[t]{\subsecname{} -- stdcell mapping}
|
||||
When {\tt techmap} is used without a map file, it uses a built-in map file
|
||||
to map all RTL cell types to a generic library of built-in logic gates and registers.
|
||||
|
||||
\bigskip
|
||||
\begin{block}{The built-in logic gate types are:}
|
||||
{\tt \$\_NOT\_ \$\_AND\_ \$\_OR\_ \$\_XOR\_ \$\_MUX\_}
|
||||
\end{block}
|
||||
|
||||
\bigskip
|
||||
\begin{block}{The register types are:}
|
||||
{\tt \$\_SR\_NN\_ \$\_SR\_NP\_ \$\_SR\_PN\_ \$\_SR\_PP\_ \\
|
||||
\$\_DFF\_N\_ \$\_DFF\_P\_ \\
|
||||
\$\_DFF\_NN0\_ \$\_DFF\_NN1\_ \$\_DFF\_NP0\_ \$\_DFF\_NP1\_ \\
|
||||
\$\_DFF\_PN0\_ \$\_DFF\_PN1\_ \$\_DFF\_PP0\_ \$\_DFF\_PP1\_ \\
|
||||
\$\_DFFSR\_NNN\_ \$\_DFFSR\_NNP\_ \$\_DFFSR\_NPN\_ \$\_DFFSR\_NPP\_ \\
|
||||
\$\_DFFSR\_PNN\_ \$\_DFFSR\_PNP\_ \$\_DFFSR\_PPN\_ \$\_DFFSR\_PPP\_ \\
|
||||
\$\_DLATCH\_N\_ \$\_DLATCH\_P\_}
|
||||
\end{block}
|
||||
\end{frame}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\subsection{The {\tt abc} command}
|
||||
|
||||
\begin{frame}{\subsecname}
|
||||
The {\tt abc} command provides an interface to ABC\footnote[frame]{\url{http://www.eecs.berkeley.edu/~alanmi/abc/}},
|
||||
an open source tool for low-level logic synthesis.
|
||||
|
||||
\medskip
|
||||
The {\tt abc} command processes a netlist of internal gate types and can perform:
|
||||
\begin{itemize}
|
||||
\item logic minimization (optimization)
|
||||
\item mapping of logic to standard cell library (liberty format)
|
||||
\item mapping of logic to k-LUTs (for FPGA synthesis)
|
||||
\end{itemize}
|
||||
|
||||
\medskip
|
||||
Optionally {\tt abc} can process registers from one clock domain and perform
|
||||
sequential optimization (such as register balancing).
|
||||
|
||||
\medskip
|
||||
ABC is also controlled using scripts. An ABC script can be specified to use
|
||||
more advanced ABC features. It is also possible to write the design with
|
||||
{\tt write\_blif} and load the output file into ABC outside of Yosys.
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[fragile]{\subsecname{} -- Example}
|
||||
\begin{columns}
|
||||
\column[t]{5cm}
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=verilog]{PRESENTATION_ExSyn/abc_01.v}
|
||||
\column[t]{5cm}
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys, frame=single]{PRESENTATION_ExSyn/abc_01.ys}
|
||||
\end{columns}
|
||||
\includegraphics[width=\linewidth,trim=0 0cm 0 0cm]{PRESENTATION_ExSyn/abc_01.pdf}
|
||||
\end{frame}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\subsection{Other special-purpose mapping commands}
|
||||
|
||||
\begin{frame}{\subsecname}
|
||||
\begin{block}{\tt dfflibmap}
|
||||
This command maps the internal register cell types to the register types
|
||||
described in a liberty file.
|
||||
\end{block}
|
||||
|
||||
\bigskip
|
||||
\begin{block}{\tt hilomap}
|
||||
Some architectures require special driver cells for driving a constant hi or lo
|
||||
value. This command replaces simple constants with instances of such driver cells.
|
||||
\end{block}
|
||||
|
||||
\bigskip
|
||||
\begin{block}{\tt iopadmap}
|
||||
Top-level input/outputs must usually be implemented using special I/O-pad cells.
|
||||
This command inserts this cells to the design.
|
||||
\end{block}
|
||||
\end{frame}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\subsection{Example Synthesis Script}
|
||||
|
||||
\begin{frame}[fragile]{\subsecname}
|
||||
\begin{columns}
|
||||
\column[t]{4cm}
|
||||
\begin{lstlisting}[basicstyle=\ttfamily\fontsize{6pt}{7pt}\selectfont, language=ys]
|
||||
# read and elaborate design
|
||||
read_verilog cpu_top.v cpu_ctrl.v cpu_regs.v
|
||||
read_verilog -D WITH_MULT cpu_alu.v
|
||||
hierarchy -check -top cpu_top
|
||||
|
||||
# high-level synthesis
|
||||
proc; opt; fsm;; memory -nomap; opt
|
||||
|
||||
# substitute block rams
|
||||
techmap -map map_rams.v
|
||||
|
||||
# map remaining memories
|
||||
memory_map
|
||||
|
||||
# low-level synthesis
|
||||
techmap; opt; flatten;; abc -lut6
|
||||
techmap -map map_xl_cells.v
|
||||
|
||||
# add clock buffers
|
||||
select -set xl_clocks t:FDRE %x:+FDRE[C] t:FDRE %d
|
||||
iopadmap -inpad BUFGP O:I @xl_clocks
|
||||
|
||||
# add io buffers
|
||||
select -set xl_nonclocks w:* t:BUFGP %x:+BUFGP[I] %d
|
||||
iopadmap -outpad OBUF I:O -inpad IBUF O:I @xl_nonclocks
|
||||
|
||||
# write synthesis results
|
||||
write_edif synth.edif
|
||||
\end{lstlisting}
|
||||
\column[t]{6cm}
|
||||
\vskip1cm
|
||||
\begin{block}{Teaser / Outlook}
|
||||
\small\parbox{6cm}{
|
||||
The weird {\tt select} expressions at the end of this script are discussed in
|
||||
the next part (Section 3, ``Advanced Synthesis'') of this presentation.}
|
||||
\end{block}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\subsection{Summary}
|
||||
|
||||
\begin{frame}{\subsecname}
|
||||
\begin{itemize}
|
||||
\item Yosys provides commands for each phase of the synthesis.
|
||||
\item Each command solves a (more or less) simple problem.
|
||||
\item Complex commands are often only front-ends to simple commands.
|
||||
\item {\tt proc; opt; fsm; opt; memory; opt; techmap; opt; abc;;}
|
||||
\end{itemize}
|
||||
|
||||
\bigskip
|
||||
\bigskip
|
||||
\begin{center}
|
||||
Questions?
|
||||
\end{center}
|
||||
|
||||
\bigskip
|
||||
\bigskip
|
||||
\begin{center}
|
||||
\url{https://yosyshq.net/yosys/}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
Loading…
Reference in New Issue